实时三平面应变率评价冠状动脉搭桥术前后左室长轴功能的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分实时三平面应变率评价冠状动脉搭桥术前后左室长轴功能的临床研究
     研究背景
     非体外循环冠状动脉搭桥术(Off-pump coronary artery bypass graft, OPCABG)是冠心病的重要治疗手段之一,研究发现,OPCABG虽然避免了很多并发症,但仍然会对心肌造成损伤,因此对OPCABG前后心功能的评价具有重要的临床意义。
     左室心肌由纵行心肌纤维和环行心肌纤维共同构成,二者共同参与心脏的收缩舒张活动。尽管纵行心肌纤维在整个心肌质量中所占比例较小,但是它所构成的左室长轴功能对维持左室正常功能状态具有重要作用。由于纵行心肌纤维主要位于心内膜下及乳头肌等处,所以在缺血等病理状态下,左室长轴功能较易受累,并可发生于短轴功能正常时。
     应变率成像技术建立在多普勒成像技术基础之上,具有较高的时间分辨率和空间分辨率,可以实时、准确地反映局部心肌的运动,且较少受到心脏位移和邻近组织牵拉效应的影响,较组织多普勒成像技术更能准确评价左室长轴功能。但是应变率成像技术只能在一个心脏切面上进行测量分析。实时三平面成像是新近研发的新技术,可以在同一心动周期同步显示三个切面,将应变率成像技术与实时三平面技术相结合,可以在同一心动周期对左室的各个节段进行应变率的成像和定量分析。这项技术在一个标准成像方位同时获取三个标准切面,节省了扫查时间,去除了不同心动周期变异对左室局部心肌定量分析的影响,从而使应变率成像技术对左室局部功能的评价更加准确可靠。目前关于应用实时三平面应变率成像技术的研究较少,且用于评价OPCABG前后左室长轴收缩功能的研究国内外均未见报道。本研究旨在应用实时三平面应变率成像技术检测OPCABG前后左室长轴收缩功能的变化,探讨其临床应用价值。
     目的
     应用实时三平面应变率成像技术检测OPCABG前后左室长轴收缩功能的变化,探讨其临床应用价值。
     方法
     选择接受OPCABG治疗的冠心病患者30例,性别与年龄匹配的健康志愿者30例作为正常对照组。应用实时三平面成像技术,同时获得心尖四腔、心尖两腔及心尖左室长轴3个切面,启动应变率成像模式,于室间隔及左室壁每一节段的中间位置取样,分别测量后间隔、左室侧壁、下壁、前壁、后壁及前间隔的基底段、中间段和心尖段的收缩期峰值应变率(systolic strain rate, SRs)。
     结果
     1.正常对照组,室间隔中间段SRS最高(P<0.05),基底段与心尖段SRS差异无统计学意义(P>0.05),左室各壁基底段至心尖段SRS呈递减趋势(P<0.05),室间隔基底段SRS小于相同节段的左室壁(P<0.05),同一节段左室各壁之间SRS差异无统计学意义(P>0.05)。
     2.与正常对照组比较,室间隔及左室壁SRS这种变化趋势消失,术后1周部分节段SRS增加,术后3个月各节段SRS均不同程度增加,且术后3个月出现与正常对照组左室壁SRS相似的变化趋势。
     3.冠心病组30例患者筛选出运动异常节段148个,其术前SRS明显减小[(-0.68±0.31)s-1],术后1周SRS增加[(-1.01±0.34)s-1],术后3个月进一步增加[(-1.55±0.37)s-1],差异有统计学意义(P<0.01)
     4.术前运动异常节段中有27个节段出现收缩后收缩(post systolic shortening,PSS)[(-1.17±0.38)s-1],术后1周相应节段PSS明显减小[(-0.65±0.28)s-1],术后3个月进一步减小[(-0.35±0.22)s-1]或消失,差异有统计学意义(P<0.05)。
     5.以室间隔及左室壁18个节段SRS的平均值作为左室整体长轴应变率(MSRS),与正常对照组比较,OPCABG组术前MSRs显著减小[(-1.73±0.21)s-1vs(-1.10±0.25)s-1],术后1周增加[(-1.34±0.13)s-1],术后3个月进一步增加[(-1.59±0.16)s-1],差异有统计学意义(P<0.05)。
     6. MSRS绝对值与LVEF呈正相关(r=0.68,P<0.01)。
     结论
     冠心病患者左室局部和整体长轴收缩功能均明显减低;OPCABG术后1周,左室局部和整体长轴收缩功能均明显改善,术后3个月进一步改善;MSRS能够反应左室整体收缩功能;实时三平面应变率成像技术能够准确的定量评价OPCABG前后左室长轴收缩功能的变化。
     第二部分二维超声斑点追踪成像评价冠心病左室心肌旋转和扭转运动的临床研究
     研究背景
     1628年,William Harvey提出了左室旋转和扭转运动,后续的很多研究证实了左室旋转和解旋运动对左室收缩期射血和舒张期血液充盈的重要性,然而评价心肌旋转和扭转运动的许多方法属于有创性检查,不能广泛开展。磁共振技术可以无创性评价左室心肌扭转运动,但造价昂贵,因此在临床上的应用受到很大限制。近几年,有研究应用组织多普勒技术在短轴切面测量心肌组织的旋转速度来评价心肌的旋转运动,且报道其检测结果与磁共振检测结果有较好的一致性,但由于组织多普勒技术的局限性而无法推广。随着二维超声斑点追踪成像技术(spackle tracking imaging, STI)的产生,用超声心动图技术定量评价心肌的旋转及扭转运动成为可能,STI技术在高帧频的二维成像基础上,可以追踪心肌中自然声学斑点的运动,应用斑点匹配技术和自相关搜索技术,逐帧扫描斑点在一个完整心动周期中的位置,经过计算机运算,对心肌组织的运动和形变进行重建,可用于定量评价左室心肌的应变和扭转角度。STI技术无创,客观,无角度依赖,不受临近组织牵拉,为定量评价心肌局部及整体功能开辟了新途径。既往已有一些关于STI技术与组织标记磁共振技术的对照研究,证实了STI技术具有较满意的准确性及可重复性。本研究运用STI技术定量评价冠心病左室心肌旋转和扭转的变化,探讨其临床应用价值。
     目的
     运用STI技术检测冠心病患者左室心肌的旋转和扭转运动,探讨其临床应用价值。
     方法
     应用STI技术,获得左室基底水平和心尖水平两个短轴切面的心肌轴向扭转角度-时间曲线,测量基底水平和心尖水平心内膜旋转角度峰值(Rendo)、心外膜旋转角度峰值(Repi),切面整体旋转角度峰值(Rbulk)和跨壁扭转角度梯度(Tmural);将以上数据录入excel表格,生成左室整体扭转角度-时间曲线(左室整体扭转角度等于心尖水平和基底水平旋转角度的差值),测量左室整体心内膜扭转角度峰值(Ptw-endo)、心外膜扭转角度峰值(Ptw-epi)、左室整体扭转角度峰值(Ptw-bulk)和左室整体跨壁扭转角度梯度(Ptw-mural);记录各曲线达峰时间;计算各切面旋转解旋率(UntwR)和左室整体扭转解旋率(Ptw-UntwR)。
     结果
     1.与正常对照组比较,冠心病组基底水平、心尖水平和左室整体扭转各曲线峰值均明显减低(P均<0.01),达峰时间延迟(P均<0.01),UntwR和Ptw-UntwR减低(P均<0.01)
     2.根据Gensini积分将冠心病患者分为轻度病变组(A组),中度病变组(B组)和重度病变组(C组);A组Ptw-endo明显减小,达峰时间延迟(P均<0.01),Ptw-epi无明显变化(P>0.05),Ptw-mural明显减小(P<0.01),Ptw-bulk减小(P<0.01);B组和C组Ptw-endo、Ptw-epi和Ptw-bulk均减小(P均<0.01),Ptw-mural较A组增大,但较正常对照组减小(P<0.01);各曲线达峰时间均延迟(P均<0.01);Ptw-UntwR在3组间呈进行性减小(P均<0.01)。
     3.单纯前降支病变表现为心尖水平各曲线峰值明显减低,达峰时间延迟(P均<0.01);单纯右冠状动脉病变者表现为基底水平各曲线峰值明显减低,达峰时间延迟(P均<0.01)。
     4. Rendo、Repi、Rbulk、Ptw-endo、Ptw-epi和Ptw-bulk均与LVEF呈正相关,Ptw-bulk相关性最高(r=0.66,P<0.01)
     5.正常对照组,Ptw-endo、Ptw-epi、Ptw-bulk与LVEDV正相关(P均<0.05),与LVESV负相关(P<0.05),与SBP低度负相关(P均<0.05);冠心病组,Ptw-endo、 Ptw-epi、Ptw-bulk和Ptw-mural与LVEDV、LVESV和SBP均无相关性(P均>0.05)。
     6.冠心病组,Rendo、Repi、Rbulk、Ptw-endo、Ptw-epi和Ptw-bulk均与Gensini积分呈负相关(P均<0.05),Ptw-endo与Gensini积分相关性最高(r=-0.72,P<0.01)。
     7. UntwR, Ptw-UntwR与E/A和EDT均无相关性(P>0.05)。
     结论
     冠心病患者轻度病变者,主要表现为心内膜扭转角度的减低,随着冠状动脉病变程度的加重,心内膜,心外膜和左室整体扭转角度进行性减低,解旋率也呈进行性减低;不同冠状动脉病变引起相应节段旋转角度减低;左室整体扭转角度与左室收缩功能相关性良好,左室心内膜扭转角度与Gensini积分相关性良好;STI技术能够准确定量评价冠心病左室心肌的旋转和扭转运动。
PART ONE
     Evaluation of Left Ventricular Long-axis Function During Coronary Artery Bypass Graft Using Real-time Tri-plane Strain Rate Imaging
     Background
     Off-pump coronary artery bypass graft (OPCABG) is an important treatment for patients with coronary artery disease. Thus it is very important to evaluate the LV function accurately before and after OPCABG. Strain rate imaging (SRI) describes myocardial deformation rather than velocity and displacement, could be a more specific technique for the assessment of regional myocardial function and therefore superior to tissue doppler imaging. Much research has found that SRI is an effective quantitative method for evaluation of myocardial deformation. However, SRI measures deformation in only one plane. Real-time tri-plane echocardiography can show3planes in the same R-R interval. Combined Real-time tri-plane technology and SRI can measure the each segment of the left ventricular in the same R-R interval. Real-time tri-plane SRI avoids the effects of different cardiac cycle variation on different wall segment of the LV. The aim of this study was to evaluate the capability of real-time tri-plane SRI for monitoring left ventricular long-axis systolic function before and after OPCABG and for evaluating the effect of surgery.
     Objective:
     To evaluate the left ventricular long-axis systolic function before and after OPCABG using real-time tri-plane strain rate imaging.
     Methods
     We recruited30healthy volunteers as control group and30patients with coronary artery disease who were treated by OPCABG. In this study, an apical4-chamber view was chosen as the primary image plane. The matrix array transducer then allowed the visualization of4-chamber,2-chamber, and long-axis apical views simultaneously. Echocardiographic data were acquired before OPCABG and a week and3months after OPCABG. The sample was located in the basal, middle and apical segments of interventricular septum and left ventricular wall. The systolic strain rate (SRs) and post systolic shortening (PSS) were measured.
     Results
     Compared with control group, SRs was lower in OPCABG group. SRs was increased at a week after OPCABG, and further increased at3month after OPCABG. PSS were emerged in27segments before OPCABG, and decreased a week after OPCABG and further decreased3months after OPCABG (P<0.05). Compared with control group, MSRs was lower in OPCABG group, and increased gradually after OPCABG. Absolute value of MSRs was related to LVEF (r=0.68, P<0.01).
     Conclusions
     Left ventricular long-axis systolic function was decreased in patients with coronary artery disease and gradually improved after OPCABG. Real-time tri-plane strain rate imaging can quantitative evaluate left ventricular long-axis systolic function before and after OPCABG.
     PART TWO
     Study on Left Ventricular Rotation and Twist by Two-Dimensional Speckle Tracking Imaging in Patients with Coronary Artery Disease
     Background
     Many studies confirmed that the left ventricular twist and untwist are very important for left ventricular systolic ejection and diastolic blood filling. Assessment left ventricular twist and untwist can providing myocardial local and global information. Later, some investigators showed that LV rotation and twist could be measured by speckle tracking imaging (STI). This study aids to assessment of left ventricular rotation and twist by using STI in patients with coronary artery disease.
     Objective
     Evaluation left ventricular rotation and twist in patients with coronary artery disease by two-dimensional speckle tracking imaging.
     Mehods
     70patients diagnosed coronary artery disease (CAD) were included in the study and30healthy volunteers as control group. Short-axis parasternal views were taken at the base and the apex of the heart. Using the two-dimensional speckle tracking imaging, we analysed the rotation curves at apex and base, and measured endo-radius global rotation (Rendo), epi-radius global rotation (Repi), bulk rotation (Rbulk) and the mural torsion (Tmural). We calculated the LV twist. LV twist was defined as the net difference (in degree) of the apical and basal rotation. Then we measured the peak subendocardial globe LV twist (Ptw-endo), peak subepicardial globe LV twist (Ptw-epi), peak globe LV twist (Ptw-bulk) and mural twist (Ptw-mural). We recorded the time to peak, and calculated the untwist rate (UntwR) and Ptw-UntwR also.
     Results
     There were significant differences in LV rotation and twist between CAD and control group (P<0.05). Compared with control group, the Rendo, Repi, Rbulk, Tmural, Ptw-endo, Ptw-epi, Ptw-bulk and Ptw-mural were decreased, the time to peak were delayed, the UntwR and Ptw-UntwR was decreased, respectively (P<0.01). According to the Gensini score, we divided the patients into3groups (A, B and C). Compared with control group, the Ptw-endo was decreased (P<0.01) in group A, there was no difference in Ptw-epi. The Ptw-endo, Ptw-epi, Ptw-bulk and Ptw-mural were decreased in group B and further decreased in group C, respectively (P<0.01). Rendo, Repi, Rbulk, Tmural and UntwR decreased significantly in apical level in patients with anterior descending branch stenosis (P<0.01), and decreased significantly in basal level in patients with right coronary artery stenosis (P<0.01). Rendo, Repi, Rbulk, Ptw-endo, Ptw-epi and Ptw-bulk were significantly related to LVEF in overall population. Ptw-endo, Ptw-epi, Ptw-bulk positively correlated with LVEDV (P<0.05), negative correlated with LVESV and SBP in control group (P<0.05). There was no correlation between Ptw-endo, Ptw-epi, Ptw-bulk and LVEDV, LVESV, SBP in CAD group. However, Rendo、Repi、Rbulk、Ptw-endo、Ptw-epi and Ptw-bulk were significantly related to Gensini score in CAD group. UntwR and Ptw-UntwR were not related to E/A and EDT.
     Conclusions
     LV rotational mechanics is affected differently in the subendocardial and subepicardial layers in patients with coronary artery disease. The rotation of subendocardial is reduced in patients with mild coronary artery stenosis, whereas subendocardial, subepicardial and LV twist was reduced in patients with more servece coronary artery stenosis. Left ventricular untwist rate was significantly reduced in CAD. Different coronary atery stenosis affect differently in basal and apex level. LV twist is related to LVEF. STI can evaluate LV twist accurately in patients with CAD.
     Objective:To evaluate the left ventricular long-axis regional systolic function before and after off-pump coronary artery bypass graft (OPCABG) using real-time tri-plane strain rate imaging.
     Methods:We recruited30healthy volunteers as control group and30patients with coronary artery disease (CAD) who were treated by OPCABG. In this study, an apical4-chamber view was chosen as the primary image plane. The matrix array transducer then allowed the visualization of4-chamber,2-chamber, and long-axis apical views simultaneously. Echocardiographic data were acquired before OPCABG and a week and3months after OPCABG. The sample was located in the basal, middle and apical segments of interventricular septum and left ventricular wall. The systolic strain rate (SRs) and the postsystolic strain (PSS) were measured.
     Results:SRs was lower from basal to apical segments in LV wall. Compared with control group, SRs was increased in some segments at a week after OPCABG, and increased in all patients at3months after OPCABG. PSS were emerged in27segments before OPCABG, and decreased after a week and3months (P<0.05). There was a positive correlation with LVEF and MSRs (r=0.68, P<0.01)。
     Conclusions:Left ventricular long-axis regional systolic function was decreased in patients with coronary artery disease and improved after OPCABG. Real-time tri-plane strain rate imaging can quantitative evaluate left ventricular long-axis regional systolic function before and after OPCABG.
     Objective:To evaluate left ventricular rotation and twist in patients with coronary artery disease by two-dimensional speckle tracking imaging.
     Mehods:70patients diagnosed coronary artery disease were included in the stydy and30healthy volunteers as control group. Short-axis parasternal views were taken at the base and the apex of the heart. Using the two-dimensional speckle tracking technique, we analysed the rotation curves at apex and base and calculated the rotation of the subendocardial layers (Ptw-endo), the rotation of the subepicardial layers (Ptw-epi), the globe rotation of the left ventricular (Ptw-bulk) and the transmura torsion (Ptw-mural).
     Results:There were significant differences in LV rotation and the twist between CAD and control group (P<0.05). Compared with control group, the Ptw-endo, Ptw-epi, Ptw-bulk and Ptw-mural were decreased (P<0.01). According to the Gensini score, we divided the patients into3groups (A, B and C). Compared with control group, the Ptw-endo was decreased (P<0.01), there was no difference in Ptw-epi, the Ptw-bulk and Ptw-mural were decreased (P<0.01) in group A. The Ptw-endo, Ptw-epi, Ptw-bulk and Ptw-mural were decreased (P<0.01) in group B and further decreased in group C, respectively (P<0.01). In the overall population, Ptw-bulk and Ptw-endo were significantly related to LVEF and Gensini score, respectively (P<0.01).
     Conclusions:The rotation of subendocardial is reduced in patients with coronary artery disease in earlier stage, whereas subendocardial, subepicardial and LV twist was reduced in patients with more servece coronary disease. LV rotational mechanics is affected differently in the subendocardial and subepicardial layers in patients with coronary artery disease. STI can evaluate LV twist accurately in CAD.
引文
1. Picano E, Lattanzi F, Orlandini A, et al. Stress echocardiography and the human factor:The importance of being expert. J Am Coll Cardiol,1991; 17:666-669.
    2. Chowdhury UK, Malik V, Yadav R, et al. Myocardial injury in coronary artery bypass grafting:on-pump versus off-pump comparison by measuring high-sensitivity C-reactive protein, cardiac troponin I, heart-type fatty acid-binding protein, creatine kinase-MB, and myoglobin release. J Thorac Cardiovasc Surg,2008; 135(5):1110-1119.
    3.朱丽敏,周青,邓倾,等.实时三维超声心动图定量评价心肌梗死后左室梗死和非梗死节段收缩功能.中国超声医学杂志,2010;26(11):995-998.
    4.李秀昌,张运,张梅,等.正常人左室心肌节段局部三维容量和收缩功能的定量研究.中国超声医学杂志,2004;20(2):102-105.
    5. Tada T, Oki T, Abe M, et al. The role of short-and long-axis function in determining late diastolic left ventricular filling in patients with hypertension: assessment by pulsed Doppler tissue imaging. J Am Soc Echocardiogr,2002; 15:1211-1217.
    6. Yip G, Wang M, Zhang Y, et al. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole:time for a redefinition? Heart, 2002; 87:121-125.
    7. Andersson B, Wagstein F, Caidahl K, et al. Early changes in longitudinal performance predict future improvement in global left ventricular function during long term (3 adrenergic blockade. Heart,2000; 84:599-605.
    8. Vinereanu D, Florescu N, Sculthorpe N, et al. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol,2001; 88:53-58.
    9.李靖,刘延龄,王浩,等.多普勒组织成像评价非梗阻型肥厚型心肌病心功能.中国超声医学杂志,2003;19:418-421.
    10. Thibault H, Gomez L, Donal E, et al. Regional myocardial function after myocardial infarction in mice:a follow-up study by strain rate imaging. J Am Soc Echocardiogr.2009; 22(2):198-205.
    11.冯德喜,秦林金,王金锐,等.超声心动图应变技术对心肌缺血节段矛盾运动的实验研究.内蒙古医学院学报,2003;25:188-190.
    12. Henein MY. Long axis function in disease. Heart,1999; 81:229-231.
    13. Brecker SJ, Stephen JD. The importance of long axis ventricular function. Heart, 2000; 84:577-578.
    14. Andersson B, Wagstein F, Caidahl K, et al. Early changes in longitudinal performance predict future improvement in global left ventricular function during long term beta adrenergic blockade. Heart,2000; 84(6):599-605.
    15. Baur LH. Strain and strain rate imaging:a promising tool for evaluation of ventricular function. Int J Cardiovasc Imaging,2008; 24 (5):493-494.
    16. Weidemann F, Jamal F, Sutherland, et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol,2002; 283:H792-799
    17. Claus P, Bijnens B. Post systolic thickening in ischaemic myocardium:a simple mathematical model for simulating regional deformation. Functional imaging and modeling of the heart. Lect Notes Comput Sci,2001; 2230:134-139.
    18. Abraham TP, Nishimura RA, Holmes DR., et al. Strain rate imaging for assessment of regional myocardial function:results from a clinical model of septal ablation. Circulation,2002; 105:1403-1406.
    19. Kukulski T, Jamal F, Herbots L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements:a clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol,2003; 41(5):810-819.
    20. Streb W, Duszanska A, Stabryla-Deska J, et al. The comparison of contrast echocardiography and tissue Doppler imaging for evaluation of reperfused myocardium in patients with acute anterior myocardial infarction. Cardiol J.2008; 15(6):548-554.
    1. Tibayan FA, Rodriguez F, Langer F, et al. Alteration in left ventricular torsion and diastolic recoil after myocardial infarction with and without chronic ischemic regurgitation. Circulation,2004; 110:109-114.
    2. Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation. Circulation,2005; 112(20):3149-3156.
    3. Fuehs E, Muller MF, Oswald H, et al. Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail,2004; 6(6):715-722.
    4. Buchalter MB, Weiss JL, Rogers WJ, et al. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation,1990; 81:1236-44.
    5. Buchalter MB, Rademakers FE, Weiss JL, et al. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging:effects of catecholamines, ischaemia, and pacing. Cardiovasc Res,1994; 28:629-35.
    6. Mirro MJ, Rogers EW, Weyman AE, et al. Angular displacement of the papillary muscles during the cardiac cycle. Circulation,1979; 60:327-33.
    7. Notomi Y, Setser RM, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging:validation study with tagged magnetic resonance imaging. Circulation,2005; 111:1141-1147.
    8. Burns AT, McDonald IG, Thomas JD, et al. Doin'the twist:new tools for an old concept of myocardial function. Heart,2008; 94:978-983.
    9. Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coil Cardiol,2005; 45:2034-2041.
    10. Goffinet C, Chenot F, Robert A, et al. Assessment of subendo car dial vs. subepicardial left ventricular rotation and twist using two-dimensional speckle tracking echocardiography:comparison with tagged cardiac magnetic resonance. Eur Heatr J,2009; 30:608-617.
    11. Gensini GG. A More meaningful scoring system for determing the severity of coronary heart disease. Am J Cardiol,1983; 51(5):606-609.
    12. Buchalter MB, Weiss JL, Rogers WJ. et al. Noninvasive quanlification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging[J]. Circulation,1990; 81(4):1236-1244.
    13. Schmid P, Jaermann P, Boesiger P, et al. Ventricular myocardial architecture as visualized in postmortem swine hearts using magnetic resonance diffusiong tensor imaging. Eur J Cardiothorac Srug,2005; 27(3):468-472.
    14. Stevens C, Remme E, LeGrice I, et al. Ventricular mechanics in diastole:material parameter sensitivity. J Biomech,2003; 36(5):737-748.
    15. Buckberg GD. Basic science review:the helix and the heart. J Thorac Cardiovasc Surg,2002; 124:863-883.
    16. Dong SJ, Hees PS, Siu CO, et al. MRI assessment of LV relaxation by untwisting rate:a new isovolumic phase measure of τ. Am J Physiol Heart Circ Physiol 2001; 281:H2002-2009.
    17. Notomi Y, Popovic ZB, et al. Ventricular untwisting:a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol,2008; 294: H505-513.
    18. Notomi Y, Lysyansky P, Sester RM, el al. Measurement of ventricular torsion by two-dimentional ultrasound speckle tracking imaging.J Am Coil Cardiol,2005; 45(12):2034-2041.
    19. Langeland S. Dhooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longtitudinal myocardial deformation independent of insonation angle. Circulation,2005; 112(14):2157-2162.
    20. Cheboul V, Serres F. Noninvasive assessment of systolic left ventricular torsion by 2-dimensiongal speckle tracking imaging in the awake dog:repeatability, reproducibility, and comparison with tissue Doppler imaging variables. Jorunal of Veterinary Internal Medicine,2008; 22(2):342-350.
    21. Myers JH, Stiring MC, Choy MC, et al. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation,1986; 74: 164-172.
    22. Gallagher KP, Osakada G, Matsuzaki M, et al. Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Phsiol,1985; 249:H241-H248.
    23. Arts T, Veenstra PC, Reneman RS. Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am J Physiol,1982; 243:H379-H390.
    24. Park SJ, Miyazaki C, Bruce CJ, et al. Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr 2008; 21:1129-1137.
    25. Wang J, Khoury DS, Yue Y, et al. Left ventricular untwisting rate by speckle tracking echocardiography. Circulation 2007; 116:2580-2586.
    26. Wang J, Khoury DS, Yue Y, et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J,2008; 29:1283-1289.
    27. Derumeaux G, Loufoua J. Doppler imaging differentiates transmural from nontransmural acute myocardial infarction after reperfusing therapy. Circulation, 2001; 103(4):589-596.
    28.Nakai H, Trakeuehi M, Nishikage T, et al. Effect of age on twist-displacement loop by 2-dimensional speckle tracking imaging. J Am Soc Echocardiogr,2006; 19(7):880-885.
    29. Kim WJ, Lee BH, Kim YJ, et al. Apical rotation assessed by speckle-tracking echocardiography as an index of global left ventricular contractility. Circ Cardiovasc Imaging,2009; 2(2):123-131.
    30. Dong SJ, Hees P, Huang WM, et al. Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol,1999; 277(46):1053-1060.
    31. Akagawa E, Murata K, Tanaka N, et al. Augmentation of left ventricular apical endocardial rotation with inotropic stimulation contributes to increase left ventricular torsion and radial strain in normal subject-quantitative assessment utilizing a novel automated tissue tracking technique. Circulation J,2007; 71(5): 661-668.
    32. Hansen DE, Daughters GT, Ahterman El, et al. Effect of volume loading, pressure loading, and inotropic stimulation on left ventricular torsion in humans. Circulation,1991; 83:1315-1326.
    1. Sutherland G, Steward M, Groundstroen K, et al. Color Doppler myocardial imaging:a new technique for the assessment of myocardial function. J Am Soc Echocardiogr,1994; 7:441-458.
    2. Heimdal A, Stoylen A, Torp H, et al. Real time strain rateimaging of the left verntricle by ultrasound. J Am Soc Echocardiogr,1998; 11:1013-1019.
    3. Veyrat C, Pellerin D, Larrazet F. Myocardial Doppler tissue imaging:past, present and future. Arch Mal Coeur Vaiss,1997; 90(10):1391-1402.
    4. D'Hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound:principles, implementation and limitations. Eur J Echocardiogr,2000; 1(3):154-170.
    5. Urheim S, Edvardsen T, Torp H, et al. Myocardial strain by Doppler echocardiography:validation of a new method to quantify regional myocardial function. Circulation,2000; 102:1158-1164.
    6. Sengupta PP, Mohan JC, Pandian NG. Tissue Doppler echocardiography: principles and applications. Indian Heart J,2002; 54(4):368-378.
    7. Stouylen A, Heimdal A, Bjornstad K, et al. Strain rate imaging by ultrasound in the diagnosis of regional dysfunction of the left ventricle. Echocardiography, 1999; 16(4):321-329.
    8. Uematsu M, Miyatake K, Tanaka N, et al. Myocardial velocity gradient as a new indicator of regional left ventricular contraction detection by two-dimensional tissue Doppler imaging technique. J Am Coll Cardiol,1995; 26:217-223.
    9. Yu CM, Sanderson JE, Marwick TH, et al. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol,2007; 20(3): 234-243.
    10. Marwick TH. Measurement of strain and strain rate by echocardiography:ready for prime time? J Am Coll Cardiol,2006; 47:1313-1327.
    11. Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography-from technical considerations to clinical applications. J Am Soc Echocardiogr,2007; 49(19):1903-1914.
    12. Teske AJ, De Boeck BWL, Olimulder M, et al. Echocardiographicassessment of regional right ventricular function. A head to headcomparison between 2D-strain and tissue Doppler derived strainanalysis. J Am Soc Echocardiogr,2007; 21(3): 275-83.1457-1465.
    13. Korinek J, Kjaergaard J, Sengupta PP, et al. High spatial resolutionspeckle tracking improves accuracy of 2-dimensional strainmeasurements. J Am Soc Echocardiogr,2007; 20(2):165-170.
    14. Ingul CB, Torp H, Aase SA. Automated analyses of strain rate andstrain: feasibility and clinical implications. J Am Soc Echocardiogr,2005; 18:411-418.
    15. Kylmala MM, Antila MK, Kivisto SM, et al. Tissue-Doppler strainmapping in the assessment of the extent of chronic myocardial infarction:validation using magnetic resonance imaging. Eur J Echocardiogr,2008; 9(5):678-684.
    16. Amundsen BH, Helle-Valle T, Edvardson T, et al. Noninvasive myocardial strain measurement by a novel automated tracking system from digital image files. J Am Coll Cardiol,2006; 47:789-793.
    17. Wang J, Khouri DS, Thohan V, et al. Global diastolic strain rate for assessment of left ventricular relaxation and filling pressure. Circulation,2007; 115(11): 1376-1383.
    18. Yoneyama A, Koyama J, Tomita T, et al. Relationship of plasma brain-type natriuretic peptide levels to left ventricular longitudinal function in patients with congestive heart failure by strain Doppler imaging. Int J Cardiol,2008; 130(1): 56-63.
    19. Andrea A, Stisi S, Caso P, et al. Associations between left ventricular myocardial involvement and endothelial dysfunction in systemic sclerosis:noninvasive assessment in asymptomatic patients. Echocardiography,2007; 24(6):587-597.
    20. Galderisi M, de Simone G, Inneli P, et al. Impaired inotropic response to type 2 diabetes mellitus:a strain rate imaging study. Am J Hypertens,2007; 20(5): 548-555.
    21. Bellavia D, Abraham TP, Pellikka PA, et al. Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography. J Am Soc Echocardiogr,2007; 20(10):1194-1202.
    22. Mori K, Hayabuchi Y, Inoue M, et al. Myocardial strain imaging for early detection of cardiac involvement in patients with Duchenne's progressive muscular dystrophy. Echocardiography,2007; 24(6):598-608.
    23. Arnold R, Goebel B, Ulmer HE, et al. An exercise tissue Doppler strain rate imaging study of diastolic myocardial dysfunction after Kawasaki syndrome in childhood. Cardiol Young,2007; 17(5):778-786.
    24. Migrino RQ, Aggarwal D, Konorev E, et al. Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol,2008; 34:208-214.
    25. D'Andrea A, De Corato G, Scarafile R, et al. Left atrial myocardial function in either physiologic or pathologic left ventricular hypertrophy:A two-dimensional speckle strain study. Br J Sports Med,2008; 42(8):696-702.
    26. Saghir M, Areces M, Makan M. Strain rate imaging differentiates hypertensive cardiac hypertrophy from physiologic cardiac hypertrophy (athlete's heart). J Am Soc Echocardiogr,2007; 20(2):151-157.
    27. Sevimli G, Gundogdu F, Aksakal E, et al. Right ventricular strain rate properties in patients with right ventricular myocardial infarction. Echocardiography,2007; 24(7):732-738.
    28. Hanekom L, Cho GY, Leano R, et al. Comparison of twodimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J,2007; 28(14):1765-1772.
    29. Boettler P, Hartmann M, Watzl K, et al. Heart rate effects on strain and strain rate in healthy children. J Am Soc Echocardiogr,2005; 18:1121-1123.
    30. Park TH, Nagueh SF, Khoury DS, et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements:implications for assessment of myocardial viability. Am J Physiol Heart Circ Physiol,2006; 209: H724-H731.
    31. Sun JP, Niu J, Chou D, et al. Alterations of regional myocardial function in a swine model of myocardial infarction assessed by echocardiographic 2-dimensional strain imaging. J Am Soc Echocardiogr,2007; 20(5):498-504.
    32. Migrino RQ, Zhu X, Pajewski N, et al. Assessment of segmental myocardial viability using regional 2-dimensional echocardiography. J Am Soc Echocardiogr, 2007; 20(4):342-351.
    33. Popovic ZB, Benjam C, Bian J, et al. Speckle-tracking echocardiography correctly identifies segmental left ventricular dysfunction induced by scarring in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol,2007; 292(6):H2809-2816.
    34. Poulsen SH, Sogaard P, Nielsen-Kudsk JE, et al. Recovery of left ventricular systolic longitudinal strain after valve replacement in aortic stenosis and relation to natriuretic peptide. J Am Soc Echocardiogr,2007; 20(7):877-884.
    35. Dandel M, Wellnhofer E, Hummel M, et al. Early detection of left ventricular dysfunction related to transplant coronary artery disease. J Heart Lung Tranplant, 2003; 22:1353-1364.
    36. Marciniak A, Eroglu E, Marciniak M, et al. The potential clinical role of strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr,2007; 8(3):213-221.
    37. Dandel M, Wellnhofer E, Lehmkuhl H, et al. Early detection of left ventricular wall motion alterations in heart allografts with coronary artery disease:diagnostic value of tissue Doppler and twodimensional (2D) strain echocardiography. Eur J Echocardiogr,2006; 7:S127-128.
    38. Lim P, Buakhamsri A, Popoviv ZB, et al. Longitudinal strain delay index by speckle tracking imaging. A new marker of response to cardiac resynchronization therapy. Circulation,2008; 118:1130-1137.
    39. Teske AJ, De Boeck BM, Melman PG, et al. Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc Ultrasound,2007; 30:5-27.
    40. Arita T, Sorescu GP, Schuler BT, et al. Speckle-tracking stain echocardiography for detecting cardiac dyssynchrony in a canine model of dyssynchrony and heart failure. Am J Physiol Heart Circ Physiol,2007; 293(1):H735-H742.
    1. Derumeaux G, Ovize M, Loufoua J, et al. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation, 1998; 97:1970-1977.
    2. Yamada E, Garcia M, Thomas JD, et al. Myocardial Doppler velocity imaging:a quantitative technique for interpretation of dobutamine echocardiography. Am J Cardiol,1998; 82:806-809.
    3. Abraham TP, Nishimura RA, Holmes DR, et al. Strain rate imaging for assessment of regional myocardial function:results from a clinical model of septal ablation. Circulation,2002; 105:1403-1406.
    4. Heimdal A, St(?)ylen A, Torp H, et al. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr,1998; 11:1013-1019.
    5. Abraham TP, Belohlavek M, Thomson HL, et al. Time to onset of regional relaxation:feasibility, variability and utility of a novel index of regional myocardial function by strain rate imaging. J Am Coll Cardiol,2002; 39:1531-1537.
    6. Hansegard J, Urheim S, Lunde K, et al. Constrained active appearance models for segmentation of triplane echocardiograms. IEEE Trans Med Imaging,2007; 26:1391-1400.
    7. Soliman OI, Krenning BJ, Geleijnse ML, et al. A comparison between QLAB and TomTec full volume reconstruction for real time three-dimensional echo cardio graphic quantification of left ventricular volumes. Echocardiography, 2007; 24:967-974.
    8. Franke A. Real-time three-dimensional echocardiography in stress testing:bi-and triplane imaging for enhanced image acquisition. Cardiol Clin,2007; 25:261-265.
    9. Malm S, Frigstad S, Sagberg E, et al. Realtime simultaneous triplane contrast echocardiography gives rapid, accurate, and reproducible assessment of left ventricular volumes and ejection fraction:a comparison with magnetic resonance imaging. J Am Soc Echocardiogr,2006; 19:1494-1501.
    10. Henein MY. Long axis function in disease. Heart,1999; 81:229-231.
    11. Brecker SJ, Stephen JD. The importance of long axis ventricular function. Heart, 2000; 84:577-578.
    12. Tada T, Oki T, Abe M, et al. The role of short-and long-axis function in determining late diastolic left ventricular filling in patients with hypertension: assessment by pulsed Doppler tissue imaging. J Am Soc Echocardiogr,2002; 15:1211-1217.
    13. Sutherland G, Steward M, Groundstroen K, et al. Color Doppler myocardial imaging:a new technique for the assessment of myocardial function. J Am Soc Echocardiogr,1994; 7:441-458.
    14. Veyrat C, Pellerin D, Larrazet F. Myocardial Doppler tissue imaging:past, present and future. Arch Mal Coeur Vaiss,1997; 90(10):1391-1402.
    15. Waggoner AD, Bierig SM. Tissue Doppler imaging:a useful echocardiographic method for the cardiac sonographer to assess systolic and diastolic ventricular function. J Am Soc Echocardiogr,2001; 14(12):1143-1152.
    16. Sengupta PP, Mohan JC, Pandian NG. Tissue Doppler echocardiography: principles and applications. Indian Heart J,2002; 54(4):368-378.
    17. Yu CM, Sanderson JE, Marwick TH, et al. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol,2007; 20(3): 234-243.
    18. Baur LH. Strain and strain rate imaging:a promising tool for evaluation of ventricular function. Int J Cardiovasc Imaging,2008,24 (5):493-494.
    19. Weidemann F, Jamal F, Sutherland, et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol,2002; 283:H792-H 799.
    20. Claus P, Bijnens B. Post systolic thickening in ischaemic myocardium:a simple mathematical model for simulating regional deformation. Functional imaging and modeling of the heart. Lect Notes Comput Sci,2001; 2230:134-139.
    21.Kukulski T, Jamal F, Herbots L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements:a clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol,2003,41(5):810-819.
    22. Jennings RB, Murry CE, Steenbergen C, et al. Development of cell injury in sustained acute ischemia. Circulation,1990; 82(suppl):II2-II12.
    23. Coucelo J, Azevedo J, Felizardo A, et al. Myocardial architecture, texture and left ventricular heterogeneity in the pulsed Doppler tissue imaging pattern. Rev Port Cardiol,2000; 19:217-224.
    24. Kondo H, Masuyama T, Ishihara K, et al. Digital subtraction high-frame-rate echocardiography in detecting delayed onset of regional left ventricular relaxation in ischemic heart disease. Circulation,1995; 91:304-312.
    25. Mele D, Pasanisi G, Heimdal A, et al. Improved recognition of dysfunctioning myocardial segments by longitudinal strain rate versus velocity in patients with myocardial infarction. J Am Soc Echocardiogr,2004; 17:313-321.
    1. Sengupta PP, Krishnamoorthy VK, Korinek J, et al. Left ventricular form and function revisited:applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr,2007; 20:539-551.
    2. Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function:basic science for cardiac imaging. J Am Coll Cardiol,2006; 48:1988-2001.
    3. Nielsen PM, Grice IJ, Smaill BH, et al. Mathematical model of geometryand fibrous structure of the heart. Am J Physiol,1991; 260:H1365-378.
    4. Hansen DE, Daughters GT 2nd, Alderman EL, et al. Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers:regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res,1988; 62:941-952.
    5. Gorman JH, Gupta KB, Streicher JT, et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg,1996; 112:712-726.
    6. Vendelin M, Bovendeerd PH, Engelbrecht J, et al. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am J Physiol Heart Circ Physiol,2002; 283:H1072-1081.
    7. Scher AM. Studies of the electrical activity of the ventricles and the origin of the QRS complex. Acta Cardiol,1995; 50:429-465.
    8. Notomi Y, Setser RM, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging:validation study with tagged magnetic resonance imaging. Circulation,2005; 111:1141-1147.
    9. Stamatelopoulos KS, Lekakis JP, Tseke P, et al. Differential associations of renal function with coronary and peripheral atherosclerosis. International Journal of Cardiology,2009; 135:162-164.
    10. Alber HF, Duftner C, Wanitschek M, et al. Neopterin, CD4+CD28-lymphocytes and the extent and severity of coronary artery disease. International Journal of Cardiology,2009; 135; 27-35.
    11. Buchalter MB, Weiss JL, Rogers WJ. et al. Noninvasive quanlification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging[J]. Circulation,1990; 81(4):1236-1244.
    12. Schmid P, Jaermann P, Boesiger P, et al. Ventricular myocardial architecture as visualized in postmortem swine hearts using magnetic resonance diffusiong tensor imaging. Eur J Cardiothorac Srug,2005; 27(3):468-472.
    13. Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation. Circulation,2005; 112(20):3149-3156.
    14. Burns AT, McDonald IG, Thomas JD, et al. Doin'the twist:new tools for an old concept of myocardial function. Heart,2008; 94:978-983.
    15. Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coil Cardiol,2005; 45:2034-2041.
    16. Goffinet C, Chenot F, Robert A, et al. Assessment of subendocardial vs. subepicardial left ventricular rotation and twist using two-dimensional speckle tracking echocardiography:comparison with tagged cardiac magnetic resonance. Eur Heart J,2009; 30:608-617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700