先天性心脏病伴肢体畸形相关基因突变分析和拷贝数变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分先天性心脏病伴肢体畸形相关基因突变分析
     背景:先天性心脏病是最常见的出生缺陷;肢体畸形是第二位的出生缺陷,即最常见的心外畸形。在涉及先天性心脏病的综合征中,肢体畸形经常与心脏缺陷相伴发生,尤其以上肢畸形多见。己报道的包括心脏和上肢畸形的综合征超过100种。Holt-Oram综合征(HOS)是最常见的心-手综合征,其中约85%的HOS为新发基因突变所致。己知NKX2-5(RefSeq: NM_004387.3)和GATA4(RefSeq: NM_002052.3)是相关先天性心脏病的致病基因;已知TBX5(RefSeq: NM_000192.3)和SALL4(RefSeq: NM_020436.3)与先天性心脏病伴肢体畸形综合征有关。
     目的:筛查先天性心脏病伴肢体畸形中TBX5, NKX2-5, GATA4和SALL4四种候选基因突变及突变基因功能分析,以期发现已知突变基因的新的突变形式,并进一步深化对先天性心脏病相关基因突变的致病机制的理解。
     方法:选取2009年9月至2012年3月中南大学湘雅二医院心脏外科收治的先天性心脏病伴肢体畸形患者23名,包括:先心病伴上肢畸形16例,先心病伴下肢畸形4例,先心病伴上、下肢畸形3例。对所有患者进行详细的临床检查包括经胸壁心脏彩超和心电图检查,对部分患者行缺陷肢体X-线摄片检查和腹部超声检查。采集所有患者的和部分患者父母的外周血提取gDNA,对TBX5, NKX2-5, GATA4和SALL4基因各外显子进行PCR扩增,然后对扩增的目的片段进行测序,并对基因突变进行功能预测分析。
     结果:通过对患者缺陷肢体的X-线摄片,明确其缺陷肢体的骨骼畸形。通过基因突变分析,在1名部分型房室间隔缺损合并多指(趾)畸形(24指)的患者中发现一个新的NKX2-5错义突变c.257T>C (p.F86S);在其表型正常的父亲发现一个新的NKX2-5同义突变c.186T>A (p.A62A),并携带与女儿相同的错义突变;母亲无NKX2-5突变。
     结论:NKX2-5错义突变c.257T>C (p.F86S)可以导致先天性心脏病,部分型房室间隔缺损。
     第二部分先天性心脏病伴肢体畸形基因组拷贝数变异研究
     背景:已有研究证明拷贝数变异(CNv)可以导致先天性心脏病,而且研究结果一致显示在伴有心外畸形的先天性心脏病,即综合征型先天性心脏病中的致病性CNV发生率更高。但是,目前尚无专门关于先天性心脏病伴肢体畸形相关综合征的CNV研究。
     目的:1.探讨致病性CNV与先天性心脏病伴肢体畸形的关系及发生率。2.发现其新的致病性CNV,定位新的与先天性心脏病伴肢体畸形相关的候选基因。
     方法:选取2009年9月至2012年3月中南大学湘雅二医院心脏外科收治的先天性心脏病伴肢体畸形患者19名,包括:先心病伴上肢畸形12例,先心病伴下肢畸形4例,先心病伴上、下肢畸形3例。通过Array-SNP芯片技术,对所有患者和部分患者父母行全基因组CNVs分析,寻找可能与心脏-肢体畸形相关的CNV区域。
     结果:在3例心脏-肢体畸形患者中发现3个致病性CNV,分别为染色体3p25.2微重复,16p13.3微重复和22q11.21微缺失。其中包含RAF1基因的3p25.2微重复,属于首次被发现和Noonan综合征有关。
     结论:1.包括RAF1的染色体3p25.2微重复可以导致Noonan综合征。2.扩展了16p13.3微重复综合征的表型谱,增添了膈膨升和小便失禁。
SECTION1:Congenital Heart Defects with Limb Anomalies Related Genes Mutation Detection and Functional Analysis
     Background:Congenital heart defects are the most common birth defect. Limb deformities are the most common extracardiac malformation which is considered as the second most common birth defect. Among all the syndromes of cardiac malformations, congenital heart defects and limb deformities often occur in combination, especially upper limb deformities. More than100syndromes including the heart and upper limb malformations have been reported. The known genes associated with heart and/or limb deformities include NKX2-5(RefSeq:NM_004387.3), GATA4(RefSeq:NM_002052.3), TBX5(RefSeq:NM_000192.3) and SALL4(RefSeq:NM_020436.3)
     Objective:To investigate the mutation frequencies of four candidate genes TBX5, NKX2-5, GATA4, and SALL4and functional analysis.
     Methods:Twenty-three congenital heart defect patients with limb anomalies were recruited in the Department of Cardiothoracic Surgery of Second Xiangya Hospital from Sep2009to Mar2012, which included sixteen congenital heart defect patients with upper limb anomalies, four congenital heart defect patients with lower limb anomalies and three congenital heart defect patients with both upper and lower limb anomalies. All patients underwent detailed clinical examination including transthoracic echocardiography and ECG, and a part of patients underwent limb X-ray examination and abdominal ultrasound examination. DNA of all patients and some patients'parents was extracted from the peripheral blood for PCR amplification, then TBX5, NKX2-5, GATA4, and SALL4gene sequencing and functional prediction analysis.
     Results:By X-ray of the defective limbs, defects in skeletal deformities of the limbs were identified. By mutation analysis, a novel missense mutation of NKX2-5c.257T>C (p.F86S) was detected in a patient diagnosed as partial atrioventricular septal defect associated with polydactyly (24digits). Her father who carried a missense mutation c.257T>C (p.F86S) and synonymous mutation c.186T>A (p.A62A) was phenotypically normal. And her mother bears no NKX2-5mutation.
     Conclusions:Missense mutation of NKX2-5c.257T>C (p.F86S) could lead to congenital heart defect, partial atrioventricular septum defects.
     SECTION2:Investigation of CNVs Associated with Congenital Heart Defects with Limb Anomalies
     Bcakgroud:Copy number variations (CNVs) is known to be associated with congenital heart defects. And it is indicated that pathogenic CNVs more frequently associated with congenital heart defect with extracardiac defects. But now there is no investigation of CNV with congenital heart defects with limb anomalies.
     Objective:To investigate the relationship between the pathogenic CNVs and congenital heart defects with limb deformities, discover the novel pathogenic CNVs, and ascertain the new candidate genes associated with congenital heart defects with limb deformities.
     Methods:Nineteen out of twenty-three congenital heart defect patients with limb anomalies were selected in the Department of Cardiac Surgery of Second Xiangya Hospital from Sep2009to Mar2012, which included twelve congenital heart defect patients with upper limb deformities, four congenital heart defect patients with lower limb deformities, and three congenital heart defect patients with both upper and lower limb deformities. In order to seek CNVs regions related to the heart-limb deformities, whole genome CNVs were analyzed in all patients and some patients'parents via Array-SNP chip technology.
     Results:Three pathogenic CNVs were found in the three congenital heart disease patients with limb anomalies, which were chromosome3p25.2microduplication,16p13.3microduplication and22q11.21microdeletion respectively.
     Conclusions:1. Microduplication of3p25.2encompassing RAF1associated with congenital heart disease suggestive of Noonan syndrome.2. Our study extends the phenotypic spectrum of the16p13.3microduplication syndrome and increases the phenotype of diaphragmatic eventration and urine incontinence.
引文
[1]Hoffman, J.I. and S. Kaplan, The incidence of congenital heart disease. J Am Coll Cardiol.,2002.39(12):p.1890-1900.
    [2]Hoffman, J.I., S. Kaplan, and R.R. Liberthson, Prevalence of congenital heart disease. Am Heart J,2004.147(3):p.425-39.
    [3]Twining, P., J.M. McHugo, and D.W. Pilling, Textbook of Fetal Abnormalities2000, London:Churchill Livingstone.
    [4]Dolk, H., M. Loane, and E. Garne, The prevalence of congenital anomalies in Europe. Adv Exp Med Biol,2010.686:p.349-64.
    [5]Dai, L., J. Zhu, J. Liang, et al., Birth defects surveillance in China. World J Pediatr,2011.7(4):p.302-10.
    [6]Koifman, A., O. Nevo, A. Toi, et al., Diagnostic Approach to Prenatally Diagnosed Limb Abnormalities. Ultrasound Clinics,2008.3(4):p.595-608.
    [7]Gramellini, D., S. Fieni, and E. Vadora, Prenatal diagnosis of isolated limb defects:an updated review. Fetal Diagn Ther.,2005.20(2):p.96-101.
    [8]Goldmuntz, E., P. Paluru, J. Glessner, et al., Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit Heart Dis.,2011.6(6):p.592-602.
    [9]Nanda, S., S. Longo, and M. Arastu, Unicuspid Aortic Valve, Hand Anomalies: a heart-hand syndrome. Am J Med Sci.,2010.339(3):p.296-299.
    [10]Holt, M. and S. Oram, Familial heart disease with skeletal malformations. Br Heart J,1960.22:p.236-242.
    [11]Temtamy, S.A. and V.A. McKusick, The genetics of hand malformations. Birth Defects Orig Artic Ser.,1978.14(3):p.241-244.
    [12]Ruiz de la Fuente, S. and F. Prieto, Heart-hand syndrome. Ⅲ. A new syndrome in three generations. Hum Genet.,1980.55(1):p.43-47.
    [13]Sinkovec, M., D. Petrovic, M. Volk, et al., Familial progressive sinoatrial and atrioventricular conduction disease of adult onset with sudden death, dilated cardiomyopathy, and brachydactyly. A new type of heart-hand syndrome? Clin Genet,2005.68(2):p.155-60.
    [14]Elek, C., M. Vitez, and E. Czeizel, Holt-Oram syndrome. Orv Hetil,1991. 132:p.73-74,77-78.
    [15]Conway, S.J. and P.R. Riley, Current state of congenital heart research and clues to future directions. Birth Defects Res A Clin Mol Teratol,2011.91(6): p.421-2.
    [16]Bruneau, B.G., The developmental genetics of congenital heart disease. Nature.,2008.451(7181):p.943-8.
    [17]Cambien, F. and L. Tiret, Genetics of cardiovascular diseases:from single mutations to the whole genome. Circulation 2007.116(15):p.1714-1724.
    [18]Kurnit, D.M., W.M. Layton, and S. Matthysse, Genetics, chance, and morphogenesis. Am J Hum Genet,1987.41(6):p.979-95.
    [19]Jenkins, K.J., A. Correa, J.A. Feinstein, et al., Noninherited risk factors and congenital cardiovascular defects:current knowledge:a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young:endorsed by the American Academy of Pediatrics. Circulation, 2007.115(23):p.2995-3014.
    [20]Bruneau, B.G, The developmental genetics of congenital heart disease. Nature,2008.451(7181):p.943-8.
    [21]Jakobsson, M., S.W. Scholz, P. Scheet, et al., Genotype, haplotype and copy-number variation in worldwide human populations. Nature,2008.451(7181): p.998-1003.
    [22]Redon, R., S. Ishikawa, K.R. Fitch, et al., Global variation in copy number in the human genome. Nature,2006.444(7118):p.444-54.
    [23]McCarroll, S.A. and D.M. Altshuler, Copy-number variation and association studies of human disease. Nat Genet,2007.39(7 Suppl):p. S37-42.
    [24]Christiansen, J., J.D. Dyck, B.G Elyas, et al., Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease. Circ Res,2004.94(11):p.1429-35.
    [25]Sharp, A.J., S. Hansen, R.R. Selzer, et al., Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet,2006.38(9):p.1038-42.
    [26]Shaffer, L.G., C.D. Kashork, R. Saleki, et al., Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. J Pediatr,2006.149(1):p.98-102.
    [27]Stefansson, H., D. Rujescu, S. Cichon, et al., Large recurrent microdeletions associated with schizophrenia. Nature,2008.455(7210):p.232-6.
    [28]Alkan, C., B.P. Coe, and E.E. Eichler, Genome structural variation discovery and genotyping. Nat Rev Genet,2011.12(5):p.363-76.
    [29]Breckpot, J., B. Thienpont, H. Peeters, et al., Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr., 2010.156(5):p.810-817.
    [30]Greenway, S.C., A.C. Pereira, J.C. Lin, et al., De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet,2009.41(8):p.931-5.
    [31]Erdogan, F., L.A. Larsen, L. Zhang, et al., High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet, 2008.45(11):p.704-9.
    [32]Thienpont, B., L. Mertens, R. de, T., et al., Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Eur Heart J.,2007.28(22):p.2778-2784.
    [33]Olson, E.N., Gene Regulatory Networks in the Evolution and Development of the Heart. Science.,2006.313(5795):p.1922-1927.
    [34]Kodo, K. and H. Yamagishi, A Decade of Advances in the Molecular Embryology and Genetics Underlying Congenital Heart Defects. Circulation Journal,2011.75(10):p.2296-2304.
    [35]Huang, J.B., Y.L. Liu, P.W. Sun, et al., Molecular mechanisms of congenital heart disease. Cardiovasc Pathol,2010.19(5):p. e183-93.
    [36]Garcia-Barcelo, M.M., K.K. Wong, V.C. Lui, et al., Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A,2008. 146A(24):p.3181-5.
    [37]Kim, J.H., P.C.W. Kim, and C. Hui, The VACTERL association:lessons from the Sonic hedgehog pathway. Clin Genet.,2001.59(5):p.306-15.
    [38]Biesecker, L.G., Polydactyly:how many disorders and how many genes? 2010 update. Dev Dyn,2011.240(5):p.931-42.
    [39]Li, Q.Y., R.A. Newbury-Ecob, J.A. Terrett, et al., Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet,1997.15(1):p.21-29.
    [40]Basson, C.T., D.R. Bachinsky, R.C. Lin, et al., Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet,1997.15(1):p.30-5.
    [41]Schott, J.J., D.W. Benson, C.T. Basson, et al., Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science,1998. 281(5373):p.108-11.
    [42]Pehlivan, T., B.R. Pober, M. Brueckner, et al., GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet.,1999.83(3):p.201-6.
    [43]Al-Baradie, R., K. Yamada, C. St. Hilaire, et al., Duane Radial Ray Syndrome (Okihiro Syndrome) Maps to 20q13 and Results from Mutations in SALL4, a New Member of the SAL Family. The American Journal of Human Genetics, 2002.71(5):p.1195-1199.
    [44]Kohlhase, J., M. Heinrich, L. Schubert, et al., Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet.,2002.11(23):p.2979-2987.
    [45]Garg, V., I.S. Kathiriya, R. Barnes, et al., GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature.,2003. 424(6947):p.443-7.
    [46]Small, E.M. and P.A. Krieg, Transgenic analysis of the atrialnatriuretic factor (ANF) promoter:Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol,2003.261(1):p.116-131.
    [47]Basson, C.T., D.R. Bachinsky, R.C. Lin, et al., Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet, 1997.15(1):p.30-35.
    [48]Gladstone, I.J. and V.P. Sybert, Holt-Oram syndrome:penetrance of the gene and lack of maternal effect. Clin Genet,1982.21(2):p.98-103.
    [49]Hurst, J.A., C.M. Hall, and M. Baraitser, The Holt-Oram syndrome.1991. 28(6):p.406-410.
    [50]Basson, C.T., G.S. Cowley, S.D. Solomon, et al., The Clinical and Genetic Spectrum of the Holt-Oram Syndrome (Heart-Hand Syndrome). N Engl J Med,1994.330(13):p.885-891.
    [51]Bamshad, M., R.C. Lin, D.J. Law, et al., Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet., 1997.16(3):p.311-315.
    [52]Molkentin, J.D., Q. Lin, S.A. Duncan, et al., Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis.1997. 11(8):p.1061-72.
    [53]Aalfs, C.M., van Schooneveld, M. J., van Keulen, E. M., Hennekem, R. C. M., Further delineation of the acro-renal-ocular syndrome. Am J Med Genet., 1996.62(3):p.276-281.
    [54]Kohlhase, J., L. Schubert, M. Liebers, et al., Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet.,2003.40(7):p.473-478.
    [55]Shiojima, I., I. Komuro, J. Inazawa, et al., Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics.,1995.27(1):p.204-6.
    [56]Turbay, D., S.B. Wechsler, K.M. Blanchard, et al., Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol Med.,1996.2(1):p.86-96.
    [57]Lints, T.J., L.M. Parsons, L. Hartley, et al., Nkx-2.5:a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development.,1993.119(2):p.419-31.
    [58]Chen, C.Y. and R.J. Schwartz, Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol.,1996.16(11):p.6372-84.
    [59]Dupays, L., T. Jarry-Guichard, D. Mazurais, et al., Dysregulation of connexins and inactivation of NFATcl in the cardiovascular system of Nkx2-5 null mutants. J Mol Cell Cardiol.,2005.38(5):p.787-98.
    [60]Durocher, D., C.Y. Chen, A. Ardati, et al., The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol Cell Biol.,1996.16(9):p.4648-55.
    [61]Hiroi, Y, S. Kudoh, K. Monzen, et al., Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet.,2001. 28(3):p.276-80.
    [62]Inga, A., S.M. Reamon-Buettner, J. Borlak, et al., Functional dissection of sequence-specific NKX2-5 DNA binding domain mutations associated with human heart septation defects using a yeast-based system. Hum Mol Genet, 2005.14(14):p.1965-75.
    [63]Sauna, Z.E. and C. Kimchi-Sarfaty, Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet,2011.12(10):p. 683-91.
    [64]Macaya, D., S.H. Katsanis, T.W. Hefferon, et al., A synonymous mutation in TCOF1 causes Treacher Collins syndrome due to mis-splicing of a constitutive exon. Am J Med Genet A.,2009.149A(8):p.1624-7.
    [65]Pang, S., J. Shan, Y. Qiao, et al., Genetic and Functional Analysis of the NKX2-5 Gene Promoter in Patients With Ventricular Septal Defects. Pediatr Cardiol,2012.
    [66]Czech, A., I. Fedyunin, G Zhang, et al., Silent mutations in sight:co-variations in tRNA abundance as a key to unravel consequences of silent mutations. Mol Biosyst,2010.6(10):p.1767-72.
    [67]Pagani, F., M. Raponi, and F.E. Baralle, Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A,2005.102(18):p.6368-72.
    [68]Powers, E.T. and W.E. Balch, Costly mistakes:translational infidelity and protein homeostasis. Cell,2008.134(2):p.204-6.
    [69]Ehrenberg, M., P.P. Dennis, and H. Bremer, Maximum rrn promoter activity in Escherichia coli at saturating concentrations of free RNA polymerase. Biochimie,2010.92(1):p.12-20.
    [70]Hoffman, J.I., Congenital heart disease:incidence and inheritance. Pediatr Clin North Am.,1990.37(1):p.25-43.
    [71]Moller, J.H., H.D. Allen, E.B. Clark, et al., Report of the task force on children and youth. American Heart Association. Circulation.,1993.88(5 Pt 1):p.2479-2486.
    [72]Namavar, Y., P.G Barth, P.R. Kasher, et al., Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain,2011.134(Pt 1):p. 143-56.
    [73]Yang, P.H., W.K. Cheung, Y. Peng, et al., Makorin-2 is a neurogenesis inhibitor downstream of phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signal. J Biol Chem,2008.283(13):p.8486-95.
    [74]Mikula, M., M. Schreiber, Z. Husak, et al., Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J.,2001.20(8):p.1952-62.
    [75]AJ., M., Role of raf proteins in cardiac hypertrophy and cardiomyocyte survival. Trends Cardiovasc Med.,2005.15(6):p.225-9.
    [76]Noonan, J.A., Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am J Dis Child.,1968.116(4):p.373-80.
    [77]Genet., J.M., Noonan syndrome. J Med Genet.,1987.24(1):p.9-13.
    [78]Tartaglia, M., G Zampino, and B.D. Gelb, Noonan syndrome:clinical aspects and molecular pathogenesis. Mol Syndromol,2010.1(1):p.2-26.
    [79]Digilio, M.C., F. Lepri, A. Baban, et al., RASopathies:Clinical Diagnosis in the First Year of Life. Mol Syndromol,2011.1(6):p.282-289.
    [80]Tidyman, W.E. and K.A. Rauen, The RASopathies:developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev,2009.19(3):p. 230-6.
    [81]Graham, J.M., Jr., N. Kramer, B.A. Bejjani, et al., Genomic duplication of PTPN11 is an uncommon cause of Noonan syndrome. Am J Med Genet A, 2009.149A(10):p.2122-8.
    [82]Kamatani, Y., K. Matsuda, Y. Okada, et al., Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet.,2010.42(3):p.210-5.
    [83]Martinelli, S., A. De Luca, E. Stellacci, et al., Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet,2010.87(2):p.250-7.
    [84]Tartaglia, M. and B.D. Gelb, Disorders of dysregulated signal traffic through the RAS-MAPK pathway:phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci,2010.1214:p.99-121.
    [85]Tartaglia, M., B.D. Gelb, and M. Zenker, Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab,2011.25(1):p.161-79.
    [86]Doco-Fenzy, M., P. Mauran, J. Lebrun, et al., Pure direct duplication (12)(q24.1->q24.2) in a child with Marcus Gunn phenomenon and multiple congenital anomalies. Am J Med Genet A.,2006.140(3):p.212-21.
    [87]Shchelochkov, O.A., A. Patel, G.M. Weissenberger, et al., Duplication of chromosome band 12q24.11q24.23 results in apparent Noonan syndrome. Am J Med Genet A.,2008.146A(8):p.1042-8.
    [88]Pandit, B., A. Sarkozy, L.A. Pennacchio, et al., Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet,2007.39(8):p.1007-12.
    [89]Sznajer, Y., B. Keren, C. Baumann, et al., The spectrum of cardiac anomalies in Noonan syndrome as a result of mutations in the PTPN11 gene. Pediatrics, 2007.119(6):p. e1325-31.
    [90]Sarkozy, A., Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome. J Med Genet,2004.41(5):p. e68-e68.
    [91]Thienpont, B., F. Bena, J. Breckpot, et al., Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. J Med Genet,2010.47(3):p.155-61.
    [92]Hennekam, R.C., Rubinstein-Taybi syndrome. Eur J Hum Genet,2006.14(9): p.981-5.
    [93]Marangi, G., V. Leuzzi, D. Orteschi, et al., Duplication of the Rubinstein-Taybi region on 16p13.3 is associated with a distinctive phenotype. Am J Med Genet A,2008.146A(18):p.2313-7.
    [94]Chen, J.L., Y.F. Yang, C. Huang, et al., Clinical and molecular delineation of 16p13.3 duplication in a patient with congenital heart defect and multiple congenital anomalies. Am J Med Genet A,2012.158A(3):p.685-8.
    [95]Oskarsdottir, S., Incidence and prevalence of the 22q11 deletion syndrome:a population-based study in Western Sweden. Archives of Disease in Childhood, 2004.89(2):p.148-151.
    [96]Devriendt, K., J.P. Fryns, G. Mortier, et al., The annual incidence of DiGeorge/velocardiofacial syndrome. J Med Genet.,1998.35(9):p.789-90.
    [97]Tezenas Du Montcel, S., H. Mendizabai, S. Ayme, et al., Prevalence of 22q11 microdeletion. J Med Genet,1996.33(8):p.719-719.
    [98]Goodship, J., I. Cross, J. LiLing, et al., A population study of chromosome 22q11 deletions in infancy. Arch Dis Child.,1998.79(4):p.348-51.
    [99]Lu, J.H., M.Y. Chung, B. Hwang, et al., Prevalence and parental origin in Tetralogy of Fallot associated with chromosome 22q11 microdeletion. Pediatrics.,1999.104(1 Pt 1):p.87-90.
    [100]Liierssen, K., M. Pruggmayer, and M. Ptok, Small deletion--large effect. HNO.,2004.52(3):p.258-60.
    [101]Ming, J.E., D.M. McDonald-McGinn, T.E. Megerian, et al., Skeletal anomalies and deformities in patients with deletions of 22q11. Am J Med Genet.,1997.72(2):p.210-5.
    [102]Agergaard, P., C. Olesen, J.R. Ostergaard, et al., The prevalence of chromosome 22q11.2 deletions in 2,478 children with cardiovascular malformations. A population-based study. Am J Med Genet A,2012.158A(3): p.498-508.
    [103]Goldmuntz, E., B.J. Clark, L.E. Mitchell, et al., Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol.,1998. 32(2):p.492-8.
    [104]Wilson, D.I., J. Burn, P. Scambler, et al., DiGeorge syndrome:part of CATCH22. J Med Genet.,1993.30(10):p.852-6.
    [105]Desmaze, C., P. Scambler, M. Prieur, et al., Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum Genet.,1993. 90(6):p.663-5.
    [106]Wilson, D.I., I.E. Cross, J.A. Goodship, et al., A prospective cytogenetic study of 36 cases of DiGeorge syndrome. Am J Hum Genet., 1992.51(5):p.957-63.
    [107]Driscoll, D.A., M.L. Budarf, and B.S. Emanuel, A genetic etiology for DiGeorge syndrome:consistent deletions and microdeletions of 22q11. Am J Hum Genet.,1992.50(5):p.924-33.
    [108]Driscoll, D.A., J. Salvin, B. Sellinger, et al., Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes implications for genetic counselling and prenatal diagnosis. J Med Genet.,1993.30(10):p. 813-7.
    [109]Yagi, H., Y. Furutani, H. Hamada, et al., Role of TBX1 in human del22q11.2 syndrome. The Lancet,2003.362(9393):p.1366-1373.
    [110]Gong, W., S. Gottlieb, J. Collins, et al., Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet.,2001.38(12):p. E45.
    [111]Halder, A., M. Jain, I. Chaudhary, et al., Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size. Mol Cytogenet,2012.5(1):p.13.
    [112]杨一峰,胡冬煦,and夏家辉,心脏圆锥于畸形患者Tbxl基因杂合性缺失研究中国医师杂志,2003.5(9):p.1160-1162.
    [1]Hoffman, J.I. and S. Kaplan, The incidence of congenital heart disease. J Am Coll Cardiol.,2002.39(12):p.1890-1900.
    [2]Hoffman, J.I., S. Kaplan, and R.R. Liberthson, Prevalence of congenital heart disease. Am Heart J,2004.147(3):p.425-39.
    [3]Hoffman, J.I., Congenital heart disease:incidence and inheritance. Pediatr Clin North Am.,1990.37(1):p.25-43.
    [4]Moller, J.H., H.D. Allen, E.B. Clark, et al., Report of the task force on children and youth. American Heart Association. Circulation.,1993.88(5 Pt 1):p.2479-2486.
    [5]Conway, S.J. and P.R. Riley, Current state of congenital heart research and clues to future directions. Birth Defects Res A Clin Mol Teratol,2011.91(6):p.421-2.
    [6]Ward, C., Clinical significance of the bicuspid aortic valve. Heart.,2000.83(1):p. 81-85.
    [7]Benson, D.W., A. Sharkey, D. Fatkin, et al., Reduced penetrance, variable expressivity, and genetic heterogeneity of familial atrial septal defects. Circulation.,1998.97(20):p.2043-2048.
    [8]Roguin, N., Z.D. Du, M. Barak, et al., High prevalence of muscular ventricular septal defect in neonates. J Am Coll Cardiol.,1995.26(6):p.1545-1548.
    [9]Du, Z.D., N. Roguin, M. Barak, et al., High prevalence of muscular ventricular septal defect in preterm neonates. Am J Cardiol.,1996.78(10):p.1183-1185.
    [10]Goldmuntz, E., P. Paluru, J. Glessner, et al., Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit Heart Dis.,2011.6(6):p.592-602.
    [11]Twining, P., J.M. McHugo, and D.W. Pilling, Textbook of Fetal Abnormalities2000, London:Churchill Livingstone.
    [12]Dolk, H., M. Loane, and E. Garne, The prevalence of congenital anomalies in Europe. Adv Exp Med Biol,2010.686:p.349-64.
    [13]Dai, L., J. Zhu, J. Liang, et al., Birth defects surveillance in China. World J Pediatr,2011.7(4):p.302-10.
    [14]Koifinan, A., O. Nevo, A. Toi, et al., Diagnostic Approach to Prenatally Diagnosed Limb Abnormalities. Ultrasound Clinics,2008.3(4):p.595-608.
    [15]Gramellini, D., S. Fieni, and E. Vadora, Prenatal diagnosis of isolated limb defects:an updated review. Fetal Diagn Ther.,2005.20(2):p.96-101.
    [16]Nanda, S., S. Longo, and M. Arastu, Unicuspid Aortic Valve, Hand Anomalies:a heart-hand syndrome. Am J Med Sci.,2010.339(3):p.296-299.
    [17]Holt, M. and S. Oram, Familial heart disease with skeletal malformations. Br Heart J,1960.22:p.236-242.
    [18]Elek, C., M. Vitez, and E. Czeizel, Holt-Oram syndrome. Orv Hetil,1991.132:p. 73-74,77-78.
    [19]Gladstone, I.J. and V.P. Sybert, Holt-Oram syndrome:penetrance of the gene and lack of maternal effect. Clin Genet,1982.21(2):p.98-103.
    [20]Hurst, J.A., C.M. Hall, and M. Baraitser, The Holt-Oram syndrome.1991.28(6): p.406-410.
    [21]Basson, C.T., G.S. Cowley, S.D. Solomon, et al., The Clinical and Genetic Spectrum of the Holt-Oram Syndrome (Heart-Hand Syndrome). N Engl J Med, 1994.330(13):p.885-891.
    [22]Terrett, J.A., R. Newbury-Ecob, G.S. Cross, et al., Holt-Oram syndrome is a genetically heterogeneous disease with one locus mapping to human chromosome 12q. Nat Genet,1994.6(4):p.401-404.
    [23]Bonnet, D., J. Terrett, E. Pequignot-Viegas, et al., Gene localisation in 12q12 in Holt-Oram atrio-digital syndrome. Arch Mal Coeur Vaiss,1995.88(5):p.661-666.
    [24]Basson, C.T., D.R. Bachinsky, R.C. Lin, et al., Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet,1997.15(1): p.30-35.
    [25]Li, Q.Y., R.A. Newbury-Ecob, J.A. Terrett, et al., Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet, 1997.15(1):p.21-29.
    [26]Yang, J., D. Hu, J. Xia, et al., Three novel TBX5 mutations in Chinese patients with Holt-Oram syndrome. Am. J. Med. Genet.,2000.92(4):p.237-240.
    [27]Basson, C.T., T. Huang, R.C. Lin, et al., Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc. Nat. Acad. Sci.,1999. 96(6):p.2919-2924.
    [28]Temtamy, S.A. and V.A. McKusick, The genetics of hand malformations. Birth Defects Orig Artic Ser.,1978.14(3):p.241-244.
    [29]Silengo, M.C., M. Biagioli, A. Guala, et al., Heart-hand syndrome II. A report of Tabatznik syndrome with new findings. Clin Genet.,1990.38(2):p.105-13.
    [30]Ramos, F.J., I. Bueno, J.L. Olivares, et al., Heart-hand syndrome II (Tabatznik syndrome):A new case with mild phenotype. Genet Med.,1999.1:p.60.
    [31]Ruiz de la Fuente, S. and F. Prieto, Heart-hand syndrome. III. A new syndrome in three generations. Hum Genet.,1980.55(1):p.43-47.
    [32]Sinkovec, M., D. Petrovic, M. Volk, et al., Familial progressive sinoatrial and atrioventricular conduction disease of adult onset with sudden death, dilated cardiomyopathy, and brachydactyly. A new type of heart-hand syndrome? Clin Genet,2005.68(2):p.155-60.
    [33]Renou, L., S. Stora, R.B. Yaou, et al., Heart-hand syndrome of Slovenian type:a new kind of laminopathy. J Med Genet,2008.45(10):p.666-71.
    [34]Lin, F. and H.J. Worman, Structural organization of the human gene encoding nuclear lamin A and nuclear lamin J Biol Chem.,1993.268(22):p.16321-6.
    [35]王虎,核纤层蛋白Lamins的结构、功能及相关疾病的研究.中国分子心脏病学杂志,2002.4.
    [36]Bamshad, M., R.C. Lin, D.J. Law, et al., Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet.,1997. 16(3):p.311-315.
    [37]Gong, Y, D. Chitayat, B. Kerr, et al., Brachydactyly type B:clinical description, genetic mapping to chromosome 9q, and evidence for a shared ancestral mutation. Am J Hum Genet,1999.64(2):p.570-7.
    [38]Oldridge, M., A.M. Fortuna, M. Maringa, et al., Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet.,2000.24(3):p.275-278.
    [39]Brugada, P. and J. Brugada, Right bundle branch block, persistent ST segment elevation and sudden cardiac death:a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol.,1992.20(6):p.1391-1396.
    [40]Schott, J.J., C. Alshinawi, F. Kyndt, et al., Cardiac conduction defects associate with mutations in SCN5A. Nat Genet.,1999.23(1):p.20-21.
    [41]Gay, I., R. Feinmesser, and T. Cohen, Laryngeal web, congenital heart disease and low stature. A syndrome? Arch Otolaryngol.,1981.107(8):p.510-512.
    [42]Bamshad, M., S. Root, and J.C. Carey, Clinical analysis of a large kindred with the Pallister ulnar-mammary syndrome. Am J Med Genet.,1996.65(4):p.325-331.
    [43]Schinzel, A., R. Illig, and A. Prader, The ulnar-mammary syndrome:an autosomal dominant pleiotropic gene. Clin Genet.,1987.32(3):p.160-168.
    [44]Pallister, P.D., J. Herrmann, and J.M. Opitz, A pleiotropic dominant mutation affecting skeletal, sexual and apocrinemammary development. Birth Defects Orig Artic Ser.,1976. Ⅻ(5):p.247-254.
    [45]Gonzalez, C.H., J. Herrmann, and J.M. Opitz, Studies of malformation syndromes of man ⅩⅩⅩⅫB:mother and son affected with the ulnar-mammary syndrome type Pallister. Eur J Pediatr.,1976.123(4):p.225-235.
    [46]Sasaki, G., T. Ogata, T. Ishii, et al., Novel mutation of TBX3 in a Japanese family with ulnar-mammary syndrome:implication for impaired sex development. Am J Med Genet,2002.110(4):p.365-9.
    [47]Bamshad, M., P. A. Krakowiak, W.S. Watkins, et al., A gene for ulnar-mammary syndrome maps to 12q23-q24.1. Hum Mol Genet.,1995.4(10):p.1973-1977.
    [48]Borozdin, W., A.M. Bravo-Ferrer Acosta, E. Seemanova, et al., Contiguous hemizygous deletion of TBX5, TBX3, and RBM19 resulting in a combined phenotype of Holt-Oram and ulnar-mammary syndromes. Am J Med Genet A, 2006.140A(17):p.1880-6.
    [49]Borozdin, W., A.M. Bravo Ferrer Acosta, M.J. Bamshad, et al., Expanding the spectrum ofTBX5 mutations in Holt-Oram syndrome:detection of two intragenic deletions by quantitative real time PCR, and report of eight novel point mutations. Human Mutation,2006.27(9):p.975-976.
    [50]Klopocki, E., L.M. Neumann, H. Tonnies, et al., Ulnar-mammary syndrome with dysmorphic facies and mental retardation caused by a novel 1.28 Mb deletion encompassing the TBX3 gene. Eur J Hum Genet.,2006.14(12):p.1274-1279.
    [51]Char, F., Peculiar facies with short philtrum, duck-bill lips, ptosis and low-set ears-a new syndrome? Birth Defects Orig Artic Ser.,1978.14(6B):p.303-5.
    [52]Temple, I.K., Char syndrome (unusual mouth, patent ductus arteriosus, phalangeal anomalies). Clin Dysmorphol.,1992.1(1):p.17-21.
    [53]Davidson, H.R., A large family with patent ductus arteriosus and unusual face. J Med Genet.,1993.30(6):p.503-5.
    [54]Pierpoint, M.E. and L.J. Sletten, Char syndrome:a cause of familial patent ductus arteriosus. (Abstract) Am. J. Hum. Genet.,1994.55:p. A89.
    [55]Slavotinek, A., J. Clayton-Smith, and M. Super, Familial patent ductus arteriosus: a further case of CHAR syndrome. Am J Med Genet.,1997.71(2):p.229-32.
    [56]Satoda, M., M.E.M. Pierpont, GA. Diaz, et al., Char syndrome, an inherited disorder with patent ductus arteriosus, maps to chromosome 6p12-p21. Circulation.,1999.99(23):p.3036-42.
    [57]Sweeney, E., A. Fryer, and M. Walters, Char syndrome:a new family and review of the literature emphasising the presence of symphalangism and the variable phenotype. Clin. Dysmorph.,2000.9(3):p.177-82.
    [58]Zannolli, R., R. Mostardini, M. Matera, et al., Char syndrome:an additional family with polythelia, a new finding. Am J Med Genet.,2000.95(3):p.201-3.
    [59]Satoda, M., F. Zhao, G.A. Diaz, et al., Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet.,2000.25(1):p. 42-6.
    [60]Zhao, F., C.G. Weismann, M. Satoda, et al., Novel TFAP2B mutations that cause Char syndrome provide a genotype-phenotype correlation. Am J Hum Genet, 2001.69(4):p.695-703.
    [61]Mani, A., J. Radhakrishnan, A. Farhi, et al., Syndromic patent ductus arteriosus: evidence for haploinsufficient TFAP2B mutations and identification of a linked sleep disorder. Proc Natl Acad Sci U S A,2005.102(8):p.2975-9.
    [62]Kohlhase, J., A. Wischermann, H. Reichenbach, et al., Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet., 1998.18(1):p.81-83.
    [63]Townes, P.L. and E.R. Brocks, Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediatr.,1972.81(2):p.321-326.
    [64]Silver, W., M. Steier, O. Schwartz, et al., The Holt-Oram syndrome with previously undescribed associated anomalies. Am J Dis Child.,1972.124(6):p. 911-914.
    [65]Monteiro de Pina-Neto, J., Phenotypic variability in Townes-Brocks syndrome. Am J Med Genet.,1984.18(1):p.147-152.
    [66]de Vries-Van der Weerd, M.A., P.J. Willems, H.M. Mandema, et al., A new family with the Townes-Brocks syndrome. Clin Genet.,1988.34(3):p.195-200.
    [67]Ferraz, F.G., L. Nunes, M.E. Ferraz, et al., Townes-Brocks syndrome. Report of a case and review of the literature. Ann Genet.,1989.32(2):p.120-123.
    [68]O'Callaghan, M. and I.D. Young, The Townes-Brocks syndrome. J Med Genet., 1990.27(7):p.457-461.
    [69]Surka, W.S., J. Kohlhase, C.E. Neunert, et al., Unique family with Townes-Brocks syndrome, SALL1 mutation, and cardiac defects. Am J Med Genet.,2001.102(3): p.250-257.
    [70]Botzenhart, E.M., A. Green, H. Ilyina, et al., SALL1 mutation analysis in Townes-Brocks syndrome:twelve novel mutations and expansion of the phenotype. Hum Mutat,2005.26(3):p.282.
    [71]Sudo, Y, C. Numakura, A. Abe, et al., Phenotypic variability in a family with Townes-Brocks syndrome. J Hum Genet,2010.55(8):p.550-1.
    [72]Friedman, P.A., K.W. Rao, and A.S. Aylsworth, Six patients with the Townes-Brocks syndrome including five familial cases and an association with a pericentric inversion of chromosome 16. Am. J. Hum. Genet.,1987.41:p. A60.
    [73]Serville, F., D. Lacombe, R. Saura, et al., Townes-Brocks syndrome in an infant with translocation t (5;16). Genet Couns.,1993.4(2):p.109-112.
    [74]Borozdin, W., K. Steinmann, B. Albrecht, et al., Detection of heterozygous SALL1 deletions by quantitative real time PCR proves the contribution of a SALL1 dosage effect in the pathogenesis of Townes-Brocks syndrome. Hum Mutat,2006. 27(2):p.211-2.
    [75]Furniss, D., P. Critchley, H. Giele, et al., Nonsense-mediated decay and the molecular pathogenesis of mutations in SALL1 and GLI3. Am J Med Genet A, 2007.143A(24):p.3150-60.
    [76]Aalfs, C.M., van Schooneveld, M. J., van Keulen, E. M., Hennekem, R. C. M., Further delineation of the acro-renal-ocular syndrome. Am J Med Genet.,1996. 62(3):p.276-281.
    [77]Kohlhase, J., L. Schubert, M. Liebers, et al., Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy J Med Genet., 2003.40(7):p.473-478.
    [78]Kohlhase, J., M. Heinrich, L. Schubert, et al., Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet.,2002.11(23):p.2979-2987.
    [79]Brassington, A.M., S.S. Sung, R.M. Toydemir, et al., Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet,2003.73(1):p. 74-85.
    [80]Ferrell, R.L., B. Jones, and R.V.J. Lucas, Simultaneous occurrence of the Holt-Oram and the Duane syndromes. J Pediatr.,1966.69(4):p.630-634.
    [81]Okihiro, M.M., T. Tasaki, K.K. Nakano, et al., Duane syndrome and congenital upper-limb anomalies. A familial occurrence. Arch Neurol.,1977.34(3):p.174-179.
    [82]Hayes, A., T. Costa, and R.C. Polomeno, The Okihiro syndrome of Duane anomaly, radial ray abnormalities, and deafness. Am J Med Genet.,1985.22(2): p.273-280.
    [83]Becker, K., P.L. Beales, D.M. Calver, et al., Okihiro syndrome and acro-renal-ocular syndrome:clinical overlap, expansion of the phenotype, and absence of PAX2 mutations in two new families. J Med Genet.,2002.39(1):p.68-71.
    [84]Kohlhase, J., P.E. Taschner, P. Burfeind, et al., Molecular analysis of SALL1 mutations in Townes-Brocks syndrome. Am J Hum Genet,1999.64(2):p.435-45.
    [85]Al-Baradie, R., K. Yamada, C. St. Hilaire, et al., Duane Radial Ray Syndrome (Okihiro Syndrome) Maps to 20q13 and Results from Mutations in SALL4, a New Member of the SAL Family. The American Journal of Human Genetics,2002. 71(5):p.1195-1199.
    [86]Borozdin, W., D. Boehm, M. Leipoldt, et al., SALL4 deletions are a common cause of Okihiro and acro-renal-ocular syndromes and confirm haploinsufficiency as the pathogenic mechanism. J Med Genet,2004.41(9):p. e113.
    [87]Hollister, D.W. and W.G. Hollister, The "long-thumb" brachydactyly syndrome. Am J Med Genet.,1981.8(1):p.5-16.
    [88]D'Andrea, A.D., Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med,2010.362(20):p.1909-19.
    [89]Kutler, D.I. and A.D. Auerbach, Fanconi anemia in Ashkenazi Jews. Fam Cancer., 2004.3(3-4):p.241-248.
    [90]Ray, R., E. Zorn, T. Kelly, et al., Lower limb anomalies in the thrombocytopenia absent-radius (TAR) syndrome. Am J Med Genet.,1980.7(4):p.523-8.
    [91]Schoenecker, P.L., A.K. Cohn, W.G. Sedgwick, et al., Dysplasia of the knee associated with the syndrome of thrombocytopenia and absent radius. J Bone Joint Surg Am.,1984.66(3):p.421-7.
    [92]Hall, J.G., J. Levin, J.P. Kuhn, et al., Thrombocytopenia with absent radius (TAR). Medicine (Baltimore).1969.48(6):p.411-39.
    [93]Hedberg, V.A. and J.M. Lipton, Thrombocytopenia with absent radii. A review of 100 cases. Am J Pediatr Hematol Oncol.,1988.10(1):p.51-64.
    [94]Albers, C.A., D.S. Paul, H. Schulze, et al., Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet,2012.44(4):p.435-9.
    [95]Gross, H., C. Groh, and G Weippl, Congenital hypoplastic thrombopenia with aplasia of the radius, a syndrome of multiple variations. Neue Osterr Z Kinderheilkd.,1956.1(4):p.574-82.
    [96]Shaw, S. and R.A.M. Oliver, Congenital hypoplastic thrombocytopenia with skeletal deformaties in siblings. Blood.,1959.14(4):p.374-7.
    [97]Van Allen, M.I., H.E. Hoyme, and K.L. Jones, Vascular pathogenesis of limb defects. I. Radial artery anatomy in radial aplasia. J Pediatr.,1982.101(5):p. 832-8.
    [98]Greenhalgh, K.L., R.T. Howell, A. Bottani, et al., Thrombocytopenia-absent radius syndrome:a clinical genetic study. J Med Genet.,2002.39(12):p.876-81.
    [99]Menghsol, S.C., R.D. Harris, and K. Ornvold, Thrombocytopenia and absent radii, TAR syndrome:report of cerebellar dysgenesis and newly identified cardiac and renal anomalies. Am J Med Genet A.,2003.123A(2):p.193-6.
    [100]Skorka, A., J. Bielicka-Cymermann, D. Gieruszczak-Bialek, et al., Thrombocytopenia-absent radius (tar) syndrome:a case with agenesis of corpus callosum, hypoplasia of cerebellar vermis and horseshoe kidney. Genet Couns., 2005.16(4):p.377-82.
    [101]Klopocki, E., H. Schulze, G. Strauss, et al., Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet,2007.80(2):p. 232-40.
    [102]Oskarsdottir, S., Incidence and prevalence of the 22q11 deletion syndrome:a population-based study in Western Sweden. Archives of Disease in Childhood, 2004.89(2):p.148-151.
    [103]Devriendt, K., J.P. Fryns, G Mortier, et al., The annual incidence of DiGeorge/velocardiofacial syndrome. J Med Genet.,1998.35(9):p.789-90.
    [104]Tezenas Du Montcel, S., H. Mendizabai, S. Ayme, et al., Prevalence of 22q11 microdeletion. J Med Genet,1996.33(8):p.719-719.
    [105]Goodship, J., I. Cross, J. LiLing, et al., A population study of chromosome 22q11 deletions in infancy. Arch Dis Child.,1998.79(4):p.348-51.
    [106]Lu, J.H., M.Y. Chung, B. Hwang, et al., Prevalence and parental origin in Tetralogy of Fallot associated with chromosome 22q11 microdeletion. Pediatrics., 1999.104(1 Pt1):p.87-90.
    [107]Liierssen, K., M. Pruggmayer, and M. Ptok, Small deletion--large effect. HNO., 2004.52(3):p.258-60.
    [108]Agergaard, P., C. Olesen, J.R. Ostergaard, et al., The prevalence of chromosome 22q11.2 deletions in 2,478 children with cardiovascular malformations. A population-based study. Am J Med Genet A,2012.158A(3):p. 498-508.
    [109]Ming, J.E., D.M. McDonald-McGinn, T.E. Megerian, et al., Skeletal anomalies and deformities in patients with deletions of 22q11. Am J Med Genet., 1997.72(2):p.210-5.
    [110]Goldmuntz, E., B.J. Clark, L.E. Mitchell, et al., Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol.,1998.32(2):p.492-8.
    [111]Wilson, D.I., J. Burn, P. Scambler, et al., DiGeorge syndrome:part of CATCH 22. J Med Genet.,1993.30(10):p.852-6.
    [112]Driscoll, D.A., M.L. Budarf, and B.S. Emanuel, A genetic etiology for DiGeorge syndrome:consistent deletions and microdeletions of 22q11. Am J Hum Genet.,1992.50(5):p.924-33.
    [113]Driscoll, D.A., J. Salvin, B. Sellinger, et al., Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes implications for genetic counselling and prenatal diagnosis. J Med Genet.,1993.30(10):p.813-7.
    [114]Desmaze, C., P. Scambler, M. Prieur, et al., Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum Genet.,1993.90(6):p.663-5.
    [115]Wilson, D.I., I.E. Cross, J.A. Goodship, et al., A prospective cytogenetic study of 36 cases of DiGeorge syndrome. Am J Hum Genet.,1992.51(5):p.957-63.
    [116]杨一峰,胡冬煦,and夏家辉,心脏圆锥于畸形患者Tbxl基因杂合性缺失研究中国医师杂志,2003.5(9):p.1160-1162.
    [117]Yamagishi, H., A Molecular Pathway Revealing a Genetic Basis for Human Cardiac and Craniofacial Defects. Science,1999.283(5405):p.1158-1161.
    [118]Yagi, H., Y. Furutani, H. Hamada, et al., Role of TBX1 in human del22qll.2 syndrome. The Lancet,2003.362(9393):p.1366-1373.
    [119]Gong, W., S. Gottlieb, J. Collins, et al., Mutation analysis of TBXl in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet.,2001.38(12):p. E45.
    [120]Halder, A., M. Jain, I. Chaudhary, et al., Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size. Mol Cytogenet, 2012.5(1):p.13.
    [121]Quan, L. and D.W. Smith, The VATER association:vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, radial dysplasia. Birth Defects,1972.8(2):p.75-78.
    [122]Khoury, M.J., J.F. Cordero, F. Greenberg, et al., A population study of the VACTERL association:evidence for its etiologic heterogeneity. Pediatrics.,1983. 71(5):p.815-20.
    [123]Solomon, B.D., D.E. Pineda-Alvarez, M.S. Raam, et al., Evidence for inheritance in patients with VACTERL association. Hum Genet,2010.127(6):p. 731-3.
    [124]Kim, J.H., P.C.W. Kim, and C. Hui, The VACTERL association:lessons from the Sonic hedgehog pathway. Clin Genet.,2001.59(5):p.306-15.
    [125]Akarsu, A.N., I. Stoilov, E. Yilmaz, et al., Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet.,1996.5(7):p.945-52.
    [126]Garcia-Barcelo, M.M., K.K. Wong, V.C. Lui, et al., Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A,2008.146A(24): p.3181-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700