超声二维斑点追踪成像技术评价左心室收缩功能的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声心动图因具有无创、简便、快速、经济、可床旁操作、可反复随访等优点而成为临床应用最广的影像学心功能评价方法。左心室射血分数(left ventricular ejective fraction,LVEF)从左心室容积变化的角度评价心功能,是临床最常用指标。然而超声图像相对有限的空间分辨率及操作者经验等客观与主观因素均影响其测量的准确性与可重复性。组织多普勒技术从心肌运动的角度评价心功能,其应用为心功能评价提供了新的方法。基于组织多普勒技术的超声应变与应变率成像从心肌长度变化的角度评价其功能,进一步拓展了心功能评价的视角,但由于多普勒固有的角度依赖的限制,主要用于检测与超声束平行的心肌长轴方向的纵向应变,在定量分析不同方向、不同层面的心肌应变时受到限制。超声二维斑点追踪成像(speckle tracking imaging, STI)是新的超声成像技术,可在二维灰阶动态图像中定量心肌的运动速度与应变,为临床评价心脏的整体与局部功能提供了一种全新的方法。研究证实,STI所测心肌应变值与超声微测仪及心脏磁共振(magnetic resonance imaging, MRI)所测结果高度一致,在心尖部同样能追踪位移信号,真实反映心尖部病变,为观察心肌运动、定量评价局部心肌功能提供更为准确的方法。动物实验证实,左心室心内膜层和心外膜层心肌应变及应变率存在跨壁阶差,对心内膜层和心外膜层不同室壁节段心肌应变的分析将有可能成为反映左心室局部心肌收缩和舒张功能的敏感指标。心肌应变的研究国内外已有很多报道,而对于心肌的分层应变研究,目前国内还仅限于动物实验,有关糖尿病、高血压患者的心肌分层应变的研究还未见相关报道。
     本研究第一部分主要应用STI技术研究正常成人左心室心内膜层及心外膜层心肌应变的特点,进一步验证STI技术无创评价心肌应变的可行性。第二、三部分分别对血糖控制良好的单纯2型糖尿病患者以及不同左心室构型的原发性高血压患者的左心室心内膜层及心外膜层心肌应变特点进行分析,观察病理情况下心肌各层不同方向应变的变化规律,以期为临床提供一种简单实用的观察心肌运动、定量评价整体和局部心肌功能的超声手段。
     第一部分超声二维斑点追踪成像技术评价正常人左心室收缩功能的研究
     目的:应用STI技术观察正常人左心室心内膜层和心外膜层心肌应变的特点。
     方法:选择健康志愿者75例,男46例,女29例,平均年龄(39.6±15.2)岁。所有受检者取左侧卧位,呼气末屏气,分别采集心尖左心室长轴观、心尖四腔观、心尖两腔观及二尖瓣、乳头肌和心尖水平左心室短轴二维灰阶动态图像各三个心动周期(帧频50~70帧/s),储存于光盘,将存储的二维图像导入Qlab6.0工作站进行脱机分析,系统自动将左心室壁等分为心内膜下感兴趣区和心外膜下感兴趣区,并将心尖位切面左心室后间隔、侧壁、前壁、下壁、后壁及前间隔等分为基底段、中间段及心尖段总计18节段,将二尖瓣、乳头肌、心尖水平左心室短轴等分为前间隔、前壁、侧壁、后壁、下壁及后间隔6段,总计18节段。对每一节段的心内膜层和心外膜层心肌进行斑点追踪分析,自动显示每一节段与心动周期对应的应变曲线和心动周期中各时间点的心肌应变值,从曲线图中导出数据表,可以得到心内、外膜层心肌收缩期纵向应变(longitudinal strain, LS)、径向应变(radial strain, RS)和圆周应变(circumferential strain, CS)峰值,获取连续3个心动周期峰值应变并取其均值作为各节段心肌收缩期峰值应变值,并计算长轴基底段、中间段、心尖段以及短轴二尖瓣、乳头肌及心尖水平各室壁心内膜层和心外膜层心肌平均收缩期峰值应变作为左心室各水平整体纵向、径向和圆周应变。
     结果:(1)左心室长轴各节段LS曲线为双峰曲线,最大LS为负值。左心室长轴各节段心内膜层心肌收缩期LS峰值均显著高于心外膜层心肌(P<0.05),从基底部到心尖部收缩期LS呈现逐步递增趋势,基底部最小,心尖部最大,但差异无统计学意义;同一水平不同节段收缩期LS峰值比较差异无统计学意义。(2)左心室短轴各节段RS曲线为正向峰值曲线,收缩期最大RS为正值。左心室短轴各节段心内膜层心肌RS峰值均高于心外膜层心肌(P<0.05)。RS在左心室短轴不同水平差异有统计学意义,乳头肌水平RS值最大,同一水平不同节段收缩期RS峰值比较差异无统计学意义;(3)左心室短轴各节段CS曲线为负向峰值曲线,最大收缩期CS为负值。左心室短轴各节段心内膜层心肌CS峰值均高于心外膜层心肌(P<0.05)。CS在各心肌节段之间存在差异,尤以前间隔和后壁节段心内膜层及心外膜层心肌间差异显著(P<0.01),二尖瓣及乳头肌水平前间隔及下壁CS值较高,侧壁与后壁较低(P<0.05),心尖水平前间隔收缩期CS峰值较高,但差异无统计学意义。
     结论:STI可以无创评价左心室整体及局部心肌功能,对心内膜层和心外膜层不同室壁节段心肌应变的分析有望成为反映左心室局部心肌收缩功能的敏感指标。
     第二部分超声二维斑点追踪成像技术评价2型糖尿病患者左心室收缩功能的研究
     目的:应用STI技术评价2型糖尿病患者左心室心内膜层和心外膜层心肌应变的特点,探讨STI技术评价2型糖尿病患者左心室局部及整体收缩功能的应用价值。
     方法:选择住院或门诊确诊的、血糖控制良好的单纯2型糖尿病患者(DM)38例,男21例,女17例,平均年龄(59.2±9.0)岁,与DM组年龄、性别相匹配的健康志愿者29例作为对照组,男18例,女11例,平均年龄(58.3±9.6)岁。用二维、M型超声和多普勒超声心动图获得一些常规左心室功能参数,包括左室内径、室壁厚度、左室射血分数(left ventricular ejective fraction, LVEF)、二尖瓣口舒张期多普勒血流速度E /A、二尖瓣环组织多普勒速度Em /Am等。每个测量数据均取三次测值的平均值。分别采集心尖左心室长轴观、心尖四腔观、心尖两腔观及二尖瓣、乳头肌和心尖水平左心室短轴二维灰阶动态图像各三个心动周期(帧频50~70帧/s),储存于光盘,应用Qlab6.0工作站进行脱机分析,分别获取心尖位切面和短轴切面各18节段心内膜层及心外膜层心肌的二维应变曲线,从中可以得到各室壁节段心内、外膜层心肌收缩期峰值LS、RS和CS值,计算长轴基底段、中间段、心尖段及短轴二尖瓣、乳头肌、心尖水平各室壁节段心内膜和心外膜层心肌收缩期峰值应变的平均值分别作为左心室长轴各节段及短轴各水平心内、外膜层心肌平均峰值应变,将左心室长轴各节段及短轴各水平心内、外膜层心肌的峰值应变平均值作为左心室心内、外膜层心肌的整体峰值LS、RS和CS值。
     结果:(1)两组间左室壁厚度、左室内径、LVEF差异无统计学意义;DM患者组E /A及Em / Am小于对照组(P<0.05)。(2) DM患者组左心室长轴各节段LS曲线和对照组相似,但各节段平均LS峰值及左心室整体LS峰值均显著低于对照组(心外膜层P<0.05,心内膜层P<0.01),各节段心内膜层心肌LS值高于心外膜层心肌,但差异无统计学意义。(3) DM患者组左心室短轴各节段RS曲线和对照组相似,但各水平短轴平均及整体收缩期RS峰值比对照组增高(P<0.05),且心内膜层心肌RS值高于心外膜层心肌,但差异无统计学意义。(4) DM患者左心室短轴各节段在三个心动周期中的CS曲线和对照组相似,左心室各水平短轴平均及整体收缩期CS峰值比对照组增高,但差异无统计学意义。
     结论:应用STI对糖尿病患者左心室心肌进行分层应变分析,能早期发现2型糖尿病患者左心室收缩功能异常,为糖尿病亚临床心肌病变的诊断提供了无创性新方法。
     第三部分超声二维斑点追踪成像技术评价原发性高血压患者左心室收缩功能的研究
     目的:探索采用STI技术所测的左心室心内膜层和心外膜层心肌的收缩期峰值应变评价原发性高血压左心室不同构型患者左心室收缩功能的价值。
     方法:住院或门诊就诊的原发性高血压患者36例,男19例,女17例,平均年龄(58.7±8.3)岁,与高血压组年龄、性别相匹配的健康志愿者33例作为对照组,男20例,女13例,平均年龄(57.9±6.5)岁。左室心肌质量指数(LVMI)=LVM/体表面积,男性LVM I> 134g/m2、女性LVMI > 110 g/m2者为左心室肥厚,根据LVMI将所有患者分成高血压A组(非左心室肥厚组,NLVH)20例,高血压B组(左心室肥厚组,LVH)16例。常规超声心动图测量舒张期左心室内径(LVEDd)、室间隔和左心室后壁厚度(LVST、LVPWT)、LVEF、E /A、Em /Am。采集心尖左心室长轴观、心尖四腔观、心尖两腔观及二尖瓣、乳头肌和心尖水平左心室短轴二维灰阶动态图像各三个心动周期(帧频50~70帧/s),储存于光盘,应用Qlab6.0工作站进行脱机分析,分析结束后将数据导出,分别计算左心室长轴各段及短轴各水平心内膜层和心外膜层心肌的平均峰值应变及左心室整体峰值应变值。
     结果:(1)高血压病A组与对照组比较,LVEDd、IVST、LVPWT、LVMI差异无统计学意义;高血压病B组的IVST、LVPWT、LVMI与A组和对照组比较均显著增高(P<0.01);LVEF三组间差异无统计学意义(P>0.05);A组及B组与对照组比较,E /A(分别为0.93±0.22、0.89±0.41及1.29±0.53)、Em/Am(分别为0.83±0.35、0.81±0.23及1.24±0.32)有显著性差异(P<0.05)。(2)A组和B组左心室LS曲线和对照组相似,各节段心内膜层心肌LS峰值高于心外膜层心肌,但差异无统计学意义。与对照组相比,A组基底段、中段及心尖段平均LS峰值及左心室整体LS峰值减低,但差异没有统计学意义;B组各段平均LS峰值及左心室整体LS峰值显著低于对照组(心外膜层P<0.05,心内膜层P<0.01);(3)高血压患者左心室短轴各节段的RS曲线和对照组相似,A组左心室各水平短轴及左心室整体心内膜层心肌RS峰值高于心外膜层心肌(P<0.05),且显著高于对照组(心外膜层P<0.05,心内膜层P<0.01);B组左心室各水平短轴及左心室整体心内膜层与心外膜层心肌RS峰值比较差异无统计学意义;与对照组比较,左心室二尖瓣水平短轴收缩期RS峰值高于对照组(P<0.01),乳头肌及心尖水平短轴及左心室整体RS峰值与对照组相比差异无统计学意义;除二尖瓣水平外,A组心内膜层及心外膜层心肌RS峰值均高于B组(P<0.05)。(4)高血压患者左心室短轴各节段的CS曲线和对照组相似,并且短轴各水平及左心室整体心内膜层心肌收缩期CS峰值均高于心外膜层心肌(A组P<0.01,B组P<0.05);三组间比较差异无统计学意义。
     结论:高血压患者径向应变的增高代偿了纵向应变的减低, STI为评价高血压不同构型患者左心室整体和局部收缩功能从而早期发现心肌病变提供了无创性的新方法。
Echocardiography is now the most commonly used noninvasive tool for the assessment of cardiac anatomy and function. In addition to commonly established roles such as confirming diagnosis and disease monitoring, echocardiography plays an important clinical role in prognostic assessment. By calculating the change of left ventricular (LV) volume, LV ejective fraction (LVEF) is a clinical commonly used index, but the poor spatial resolution of ultrasound images and the operators′experience interfere with the reproducibility and accuracy. The quantification of regional myocardial function remains a challenge in clinical cardiology. Traditional methods for the evaluation of regional myocardial function using echocardiography are subjective and only partially quantitative. Tissue Doppler Imaging (TDI) is a robust and reproducible echocardiographic tool which has permitted a quantitative assessment of both global and regional function and timing of myocardial events. TDI-based strain and strain rate imaging (SRI) for LV function evaluating is a new tool for quantifying regional deformation and deformation rate by calculate the change of myocardium length. However, TDI-based strain measurements are angle dependent owing to use of the Doppler effect and simultaneous opposite deformation in the long and short axes, it can only be used to assess the longitudinal strain, but it is restricted in analyzing the myocardial strain of different directions and different levels. Speckle tracking imaging (STI) is an echocardiographic technique based on tracking of characteristic speckle patterns created by interference of ultrasound beams in the myocardium. As the tracking is based on grayscale B-mode images, it is in principle angle independent, so as a new method for quantifying global or regional LV function, it can not only evaluate the LV strain, rotation and displacement noninvasively but also analyze the characters of the cardiac movement mechanics. Previous studies indicated that STI results consist with sonomicrometry and magnetic resonance imaging (MRI) for systolic strain in the long axis and in the short axis. Moreover, STI can assess apical function which TDI difficultly to deal with. Animal experiments confirmed that there is an endocardial-epicardial gradient in both peak strain and SR values. Study to the endocardial-epicardial gradient of LV will be sensitive to objectively quantify regional and global myocardial function.
     The studies were divided into three parts. In the first part, the peak systolic strain of the inner and outer layers of myocardium in healthy adults were evaluated by two-dimensional ultrasound STI. The research further confirmed the feasibility of STI in assessing the LV myocardium strain. In the next two parts, we explored the strain of the inner and outer layers of LV myocardium in patients with type 2 diabetes mellitus and essential hypertension with different patterns of left hypertrophic geometric models respectively, hoping to find the abnormity of LV systolic function, providing an easy and practical ultrasonic mean for clinical diagnosis, treatment and prognostic assessment for heart disease with regional myocardial ischemia.
     Part I Evaluation of left ventricular systolic function in healthy subjects using two-dimensional speckle tracking imaging
     Objective: To explore the characters of the peak systolic strain of the inner and outer layers of myocardium and to confirm the endocardial-epicardial gradients of LV in healthy adults using STI.
     Methods: Study population consisted of 75 healthy volunteers (male 46, female 29, average age 39.6±15.2 years). High frame rate two-dimensional (2D)images of three consecutive cardiac cycles were recorded from the LV apical four-chamber view, two-chamber view, long-axis view and the short-axis views at the levels of mitral annulus, papillary muscle and apex of the LV respectively. 2D images were transferred to Qlab6.0 work station for offline strain analysis. The software algorithm segmented the LV wall into two equidistant layers(the inner and outer layers), moreover, the software algorithm segmented the LV long axis and short axis into 18 equidistant segments respectively(anteroseptal, anterior, lateral, posterior, inferior and interventricular). The longitudinal strain(LS) values in the inner and outer layers of myocardium were measured in the left ventricular apical views. Radial strain(RS) and circumferential strain(CS) values in the inner and outer layers of myocardium were measured in the left ventricular short-axis views using two-dimensional strain software. Acquired the peak systolic strain of each segment, calculated the average strain value of three consecutive cardiac cycles as the peak systolic strain. The average strain values of the basal segment, the middle segment, the apical segment of the LV long axis and mitral annulus, papillary muscle and apex of the LV short axis in the inner and outer layers were calculated as the LV global LS, RS and CS of each level.
     Results: (1) The LV longitudinal strain curve had two peaks, the peak systolic LS values were negative. In the inner layers of myocardium, the peak systolic LS values of different segments and the peak global LS values at different levels showed higher than those of the outer layers(P<0.05), and the LS values gradually increased from base to apex(P>0.05). At the same level, the LS values of different segments had no significant difference in the inner or outer layers. (2) LV radial strain curve of each segment was a positive peak curve, the peak systolic RS values were positive. The peak systolic RS values of different segments and the peak global RS values at different levels of the inner layers showed higher than those of the outer layers(P<0.05). The RS values at different levels had significant difference, the value at the level of papillary muscle was the largest, the peak systolic RS values of different segments at the same level had no significant difference. (3) LV circumferential strain curve of each segment was a negative peak curve, the peak systolic CS values were negative. The peak systolic CS values of different segments and the peak global CS values at different levels of the inner layers showed higher than those of the outer layers(P<0.05), especially in anteroseptal and posterior segments(P<0.01). At levels of mitral annulus and papillary muscle, the CS values of anteroseptal and inferior were relatively high, the CS values of lateral and posterior were relatively low (P< 0.05). The peak systolic CS value of anteroseptal at level of apex showed higher than those of the other segments, but there were no significant difference.
     Conclusions: Independent of insonation angle for assessing myocardial strain, STI has the potentiality to be used clinically to evaluate the regional and global myocardial function of LV, study to the endocardial-epicardial gradient of LV will be sensitive to objectively quantify regional myocardial systolic function.
     Part II Evaluation of left ventricular systolic function in patients with type 2 diabetes mellitus using two-dimensional speckle tracking imaging
     Objective: To evaluate the characters of the peak systolic strain of the inner and outer layers of myocardium and to explore the application value in assessing the long-axis and short axis systolic function of LV by STI in patients with type 2 diabetes mellitus.
     Methods: 38 patients with type 2 diabetes mellitus (male 21, female 17, average age 59.2±9.0 years) as DM group, 29 age- and gender- matched healthy volunteers (male 18, female 11, average age 58.3±9.6 years) as the control group. The patients′blood glucose was well controlled within normal level. Two-dimensional, M-mode and Doppler echocardiographic examination were performed and some parameters were acquired, including LV end-diastolic diameter (LVDd), LV end-systolic diameter (LVDs), diastolic interventricular septal thickness (IVST), diastolic posterior wall thickness (PWT), left ventricular ejective fraction (LVEF), the early rapid filling velocity of mitral valve (E), peak velocity of the late filling wave due to atrial contraction (A), E /A velocity ratio, peak myocardial early diastolic velocity at the mitral annulus (Em), late diastolic velocity (Am), Em /Am ratio. High frame rate two-dimensional (2D) images of three consecutive cardiac cycles were recorded from the LV apical four-chamber view, two-chamber view, long-axis view and the short-axis views at the levels of mitral annulus, papillary muscle and apex of the LV respectively. 2D images were transferred to Qlab6.0 work station for offline strain analysis, acquired the peak systolic strain of each segment and calculated the average value of three consecutive cardiac cycles as the peak systolic strain. The average strain values of the basal segment, the middle segment, the apical segment of the LV long axis and mitral annulus, papillary muscle and apex of the LV short axis in the inner and outer layers were calculated as the LV strain of each level in the inner and outer layers respectively. The LV global LS, RS and CS were the average values of the LV strain of each level in the inner and outer layers respectively.
     Results: (1) The LV wall thickness, LV diameter and LVEF had no significant difference between two groups; E /A and Em /Am in DM group showed lower than those in the control group (P<0.05). (2) LV longitudinal strain curve in DM group was similar to that in the control group, but the average LS values of the basal segment, the middle segment, the apical segment and the LV global LS value in DM group were lower than those in the control group (outer layer: P<0.05, inner layer: P<0.01). In DM group, the peak systolic LS values of different segments of the inner layers showed higher than those of the outer layers (P>0.05). (3) LV radial strain curve in DM group was similar to that in the control group, but the average RS values at each short axis level and the peak global RS values were higher than those in the control group ( P<0.05), and the peak systolic RS values of different segments of the inner layers showed higher than those of the outer layers( P>0.05). (4) LV circumferential strain curve in DM group was similar to that in the control group, the average CS values of each short axis level and the peak global CS values were higher than those in the control group( P>0.05).
     Conclusions: Analysis of the strain of the inner and outer layers of LV myocardium with STI in patients with type 2 diabetes mellitus can help to identify LV systolic dysfunction and to provide a new noninvasive method for the diagnosis of sub-clinical cardiomyopathy.
     Part III Evaluation of left ventricular systolic function in patients with essential hypertension using two-dimensional speckle tracking imaging
     Objective: To evaluate the characters of the peak systolic strain of the inner and outer layers of myocardium and to explore the application value of STI in evaluating LV systolic function in hypertension patients with different patterns of left ventricular hypertrophic (LVH) geometric models.
     Methods: 36 patients with essential hypertension (male 19, female 17, average age 58.7±8.3 years), 33 age- and gender- matched healthy volunteers (male 20, female 13, average age 57.9±6.5 years) as the control group. All patients were divided into two groups according to left ventricular mass index (LVMI)(group A 20 patients: NLVH,group B 16 patients: LVH), male LVMI>134 g/m2, female LVMI>110 g/m2 defined as LVH. Echocardiographic examination were performed and some paremeters were acquired, including LVDd, LVDs, IVST, LVPWT, LVEF, E /A and Em /Am. High frame rate two-dimensional images of three consecutive cardiac cycles were recorded from the LV apical four-chamber view, two-chamber view, long-axis view and the short-axis views at the levels of mitral annulus, papillary muscle and apex of the LV respectively. LS, RS and CS in the inner and outer layers of myocardium were measured in the left ventricular long-axis and short-axis views using two-dimensional strain software. The LV strain values at each level of the long axis and the short axis in the inner and outer layers were calculated, the LV global strain values of the long axis and the short axis were the averages of the LV strain value of each level.
     Results: (1) There were no significant difference in IVST, LVPWT, LVMI between group A and the control group; IVST, LVPWT, LVMI in group B were significantly higher than those in group A and the control group (P<0.01); There were no significant difference in LVEF among three groups; Compared with the control group, the LV global diastolic function in group A and group B was significantly decreased (E /A: 1.29±0.53 vs 0.93±0.22 and 0.89±0.41; Em /Am: 1.24±0.32 vs 0.83±0.35 and 0.81±0.23) (P<0.05). (2) LV longitudinal strain curves in group A and group B were similar to that in the control group, the peak systolic LS values of different segments of the inner layers were higher than those of the outer layers (P>0.05). Compared with the control group, the average LS values of the basal segment, the middle segment and the apical segment of the LV long axis were decreased in group A (P>0.05); The average LS values at each level and the LV global LS values in group B were significantly decreased than those in the control group (outer layer: P<0.05, inner layer: P<0.01); (3) LV radial strain curve in hypertension patients was similar to that in the control group. In group A, the average RS values of short axis levels and the LV peak global RS values of the inner layers were higher than those of the outer layers (P<0.05), and the peak systolic RS values were higher than those in the control group (outer layer: P<0.05, inner layer: P<0.01); In group B, there was no significant difference in the peak systolic RS values between the inner and outer layers, compared with the control group, the peak systolic RS value at level of the mitral annulus was higher than that in the control group (P<0.01); The peak systolic RS values of the inner and outer layers in group A were significantly increased than those in group B (P<0.05). (4) LV circumferential strain curve in hypertension patients was similar to that in the control group, the peak systolic CS values of short axis levels and the LV peak global CS values of the inner layers were higher than those of the outer layers (group A P<0.01; group B P<0.05); There were no significant difference among three groups.
     Conclusions: Radial contractility appears to compensate for reduced longitudinal contractility in subclinical LV dysfunction occurring in the absence of ischemia or LV hypertrophy. STI has the potentiality to be used clinically to evaluate the LV systolic function in hypertension patients with different patterns of left ventricular hypertrophic geometric models.
引文
1许迪,金玉,陆凤翔,等.应变成像技术对肥厚型心肌病患者和正常人心功能的评价.中华超声影像学杂志, 2004, 13(9): 654-656
    2 Sutherland GR, Di Salvo G, Claus P, et al. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr, 2004, 17(7): 788-802
    3 Urheim S, Edvardsen T, Torp H, et al . Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation, 2000, 102(10): 1158-1164
    4 Becker M, Bilke E, Kuhl H, et al. Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart, 2006, 92(8): 1102-1108
    5 Langeland S, D’hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation, 2005, 112(14): 2157-2162
    6 Toyoda T, Baba H, Akasaka T, et al. Assessment of regional myocardial strain by a novel automated tracking system from digital image files. J Am Soc Echocardiogr, 2004, 17(12): 1234-1238
    7 Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain application in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2006, 47(6): 1175-1181
    8 D′hooge J, Bijnens B, Thoen J, et al. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. IEEE Trans Med Imaging, 2002, 21(9): 1022-1030
    9 Reisner SA, Lysyansky P, Agmon Y, et al. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr, 2004, 17(6): 630-633
    10 Mirsky I, Parmley WW. Assessment of passive elastic stiffness forisolatedheart muscle and t he intact heart . Circ Res, 1973, 33(2): 233-243
    11白姣,邓又斌.应变率成像局部心肌功能定量评价的新方法.中华超声影像学杂志, 2003, 12: 690-692
    12 Heimdal A, Stoylen A, Torp H, et al . Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr, 1998, 11(11): 1013-1019
    13王金锐,那日苏,秦林金,等.室壁应力与应变的关系评价高血压病左室收缩功能.中国医学影像技术, 2003 , 19(12): 1646-1649
    14 Kukulski T, Jamal F, Herbots L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol, 2003, 41(5): 810-819
    15 Jamal F, Kukulski T, Sutherland GR, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction ? An ultrasonic strain rate and strain study. J Am Soc Echocardiogr, 2002, 15(7): 723-730
    16 Kukulski T, Jamal F, D′Hooge J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr, 2002,15 (1): 12-21
    17 Jamal F, Kukulski T, Strotmann J, et al. Quantification of the spectrum of changes in regional myocardial function during acute ischemia in closed chest pigs: an ultrasonic strain rate and strain study. J Am Soc Echocardiogr, 2001, 14(9): 874-884
    18 Jamal F, Kukulski T, Strotmann J, et al. Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. Circulation, 2001, 104(9): 1059-1065
    19 Breithardt OA, Stellbrink C, Herbots L, et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol, 2003, 42(3): 486-494
    20 Dohi K, Suffoletto MS, Schwartzman D, et al. Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy. Am J Cardiol, 2005, 96(1): 112-116
    21 Sun JP, Chinchoy E, Donal E, et al. Evaluation of ventricular synchrony using novel Doppler echocardiographic indices in patients with heart failure receiving cardiac resynchronization therapy. J Am Soc Echocardiogr, 2004, 17 (8): 845-850
    22 Yu CM, Fung JWH, Zhang Q, et al. Tissue Doppler imaging is superior to strain rate imaging and post systolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation, 2004, 110 (1): 66-73
    23 Di Salvo G, Pacileo G, Verrengia M, et al. Early myocardial abnormalities in asymptomatic patients with severe isolated congenital aortic regurgitation: an ultrasound tissue characterization and strain rate study. J Am Soc Echocardiogr, 2005, 18(2): 122-127
    24 Leitman M, Lysyansky P, Sidenko S, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr, 2004,17(10): 1021-1029
    25 Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol, 2006, 47(4): 789-793
    26 Rademakers FE, Rogers WJ, Guier WH, et al. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three dimensional strain analysis by NMR tagging. Circulation, 1994, 89(3):1174-1182
    27 Matre K, Fannelop T, Dahle GO, et al. Radial strain gradient across the normal myocardial wall in open-chest pigs measured with Doppler strain rate imaging. J Am Soc Echocardiogr, 2005, 18(10): 1066-1073
    28 Azhari H, Weiss JL, Rogers WJ, et al. Noninvasive quantification ofprincipal strains in normal canine hearts using tagged MRI images in 3-D. Am J Physiol, 1993, 264(Pt2): H205-H216
    29 Tseng WY, Reese TG, Weisskoff RM, et al. Myocardial fiber shortening in humans: initial results of MR imaging. Radiology, 2000, 216(1): 128-139
    30 MacGowan GA, Shapiro EP, Azhari H, et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation, 1997, 96(2): 535-541
    31 Hurlburt HM, Aurigemma GP, Gaasch WH, et al. Direct ultrasound measurement of the 3 principal components of left ventricular regional systolic strain. J Am Coll Cardiol, 2006, 47: 116A
    32张烨,李治安,杨娅,等.二维应变超声心动图定量评价左心室整体和局部心肌应变的价值.中华超声影像学杂志,2007, 16(7): 564-567
    33 Kowalski M, Kukulski T, Jamal F, et al . Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects .Ultrasound Med and Biol, 2001, 27(8): 1087-1097
    34潘敏,鲁树坤,王双双,等.超声二维斑点追踪技术对左室心肌周向收缩功能的研究.中国医学影像技术, 2007, 23(9): 1267-1269
    35 Armstrong G, Pasquet A, Fukamachi K, et al. Use of peak systolic strain as an index of regional left ventricular function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am Soc Echocardiogr, 2000, 13(8): 731-737
    36杨颖,陈峰,张宝娓,等.二维应变对左心室整体应变与应变率的研究.中国医学影像技术, 2006 , 22 (7): 1018-1020
    37 Langeland S, Wouters PF, Claus P, et al. Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain. Ultrasound Med Biol, 2006, 32 (10): 1509-1513
    1 Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev, 2004, 25(4): 543-567
    2 Bell DS. Diabetic cardiomyopathy. Diabetes Care,2003,26(10):2949-2951
    3 Ren J, Bode AM.Altered cardiac excitation—contraction coupling in ventricular myocytes from spontaneously diabetic BB rats.Am J Physiol,2002, 79(1):H238-44
    4 Hamby R I, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA, 1974, 229 (13): 1749-1754
    5 Greenberg NL, Firstenberg MS, Castro PL, et al. Doppler derivedmyocardial systolic strain rate is a strong index of left ventricular contractility . Circulation, 2002, 105 (1): 99-105
    6蒋文莉,郭瑞强,周青,等.应变率、射血分数及校正的Q-V峰值间期评价不同构型高血压患者左室收缩功能的比较.中国医学影像技术, 2005, 21(10): 1503-1505
    7 Urheim S, Edvardsen T, Torp H, et al. Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation, 2000, 102(10): 1158-1164
    8 Myers JH, Stirling MC, Choy M, et al. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiogrphy. Circulation, 1986, 74(1): 164-172
    9 Rademakers FE, Rogers WJ, Guier WH, et al. Relation of regional cross-fiber shortening to wall thicking in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation, 1994, 89(3): 1174-1182
    10 Fonseca CG, Dissanayake AM, Doughty RN, et al. Three-dimensional assessment of left ventricular systolic strain in patients with type 2 diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am J Cardiol, 2004, 94(11): 1391-1395
    11 Serri K, Reant P, Lafitte M, et al. Global and regional myocardialfunction quantification by two-dimensional strain application inhypertrophic cardiomyopathy. J Am Coll Cardiol, 2006, 47(6): 1175-1181
    12 Chan J, Hanekom L, Wong C, et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol, 2006, 48(10): 2026-2033
    13 D′hooge J, Bijnens B, Thoen J, et al. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. IEEE Trans Med Imaging, 2002, 21(9): 1022-1030
    14 Reisner S, Lysyansky P, Agmon Y, et al. Global longitudinal strain :a novel index of left ventricular systolic function. J Am Soc Echocardiogr, 2004, 17(6): 630-633
    15 Matre K, Fannelop T, Dahle GO, et al. Radial strain gradient across the normal myocardial wall in open-chest pigs measured with Doppler strain rate imaging. J Am Soc Echocardiogr, 2005, 18(10): 1066-1073
    16 Azhari H, Weiss JL, Rogers WJ, et al. Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D. Am J Physiol, 1993, 264(Pt2): H205-H216
    17 Tseng WY, Reese TG, Weisskoff RM, et al. Myocardial fiber shortening in humans: initial results of MR imaging. Radiology, 2000, 216(1): 128-139
    18 MacGowan GA, Shapiro EP, Azhari H, et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation, 1997, 96(2): 535-541
    19 Alam M, Hoglund C ,Thorstrand C , et al . Hemodynamic significance of atrioventricular plane displacement in patients with coronary artery disease .Eur Heart J, 1992, 13(2): 194-200
    20 Schulz R, Heusch G. Balance and imbalance of regional myocardial contractile function and blood flow. Z.Kardiol, 2001, 90(12): 964-969
    21 Jones C.J, Raposo L, Gibson D.G. Functional importance of the long axis dynamics of the human left ventricle. Br Heart J, 1990, 63(4): 215-220
    22 Fang ZY, Leano R, Marwick TH, et al. Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clinical Science, 2004, 106(1): 53-60
    23 Fang ZY, Najos-Valencia O,Leano R, et al. Patients with early diabetic heart disease demonstrate a normal myocardial reponse to dobutamine. J Am Coll Cardiol, 2003, 42(3): 446-453
    1 Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy:comparison to necropsy findings.Am J Cardiol, 1986, 57(6): 450-458
    2 Greenberg NL, Firstenberg MS, Castro PL, et al. Doppler derived myocardial systolic strain rate is a strong index of left ventricular contractility . Circulation, 2002, 105(1): 99-105
    3蒋文莉,郭瑞强,周青,等.应变率、射血分数及校正的Q-V峰值间期评价不同构型高血压患者左室收缩功能的比较.中国医学影像技术, 2005, 21(10): 1503-1505
    4 Urheim S, Edvardsen T, Torp H, et al. Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation, 2000, 102(10): 1158-1164
    5王金锐,刘醒,苏丽亚,等.超声心动描记术估测左心室做功量和机械效率的新指标.中华超声影像学杂志,2000,9(1):16-18
    6王金锐,那日苏,秦林金,等.室壁应力与应变的关系评价高血压病左室收缩功能.中国医学影像技术, 2003, 19( 12): 1646-1649
    7 Kukulski T, Jamal F, Jan D′Hooge J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr, 2002, 15(1): 1-12
    8 Abraham TP, Nishimura RA, Holmes DR Jr, et al. Strain rate imaging for assessment of regional myocardial function: results from a clinical model of septal ablation. Circulation, 2002, 105(12): 1403-1406
    9 Jamal F, Strotmann J, Weidemann F, et al. Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and train. Circulation, 2001, 104(9): 1059-1065
    10 Fonseca CG, Dissanayake AM, Doughty RN, et al.Three-dimensional assessment of left ventricular systolic strain in patients with type 2diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am J Cardiol, 2004, 94(11): 1391-1395
    11 Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain application in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2006, 47(6): 1175-1181
    12 Chan J, Hanekom L, Wong C, et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol, 2006, 48(10): 2026-2033
    13 D′hooge J, Bijnens B, Thoen J, et al. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. IEEE Trans Med Imaging, 2002, 21(9): 1022-1030
    14 Reisner S, Lysyansky P, Agmon Y, et al. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr, 2004, 17(6): 630-633
    15冯兵.心肌肥厚的能量代谢研究进展.国外医学心血管疾病分册, 1997, 24(3): 9
    16 Pislaru C, Abraham TP, Belohlavek M. Strain and strain rate echocardiography. Curr Opin Cardiol, 2002, 17(5): 443-454
    17 James B,Joseph S.Structure and function of myocardial fibrillar Collagen.Technology and Health Care, 1997, 5(1-2): 95-113
    18 Jones C.J, Raposo L, Gibson D.G. Functional importance of the long axis dynamics of the human left ventricle.Br Heart J, 1990, 63(4): 215-220
    19 Braunwald E,Bristow MR.Congestive heart failure: fifty years of progress.Circulation, 2000, 102(20 Suppl 4): IV14-23
    20 Armstrong G, Pasquet A, Fukamachi K, et al . Use of peak systolic strain as an index of regional left ventricular function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am Soc Echocardiogr, 2000, 13(8): 731-737
    1张海滨,钱蕴秋,郭悦,等.病变心肌组织多普勒频谱分析.中华超声影像学杂志, 2004, 13(1): 59-62
    2 Urheim S, Edvardsen T, Torp H, et al. Myocardial Strain by Doppler Echocardiography: Validation of aNew Method to Quantify Regional Myocardial Function. Circulation, 2000, 102(10): 1158-1164
    3 Skulstad H, Urheim S, Edvardsen T, et al. Grading of Myocardial Dysfunction by Tissue Doppler Echocardiography: A Comparison Between Velocity, Displacement, and Strain Imaging in Acute Ischemia. Journal of the American College of Cardiology, 2006, 47(8): 1672-1682
    4 Lima JA , Jeremy R , Guier W, et al . Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging :correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol, 1993, 21(7): 1741-1751
    5 Edvardsen T ,Gerber BL ,Garot J , et al . Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation, 2002, 106(1): 50-56
    6 Leiman M, Lysyansky P, Sidenko S, et a1. Two-dimensional strain—a novel software for real-time quantitative echodardiogrophic assessment of myocardial function. J Am Soc Echocardiogr, 2004, 17(10): 1021-1029
    7 Langeland S, WoutersPF, ClausP, et a1. Experimental assessment of a new research tool for the estimation of two-dimemional myocardial strain. Ultrasound Med Biol, 2006, 32(10): 1509-1513
    8 Korinek J, Wang J, Sengupta PP, et al. Two-dimensional strain-a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo.J Am Soc Echocardiogr, 2005, 18(12): 1247-1253
    9 Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiogrphy: validationagainst sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol, 2006, 47(4): 789-793
    10 Toyoda T, Baba H, Akasaka T, et al. Assessment of regional myocardiol strain by a novel automated tracking system from digital image files. J Am Soc Echocardiogr, 2004, 17(12): 1234-1238
    11 Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2006, 47(6): 1175-1181
    12 Suffoletto MS, Dohi K, Cannesson M, et al. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation, 2006, 113(7): 960-968
    13杨颖,陈峰,张宝娓,等.二维应变对左心室整体应变与应变率的研究.中国医学影像技术, 2006, 22(7): 1018-1020
    14 Modesto KM, Cauduro S, Dispenzieri A, et al. Two-dimensional acoustic pattern derived strain parameters closely correlate with one-dimensional tissue Doppler derived strain measurements. Eur J Echocardiogr, 2006, 7(4): 315-321
    15 Hanekom L, Cho GY, Leano R, et al .Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J, 2007, 28(14): 1765-1772
    16舒先红,黄国倩,翠珍,等.正常人心肌应变及应变率定量分析.中华超声影像学杂志, 2004, 13(11): 805-807
    17 Weidemann F, Eyskens B, Jamal F, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr, 2002, 15(1): 20-28
    18 Hurlburt HM, Aurigemma GP, Gaasch WH, et al. Direct ultrasound measurement of the 3 principal components of left ventricular regional systolic strain. J Am Coll Cardiol, 2006, 47: 116A
    19 Anderson NH, Poulsen SH. Evaluation of the longitudinal contraction of the left ventricle in normal subjects by Doppler tissue tracking and strain rate. J Am Soc Echocardiogr, 2003, 16(7): 716-723
    20 Azhari H, Weiss JL, Rogers WJ, et al. Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D. Am J Physiol, 1993, 264(1 Pt 2): H205-H216
    21 Rademakers FE, Rogers WJ, Guier WH, et al. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation, 1994, 89(3): 1174-1182
    22 Matre K, Fannelop T, Dahle GO, et al. Radial strain gradient across the normal myocardial wall in open-chest pigs measured with Doppler strain rate imaging. J Am Soc Echocardiogr, 2005, 18(10): 1066-1073
    23 Tseng WY, Reese TG, Weisskoff RM, et al. Myocardial fiber shortening in humans: initial results of MR imaging. Radiology, 2000, 216(1): 128-139
    24 MacGowan GA, Shapiro EP, Azhari H, et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation, 1997, 96(2): 535-541
    25 Delfino JG, Fornwalt BK, Eisner RL, et al. Determination of transmural, endocardial, and epicardial radial strain and strain rate from phase contrast MR velocity data. J Magn Reson Imaging, 2008, 27(3): 522-528
    26 Greenberg NL, Firstenberg MS, Cast ro PL, et al. Doppler derived myocardial systolic strain rate is a strong index of left ventricular contractility.Circulation, 2002, 105(1): 99-105
    27蒋文莉,郭瑞强,周青,等.应变率、射血分数及校正的Q-V峰值间期评价不同构型高血压患者左室收缩功能的比较.中国医学影像技术, 2005, 21(10): 1503-1505
    28 Inaba Y, Yuda S, Kobayashi N, et al. Strain rate imaging for noninvasive functional quantification of the left atrium: Comparative studies in controlsand patients with atrial fibrillation. J Am Soc Echocardiogr, 2005, 18 (7): 729-736
    29 Weidemann F, EyskensB, Jamal F, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr, 2002, 15(1): 20-28
    30 Kukulski T, Jamal F, Herbots L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol, 2003, 41(5): 810-819
    31 Liang HY, Cauduro S, Pellikka P, et a1. Usefulness of two-dimensional speckle strain for evaluation of left ventricular diastolic deformation in patients with coronary artery disease. Am J Cardiol, 2006, 98(12): 1581- l586
    32 Voigt JU, Lindenmeier G, Exner B, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr, 2003, 16(5): 415-423
    33 Pislaru C, Belohlavek M, Bae RY, et al. Regional asynchrony during acute myocardial ischemia quantified by ultrasound strain rate imaging. J Am Coll Cardiol, 2001, 37(4): 1141-1148
    34 Yang H, Sun JP, Lever HM, et al. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr, 2003, 16(3): 233-239
    35 Kato TS, Noda A, Izawa H, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue doppler ultrasonography. Circulation, 2004, 110(25): 3808-3814
    36 Kato TS, Noda A, Izawa H, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation, 2004, 110(25): 3808-3814
    37 Weidemann F, Eyskens B, Mertens L, et al. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes after surgical repair of tetralogy of Fallot. Am J Cardiol, 2002, 90(2): 133-138
    38 Abd EL, Rahman MY, Hui W, et al. Analysis of atrial and ventricular performance by tissue doppler imaging in patients with atrial septal defects before and after surgical and catheter closure . Echocardiography, 2005, 22(7): 579-585
    39 Kiraly P, Kapusta I, Thijssen JM, et al. Left ventricular myocardial function in congenital valvar aortic stenosis assessed by ultrasound tissue velocity and strain rate techniques. Ultrasound Med Bio1, 2003, 29(4): 615-620
    40 Breithardt OA, Herbots L, D′Hooge J, et al . Strain rate imaging in CRT candidates. Eur Heart J, 2004, 6[Suppl]: D16-D24
    41 Borges AC, Knebel F, Eddicks S, et a1. Right ventricular function assessed by two-dimensional strain and tissue Doppler echocardiography in patients with pulmonary arterial hypertension and efect of vasodilator therapy. Am J Cardiol, 2006, 98(4): 530-534
    1臧益民,朱妙章,谢安,等.无创伤性心功能检查[A].臧益民,朱妙章主编.临床心血管生理学及其进展[M].北京:世界图书出版公司, 1993, 162-229
    2朱妙章,臧益民,钱学贤.心脏功能的无创伤测定及临床应用[A].钱学贤,胡大一,李天德.冠心病监护治疗学[M].北京:人民军医出版社, 2003, 773-791
    3沈文锦,徐成斌.现代心功能学[M].北京:人民军医出版社,2002, 1-17, 26-39, 426-440
    4 Kornbluth M, Liang DH, Paloma A, et al. Native tissue harmonic imaging improves echocardial definition and visualization of cardiac structures . J Am Society of Echocardiography, 1998, 11(7): 693-701
    5杨军,任卫东,陈昕,等.自然组织谐波成像对冠心病左室收缩功能的评价.中国医学影像技术, 2001, 17(6): 526-527
    6胡文莉,进克效,冯明,等.床旁超声心动图对急性心肌梗死后左心室收缩功能的评价.中华超声影像学杂志, 2005, 14(11): 867-868
    7 Tsujino R, Shiota T, Qin JX, et al. Estimation of the spatial mean and peak flow velocities using real-time 3D (RT-3D) color Doppler echocardiography: An in vitro experiment. J Am Coll Cardiol, 2001, Abstract: 436A
    8王新房.实时三维超声心动图-超声技术领域内的新突破.中华超声影像学杂志, 2003, 12(2): 71-75
    9 Irvine T, Li NX, Mori Y, et al. An automatic volume flow method based on 4D digital color Doppler: A Compute algorithm tested on an in vitro flow model. J Am Coll Cardiol, 2000, Abstract: 443A
    10 Lee D, Fuisz AR, Fan PH, et al. Real-time 3-dimensional echocardiographic evaluation of left ventricular volume: correlation with magnetic resonance imaging-a validation study. J Am Soc Echocardiogr, 2001, 14(10): 1001-1009
    11王勇,张运,李继福,等.经胸多平面三维超声心动图与心室造影测量左室容积和收缩功能的对比研究.中华超声影像学杂志, 2000, 9(3): 150-152
    12 Zeidan Z, Erbel R, Barkhausen J, et al. Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography. J Am Soc Echocardiogr, 2003, 16(1): 29-37
    13 Hunt AC, Chow Sl, Escaned J, et al. Evaluation of a theoretical Doppler index to noninvasively estimate peak dp/dt using continuous wave Doppler ultrasound of ascending aortic flow in man. Cathet cardiovasc Diagn, 1991, 23(3): 219-222
    14袁丽君,曹铁生,段云友.平静呼吸对正常人心内血流速度影响的UCG研究.中华超声影像学杂志, 2002, 11(12): 736 -738
    15 Dini F, Michelassi C, Micheli G, et al. Prognostic value of pulmonary venous flow Doppler signal in left ventricular dysfunction: contribution of the difference in duration of pulmonary venous and mitral flow at atrial contraction. J Am Coll Cardiol, 2000, 36(4):1295
    16 Tabata T, Thomas JD, Klein AL. Pulmonary venous flow by Doppler echocardiography: revisited 12 years later. J Am Coll Cardiol, 2003, 41(8): l243-1250
    17 YoungME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II potential mechanisms. Circulation, 2002, 105(15): 1861-1870
    18 Tei C, Nishimura RA, Seward JB, et al. Noninvasive Doppler derived myocardial performance index: correlation simultaneous measurement of cardiac catheterization measurement. J Am Soc Echocardiogr, 1997, 10(2): 169-178
    19王新明,孙红,陶国枢,等. Tei指数评价老年2型糖尿病性心肌病变左室功能的临床研究.中国老年学杂志, 2007, 27(4): 744-746
    20 Bruch C, Schmermund A, Marin D, et al. Tei-index in patients withMild-to-moderate Congestive heart failure. Eur Heart J, 2000, 21(22): 1888-1895
    21 Angeja B, Grossman W. Evaluation and management of diastolic heart failure. Circulation, 2003, 107(5): 659-663
    22 Dokainish H, Zoghbi WA, Lakkis NM, et al. Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardio1, 2005, 45(8): 1223-1226
    23张海滨,钱蕴秋,郭悦,等.病变心肌组织多普勒频谱分析.中华超声影像学杂志, 2004, 13(1): 59-62
    24姚桂华,张运,张鹏飞,等.定量组织速度显像技术评价左室节段性收缩功能的临床研究.中华超声影像学杂志, 2004, 13(11): 808-811
    25张全斌,刘望彭,梁峰,等.组织追踪法定量评价急性心肌梗死左室局部收缩功能的实验研究.中华超声影像学杂志, 2005, 14(2): 140-143
    26许迪,金玉,陆凤翔,等.应变成像技术对肥厚型心肌病患者和正常人心功能的评价.中华超声影像学杂志, 2004, 13( 9): 654-656
    27 Weidemann F, Jamal F, Kowalski M, et al. Can strain rate and strainquantify changes in regional systolic function during dobutamine infusion, B-blockade, and atrial pacing-implications for quantitative stress echocardiography. J Am Soc Echocardiogr, 2002, 15(5): 416-424
    28 Skulstad H, Urheim S, Edvardsen T, et al. Grading of Myocardial Dysfunction by Tissue Doppler Echocardiography: A Comparison Between Velocity, Displacement, and Strain Imaging in Acute Ischemia.Journal of the American College of Cardiology, 2006, 47(8): 1672-1682
    29 Edvardsen T, Gerber BL, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation, 2002, 106(1): 50-56
    30 Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiogrphy: validation against sonomicrometry and tagged magnetric resonance imaging. J Am Coll Cardiol, 2006, 47(4): 789-793
    31 Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2006, 47(6): 1175-1181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700