碳纳米管的修饰及改性聚丙烯复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管独特的结构和优异的性能,已引起人们利用它们制备纳米复合材料的极大兴趣。然而,CNTs表面呈化学惰性,使其在聚合物基体中的分散性差,与基体材料难以形成牢固结合,从而限制了其应用范围。要发挥碳纳米管改性复合材料的先进性,必须在界面结构及性质设计的基础上,对碳纳米管进行有效的修饰。本论文首先对碳纳米管进行表面修饰处理,制备得到了6种功能化碳纳米管;在此基础上,选择聚丙烯(PP)作为基体材料,利用这6种功能化的碳纳米管对其进行改性,制备得到了多种碳纳米管/聚丙烯复合材料,研究了改性前后复合材料的力学、热学及电学等性能。研究具有基础性和前瞻性,具有广泛的应用前景。
     首先,利用氢氧化钠对碳纳米管进行修饰,得到了羟基化碳纳米管(HO-CNTs);在此基础上,利用甲醛的亲电性,对碳纳米管进行修饰处理得到了羟甲基碳纳米管(HOCH2-CNTs)。进一步使HO-CNTs和HOCH2-CNTs分别与MAH发生酯化反应,制备得到接枝了MAH的羟基碳纳米管(MAH-CNTs)和接枝了MAH的羟甲基碳纳米管(MAH-OCH2-CNTs)。结果显示:通过氢氧化钠和甲醛对碳纳米管的修饰,在其表面引入了一定数量的羟基和羟甲基;与MAH反应后,羟基消失,MAH通过酯基被引入到了碳纳米管的表面;四种修饰方法均未改变CNTs的骨架结构,这对于发挥CNTs的优良力学性能常重要;同时,被修饰过的CNTs在有机溶剂中有较好的溶解性,为下一步利用溶剂法制备CNTs/PP复合材料打下了基础。
     其次,利用HO-CNTs和MAH-CNTs两种修饰碳纳米管,根据MAH与PP复合顺序的先后,采用溶液法分别制备了CNTs/MAH/PP、MAH-CNTs/PP及CNTs/MAH-PP复合材料,研究了修饰CNTs含量对复合材料性能的影响。利用HOCH2-CNTs和MAH-OCH2-CNTs,根据MAH加入与否以及与PP复合顺序的先后,分别制备了HOCH2-CNTs/PP、MAH-OCH2-CNTs/PP、HOCH2-CNTs/MAH/PP和HOCH2-CNTs/MAH-PP复合材料,并研究了HOCH2-CNTs或MAH-OCH2-CNTs含量与复合材料性能的影响之间的关系。对复合材料进行的形貌、结晶行为、界面连接和性能测试显示:经过修饰的碳纳米管( HO-CNTs、MAH-CNTs、HOCH2-CNTs和MAH-OCH2-CNTs)均匀分散于聚丙烯基体中,并且修饰过的CNTs被聚丙烯均匀包覆,两者相容性良好,碳纳米管和聚丙烯通过MAH形成了共价连接;修饰过的碳纳米管对聚丙烯具有较强的异相成核作用,有效的减小了聚丙烯球晶尺寸,但并未改变PP的晶型;复合材料的力学、热学性能均优于纯PP和直接混合CNTs/PP;其体积电阻率随着CNTs含量的增加均表现出先缓慢减小而后迅速减小的变化趋势。
     对比研究发现:在初始原料均为HO-CNTs、MAH、PP的情况下,HO-CNTs先与MAH复合所合成的MAH-CNTs/PP复合材料具有比其他复合方式所制备的复合材料更优异的性能。在初始原料均为HOCH2-CNTs、MAH、PP的情况下,先使HOCH2-CNTs与MAH复合所制备的MAH-OCH2-CNTs/PP具有比其他复合方式所制备HOCH2-CNTs/MAH/PP和HOCH2-CNTs/MAH-PP较优异的性能。
     第三,利用碳纳米管表面大稠环芳烃结构极强的自由基捕捉能力,使甲基丙烯酸丁酯在碳纳米管表面发生接枝聚合,得到了聚甲基丙烯酸丁酯接枝碳纳米管(PBMA-CNTs)。结果表明:经过修饰处理,CNTs表面成功接上了PBMA,且修饰处理过程不会破坏CNTs本身的结构。接枝在碳纳米管上的PBMA有效地提高了其在有机溶剂(二甲苯)中的分散稳定性。
     第四,利用上述得到的PBMA-CNTs制备了PBMA-CNTs/PP复合材料,并考察了不同的CNTs和BMA配比对复合材料性能的影响。结果显示:当CNTs:BMA=1:100时,复合材料呈串晶纤维状, CNTs充当了串晶中心轴;当CNTs:BMA=5:100时,复合材料呈网孔膜状, CNTs被包覆于这些网孔中。在PBMA-CNTs/PP复合材料中, PBMA-CNTs与PP之间存在较强的吸附作用。PBMA-CNTs对PP的异相成核作用没有单独使用CNTs作用明显,这主要是因为PBMA的疏水性与PP更为匹配,容易缠绕而起不到成核作用。用CNTs:BMA=1:100的PBMA-CNTs所制备的PBMA-CNTs/PP复合材料与用CNTs:BMA=5:100的PBMA-CNTs相比,具有更好的力学性能,这与其串晶纤维结构有着紧密的联系。用两种不同CNTs与BMA配比所制备的PBMA-CNTs/PP复合材料都具有比纯PP优异的热稳定性。当CNTs:BMA=5:100时,复合材料的热稳定性达到最佳。
     第五,利用接枝了MAH的PP( MAH-PP)作为基体材料,制备了PBMA-CNTs/MAH-PP复合材料。利用不同配比PBMA-CNTs所制备的PBMA-CNTs/MAH-PP复合材料的形貌有很大的不同。CNTs:BMA=1:100的PBMA-CNTs/MAH-PP复合材料呈网孔球状;而CNTs:BMA=5:100的复合材料呈互穿网络结构,且CNTs在基体中定向排列。由于CNTs与BMA的配比不同,每根CNTs上接枝的PBMA数量也不同;当PBMA-CNTs与MAH-PP复合时,PBMA接枝量少的CNTs更易于与MAH形成化学键合,而使得CNTs受到PBMA与PP两个大分子的拽拉、牵制作用,趋向于被拉直。而对于CNTs:BMA=1:100的复合材料,因CNTs表面接枝了太多的PBMA,使得CNTs趋向于弯曲缠绕,因而复合材料形成了网孔球状。在PBMA-CNTs/MAH-PP复合材料中,通过CNTs和MAH之间的酯化反应,使得CNTs和PP通过MAH形成了化学连接。利用不同配比的PBMA-CNTs所制备的PBMA-CNTs/MAH-PP复合材料的力学和热学性能均好于纯PP。
Since their discovery, carbon nanotubes (CNTs) have attracted enormous attention due to their unique structure, remarkable mechanical properties and potential applications. Specially, CNTs are an ideal candidate in polymer composites. However, to achieve maximum enhanced properties as reinforced additives, there are two fundamental issues needed to be addressed. They are related to the poor dispersion and chemical inertia of CNTs. Thus, it is necessary to decorate or coat CNTs to strengthen reinforced effects. In this dissertation, the research work ranging from decorating CNTs to modifying polypropylene (PP) with those decorated CNTs has been carried out. Moreover, the mechanical, thermal and electronic properties of modified composites were investigated.
     Firstly, decoration to CNTs was carried out by using sodium hydroxide (NaOH). The resulted product (HO-CNTs) was then methyloated using eletrophilicity of formaldehyde. Subsequently, maleic anhydride (MAH) was grafted onto the HO-CNTs and methyloated CNTs (HOCH2-CNTs) via esterification. The IR results showed that a certain amount of -OH and -CH2OH groups have been introduced onto the surface of CNT, then the -OH groups were replaced by ester groups after the HO-CNTs and HOCH2-CNTs were grafted by MAH. The four process of decoration did not destroy the structure of CNTs. Moreover, the twining degree of CNT was reduced and the dispersion of CNTs in organic solvent was enhanced, which open a convenient door for other chemists in further research.
     Secondly, the HO-CNTs and MAH-CNTs were used to fabricate CNTs/MAH/PP, MAH-CNTs/PP and CNTs/MAH-PP composites through solution blending, respectively. Also HOCH2-CNTs/PP, MAH-OCH2-CNTs/PP, HOCH2-CNTs/MAH/PP and HOCH2-CNTs/MAH-PP were prepared by using HOCH2-CNTs and MAH-OCH2-CNTs. The investigation showed that the decorated CNTs (HO-CNTs, MAH-CNTs, HOCH2-CNTs and MAH-OCH2-CNTs)were not only homogeneous dispersed in PP matrix, but also uniformly wrapped by PP. It is indicated that the decorated surface of CNTs benefit the dispersion of CNTs in PP. In addition, the decoration to CNTs improved the compatibility between the CNTs and PP, resulting in stronger interfacial adhesion. The IR results showed that there was covalently linkage between PP and CNTs via MAH grafting. This strong interfacial bonding between PP and CNTs by MAH grafting was beneficial for load-transfer processes between nanotubes and matrix.
     The crystallization behavior of composites was investigated. It is found that decorated CNTs had strong heterogeneous nucleation in the composites, and the crystal grain of PP containing CNTs was effectively controlled. Owing to the uniform dispersion of CNTs and covalent adhesion between PP and CNTs, the mechanical strength and the thermal stability of the composites were higher than that for neat PP and the CNTs/PP (with the same CNTs content) composite. Their volume electrical resistivities were decreased slowly primarily and then decreased sharply with continuous increasing the decorated CNTs content.
     Thirdly, butyl methacrylate (BMA) was polymerized from CNTs surface to form PBMA-grafted CNTs composite (PBMA-CNTs) by using the strong radical trapping capacity of polycondensed aromatic rings of CNTs surface. The results showed that PBMA was grafted onto the surface of CNTs and the structure of CNTs was not destroyed by the process of functionalization. The dispersion of PBMA-CNTs in organic solvent was much enhanced by the introduction of PBMA. The application of CNTs will be expanded owing to the better solubilization of PBMA-CNTs.
     Fourthly, the preparation of PBMA-CNTs/PP composite was carried out using PBMA-CNTs. The influence of the ratio of CNTs and BMA on the structure and property of PBMA-CNTs/PP composite was investigated. The results showed that when the ratio of CNTs and BMA was 1:100, one-dimensional CNTs were periodically decorated with PP lamellae crystals and the CNTs acted as shish-kebab axis, resulting in nano-hybrid shish-kebab (NHSK) structures. The PBMA-CNTs composite was shown as latticed membrane and the CNTs were embedded in the lattice membrane when the ratio of CNTs and BMA reached 5:100. When CNTs:BMA=1:100, PBMA-CNTs/PP had better mechanical strength than those of CNTs:BMA=5:100. Whether CNTs:BMA=1:100 or CNTs:BMA=5:100, the thermal stability of PBMA-CNTs/PP was higher than neat PP.
     Finally, using PBMA-CNTs and MAH-grafted PP (MAH-PP), we prepared PBMA-CNTs /MAH-PP composite. The morphology of PBMA-CNTs/MAH-PP composite depended on the ratio of CNTs and BMA. When CNTs:BMA=1:100, the PBMA-CNTs/MAH-PP composite was shown as latticed sphere. When the ratio reached 5:100, CNTs in PBMA-CNTs/MAH-PP composite appeared as alignment and the dispersion of CNTs was comparative uniform. An interpenetrating networks (IPN) framework was formed due to the cross-link of PP on the aligned CNTs. In PBMA-CNTs/MAH-PP composite, there was covalently linkage of CNTs with PP via MAH. Based on the uniform dispersion and covalently linkage, the mechanical and thermal property of PBMA-CNTs/MAH-PP composite was enhanced.
引文
[1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58
    [2] Ajayan P M, Schadler L S, Giannaris C, et al. Single-walled carbon nanotube-polymer composites: strength and weakness [J]. Adv Mater, 2000, 12(10): 750-753
    [3] Odegarda G M, Gatesb T S, Wisea K E, et al. Constitutive modeling of nanotube-reinforced polymer composites [J]. Composites Science and Technology, 2003, 63(11): 1671-1687
    [4] Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon naotubes [J]. J Chem Phys, 1996, 104(5): 2089-2092
    [5] Lau K T, Shi S Q. Failure mechanisms of carbon nanotube/epoxy composites pretreated in different temperature environments [J]. Carbon, 2002, 40(15): 2965-2968
    [6] Fukushima T, Kosaka A, Ishimura Y J, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes [J]. Science, 2003, 300(5628): 2072-2074
    [7] 李民乾. 纳米科学技术-面向 21 世纪的新科技 [J].物理,1992,21(2): 65-70
    [8] Ishida H, Allen D J. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines [J]. J of Polym Sci Part B: Polym Phys, 1996, 34(6):1019-1030
    [9] 肖泳 . 聚合物 /粘土纳米复合材料的最新进展 [J]. 工程塑料应用,1998,26(8):28-30
    [10] Roy R, Kormarneni S, Roy D M. Cermnics through chemistry. In: Muter Res Symp Proc 32. Better. 1984, 347-348
    [11] 李笃信,黄伯云. 聚合物/无机纳米复合材料研究现状 [J].材料导报,2002, 16(5):55-58
    [12] 王旭,黄锐,濮阳南. 聚合物基纳米复合材料的研究进展 [J].塑料,2000, 29(4): 25-30
    [13] 花国然,罗新华,刘红俐等. 纳米材料及其复合技术 [J]. 南通工学院学报(自然科学版), 2002, 1(1): 29-33
    [14] Chan C K, Chu I M. Effect of hydrogen bonding on the glass transitionbehavior of poly(acrylic acid)/silica hybrid materials prepared by sol-gel process [J]. Polymer, 2001, 42(14):6089-6093
    [15] Novak B M, Caroline D. Free radical routes into nonshrinking sol-gel composites [J]. Macromolecules, 1991,24(19): 5481-5483
    [16] 白宗武,冯威,金日光. 原位聚合法分子复合材料的研究进展 [J]. 高分子通报,1997,3(1):37-42
    [17] 欧玉春,杨锋,漆宗能. 在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究 [J]. 高分子学报,1997,10(2): 199-204
    [18] Masami O, Satoshi M, Hideyuki T, et al. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization [J]. Polymer,2000,41(10):2337-3890
    [19] 漆宗能,李强,赵竹第等. 一种聚酰胺/粘土纳米复合材料及其制备方法. 中国专利. 1138593A, 1996-12-25.
    [20] Akelah A, Moet A. Polymer-clay nanocomposites: free-radical grafting of polystyrene onto organophilic montmorillonite interlayers [J]. J Mater Sci, 1996, 31(13), 3589-3596.
    [21] Moet A S, Ahmed A, Polymer-clay nanocomposites:polystyrene grafted onto montmorillonite interlayers [J]. Mater Lett, 1993,18(1-2):97-102
    [22] Vaia R A, Jandt K D, Glannelis E P. Kinetics of polymer melt intercalation [J]. Macromolecules, 1995, 28(24): 8080-8085
    [23] Vaia R, Glannelis E P. Polymer melt intercalation in organically-modified layered silicates model predictions and experiments [J]. Macromolecules, 1997, 30(25): 8000-8009
    [24] Yano K, Usuki A, Okada A, et al. Synthesis and properties of polyimide-clay hybrid [J]. J Polym Sci : Part A, Polym Chem, 1993,31(10): 2493-2498.
    [25] Chujo K. 聚合物基纳米复合材料最新进展 [J]. 塑料(日文),1997,48(5):64-69.
    [26] Liu L M, Qi Z N, Zhu X G. Studies on nylon 6/clay nanocomposites by melt-intercalation process [J]. J Appl Polym Sci,1999, 71(7): 1133-1138.
    [27] Suprakas S R, Masami O. Polymer/layered silicate nanocomposites: a review for preparation to processing [J]. Progress in Polymer Science, 2003, 28(11):1539-1561.
    [28] Yusuke I, Yoshinart I, Hiroshi T. Properties of poly(ethyleneterephthalate)/layered silicate nanocomposites prepared by two step polymerization procrdure [J]. Polymer Journal, 2003,35(3):230-235.
    [29] Kurokawa Y, Yasuda H, Oya A. Preparation of a nanocomposite of polypropylene and smectite [J]. J Mater Sci Lett, 1996, 15 (17):1481-1483.
    [30] Dufresne A, Cavaille J V, Helbert W. New nanocomposites materials: microcrystalline starch reinforced themoplastic [J]. Macromolecules, 1996, 29(23): 7624-7426.
    [31] 黄锐,徐伟平,蔡碧华等. 纳米级无机粒子对聚乙烯的增强与增韧 [J]. 塑料工业,1997,3 (25):106-108.
    [32] 郭卫红,李盾,苏诚伟等. PMMA/SiO2 共混体系的研究Ⅰ: 纳米级 SiO2填充 PMMA 体系 [J]. 塑料工业,1998,26(5):10-11.
    [33] 胡平,范守善,万建伟. 碳纳米管/UHMWPE 复合材料的研究 [J]. 工程塑料应用,1998,26(1):1-3.
    [34] 余喜理,张宝华,张剑秋. 聚合物/无机纳米复合材料的研究进展 [J]. 上海化工,2002, 23 (27): 26-28.
    [35] Fu B X, Yang L, Somani R, et al. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions [J]. J Polymer Sci Part B, 2001, 39(22): 2727-2739.
    [36] Rong Z M, Zhang M Q, Zheng Y X, et al. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites [J]. Polymer, 2001, 42(1): 167-183.
    [37] Haseguwa N, Kawasumi M, Kato M, et al. Preparation and mechanical properties of polypropylene clay hybrids using a maleic-anhydride modified polypropylene oligomer [J]. J Appl Polym Sci, 1998, 67(1): 87-92.
    [38] Zhu W P, Zhang G P, Yu J Y, et al. Crystallization behavior and mechanical properties of polypropylene copolymer by in situ copolymerization with a nucleating agent and/or nano-calcium carbonate [J]. J Appl Poly Sci, 2004, 91(1): 431-438.
    [39] Monserral G, Werner E V Z, Mattijs G J T C, et al. Novel preparation of hybrid polypropylene/silica nanocomposites in a slurry-phase polymerization reactor [J]. Industrial & Engineering Chem Res, 2003, 42(16): 3750-3757.
    [40] Thomas S E, Josephs D A. Thermal and mechanical properties of a polypropylene nanocomposite [J]. J Appl Polym Sci, 2003, 90(6): 1639-1647.
    [41] Sumita M, Tsukumo Y, Miyasaka K. Tensile yield of polypropylene composites filled with ultrafine particles [J]. J Mater Sci, 1983,18(5): 1758-1764.
    [42] Rong M Z, Zhang M Q, Zeng Y. Irradiation graft polymerization on nanoinorganic particles: an effective means to design polymer based nanocomposites [J]. J Mater Sci Lett, 2000,19(13):1159-1161.
    [43] Chan C M, Wu J S, Li J X, et al, Polypropylene/calcium carbonate nanocomposites [J]. Polymer, 2002, 43(4) :2981-2992.
    [44] 任显诚,张伯兰. 纳米级 CaCO3 粒子增韧增强聚丙烯的研究 [J]. 中国塑料,2000,14(1):22-26.
    [45] 李远,陈建国,陈腊琼等. PP/ 纳米 CaCO3 分散体系的研究 [J]. 塑料工业,2001,29(1):16-17.
    [46] 吴唯,徐种德. 纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯 [J]. 高分子学报,2000,14(1):100-103.
    [47] 王旭,黄锐,金春洪等. PP/弹性体/纳米 CaCO3 复合材料的研究 [J]. 中国塑料,2000,14(6):34-38.
    [48] 黄锐,王旭,张玲等. 熔融共混法制备聚合物/纳米无机粒子复合材料[J].中国塑料,2003,17(4):20-23.
    [49] Kaempfer D, Thomann R, Mülhaupt R. Melt compounding of syndiotactic polypropylene nanocomposites containing organophilic layered silicates and in situ formed core/shell nanocomposites [J]. Polymer,2002,43(10): 2909-2916.
    [50] Reichert P, Nitz H, Klinke S, et al. Polypropylene/organoclay nanocomposites formation: influence of compatibilizer functionality and organoclay modification [J]. Macromol Mater Eng 2000,275(1): 8-17.
    [51] Kim K N, Kim H, Lee J W. Effect of interlayer structure , matrix viscosity and composition of a functionalized polymer on the phase structure of polypropylene-montmorillonite nanocomposites [J]. Polym Eng Sci, 2001,41(11):1963-1969.
    [52] Kato M, Usuki A. Synthesis of polypropylene oligomer-clay intercalation compounds [J]. J Appl Polym Sci, 1997,66(9):1781-1785.
    [53] Kawasumi M, Naoki H, Makoto K, et al. Preparation and mechanicalproperties of polypropylene-clay hybrids [J]. Macrmolecules, 1997,30(20):6333-6338
    [54] 王柯,张琴,吴照勇等. 聚丙烯纳米复合材料的研究进展 [J]. 工程塑料应用,2001,29(2):43-45.
    [55] 于建,沈鸿,郭朝霞等. 直接注射制备聚丙烯/蒙脱土复合材料及其性能研究 [J]. 中国塑料,2001,15(6):25-28.
    [56] Liu, X H, Wu Q J. PP/clay nanocomposites prepared by grafting melt intercalation [J]. Polymer, 2001, 42(25): 10013-10019.
    [57] 邹志明,章永化,蒋智杰等. 改性蒙脱土对聚丙烯的抗紫外线老化作用[J]. 中国塑料,2000,14(11):81-84.
    [58] 陈中华,龚克成,刘书银. 聚丙烯/改性膨润土复合材料的制备、结构与性能 [J]. 合成树脂及塑料,2000,17(1):44-47.
    [59] Xu W B, Liang G D, Zhai H B, et al. Preparation and crystallization behavior of PP/PP-g-MAH/Org-MMT nanocomposites [J]. European Polymer Journal, 2003, 39(47):1467-1474.
    [60] Zhang Q, Wang Y, Fu Q. Sheer-induced change of exfoliation and orientation in polypropylene/montmorillonite nanocomposites [J]. J Polym Sci Part B, Polym Phys, 2003, 41(1): 1-10.
    [61] 戈明亮,徐卫兵. 聚合物/蒙脱土纳米复合材料的制备与表征 [J]. 石化技术与应用,2003,21(1):58-62.
    [62] Xu W B, Liang G D, Wang W. PP-PP-g-MAH-Org-MMT nanocomposites Ⅱ : nonisothermal crystallization kinetics [J]. J Appl Polym Sci, 2003,88(14):3093-3099.
    [63] 马继盛,漆宗能,李革等. 聚丙烯/蒙脱土纳米复合材料的等温结晶研究[J]. 高分子学报,2001,(5):589-593
    [64] Dresselhaus M S, Dresselhaus G, Ellund P C. Science of fullerenes and carbon nanotubes [M]. San Diego: Academic Press, 1996, 757-869
    [65] Ebbesen T W. Carbon nanotubes: preparation and properties[M]. Boca Raton: CRC Press, 1997,111-138
    [66] Ajayan P M, Charlier J C, Rinzler A G. Carbon nanotubes:from macromolecules to nanotechnology [J]. Proc Natl Acad Sci, 1999, 96(25): 14199-14200.
    [67] Yakobson B I, Smalley R E. Fullerene nanotubes: C1,000,000 and beyond[J]. American Scientist, 1997, 85(4): 324-337
    [68] Harris P J F. Carbon nanotubes and related structures: new materials for thetwenty –first centuries[M]. Cambridge: Cambridge University Press, 1999,93-95
    [69] Dekker C. Carbon nanotubes as molecular quantum wires [J]. Phys Today, 1999, 52(5):22-28
    [70] Ajayan P M. Nanotubes from carbon [J]. Chem Rev, 1999, 99(7):1787-1799.
    [71] Odom T W, Huang J L, Lieber C M, et al. Structure and electronic properties of carbon nanotubes [J]. J Phys Chem B, 2000,104(13): 2794-2809
    [72] Zhou X, Zhou J, Ou-Yang Z. Strain energy and Young`s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory [J]. Phys Rev B, 2000, 62(20): 13692-13696
    [73] Bower C, Rosen R, Jin L, et al. Deformation of carbon nanotubes in nanotube-polymer composites[J]. Applied Physics Letters, 1999, 74(22): 3317-3319.
    [74] 董树荣,张孝彬,涂江平等. 新型纳米材料——纳米碳管 [J]. 材料科学与工程,1998,16(2):19-22
    [75] Issi J P, Langer L, Heremans J, Olk C H. Electronic properties of carbon nanotubes: experiment results[J]. Carbon, 1995,33(2): 941-948
    [76] Langer L, Bayot V, Grivei E, Issi J P, et al. Quantu transport in a multiwalled carbon nanotube[J]. Phys Rev Lett, 1996, 76(3): 479-482
    [77] Berber S,Kyum K,Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys Rev Lett,2000,84(20):4613-4619.
    [78] 沈曾民. 新型碳材料 [M]. 北京:化学工业出版社,2003, 200-201
    [79] Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system [J]. Appl Phys Lett, 2001, 79(25):4225-4227.
    [80] Lu W G, Dong J M, Li Z Y. Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method [J]. Phys Rew B, 2001, 63(3) :33401-33404.
    [81] Endo M,Takeuchi K,Kobori K,et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J]. Carbon,1995,33(7):873-880.
    [82] Guo T,Nikolaev P,Thess A,et al. Catalytic growth of single-walled nanotubes by laser vaporization [J]. Chemical physics letters,1995,243(1-2): 49-54.
    [83] Ya G, Sleypan S, Maksimenko A, Lakhtakia A, et al. Electromagnetic response of carbon nanotubes and nanotube ropes [J]. Synthetic Metals2001, 124(1):121-123
    [84] Ren Z F,Huang Z P,Wu J W,et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass [J]. Science,1998,282(6):1105-1107
    [85] Vivien L, Anglaret E, Riehl D, et al. Optical limiting properties of singlewall carbon nanotubes [J]. Optical Communications, 2000, 174(1-4):271-275
    [86] Colbert P T,Zhang J,Mcclure S M,et al. Growth and sintering of fullerence nanotubes [J]. Science,1994,266(5188):1218-1233
    [87] 陈晓红. 热解法制备气相生长碳纤维和纳米碳管的研究. [北京化工大学博士学位论文]. 北京:北京化工大学,1998,12-13
    [88] Speck J S, Endo M, Dresselhaus M S. Structure and intercalation of thin benzene derived carbon-fibers[J]. J Cryst Growth, 1989, 94(4): 834-848
    [89] Guo T,Nikolaev P,Rinzler A G,et al. Self assembly of tubular fullerenes [J]. J Phys Chem, 1996,99(27): 10694-10697.
    [90] Zhang H Y,Ding Y,Wu C Y,et al. The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature [J]. Physics B,2003,325(1-4):224-229.
    [91] Ren Z F , Huang Z P , Wang D Z , et al. An insight into carbon nanotube production[J]. Sample Journal, 2001, 37 (5): 64-67
    [92] Biro L P,Mark G I,Gyulai J,et al. AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite [J]. Nuclear instruments and methods in physics research B,1999,147(1):142-147.
    [93] Chernozatonskii L A,Kosakovskaja I J,Fedorov E A,et al. New carbon tubelite-orderd film structure of multi-layer nanotubes [J]. Physics Letters A,1995,197(1):40-43.
    [94] Qian W Z,Liu T,Wei F,Wang Z W,et al. Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition [J]. Carbon,2003,41(4):846-848.
    [95] Laplaze D,Bernier P,Maser W K,et al. Carbon nanotubes: The solar approach [J]. Carbon,1998,36(5-6):685-688.
    [96] Anglaret E,Bendiab N,Guillard T,et al. Raman characterization of single wall carbon nanotubes prepared by solar energy route [J]. Carbon,1998,36(12):1815-1820.
    [97] Alvarez L,Guillard T,Sauvajol J L,et al. Growth mechanisms anddiameter evolution of single wall carbon nanotubes [J]. Chemical Physics Letters,2001,342(1-2):7-14.
    [98] Hsu W K,Terrones M,Hare J P,et al. Electrolytic formation of carbon nanostructures [J]. Chemical Physics Letters,1996,263(1-2):161-166.
    [99] Bai J B,Hamon A L,Marraud A,et al. Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method [J]. Chemical Physics Letters,2002,365(1-2):184-188.
    [100] Randall L,Wal V. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes [J]. Chemical Physics Letters,2000,324(1-3):217-223.
    [101] Tsang S C,Chen Y K,Green M L H,et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372(10):159-162.
    [102] Lago R M,Tsang S C,Green M L H,et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups [J]. Chem Commun,1995, 13(7):1355-1356.
    [103] Hiura H,Ebbesen T W,Tanigaki K. Opening and purification of carbon nanotubes in high yields [J]. Adv Mater, 1995, 7(3):275-276.
    [104] Liu J,Rinzler A G,Smalley R E,et al. Fullerene pipes [J]. Science,1998,280(5367):1253-1256.
    [105] Chen J H, Huang Z P, Wang D Z, et al. Electrochemical synthesis of polypyrrole films over each of well-aligned carbon naotubes [J]. Synth Met,2002, 125(3):289-294.
    [106] Gao M, Huang S M, Dai L M, et al. Aligned coaxial nanowires of carbon nantube sheathed with conductive polymers [J]. Angew Chem Int Ed, 2000, 39(20):3664-3667.
    [107] Balavoine F, Schultz P, Mioskowski C, et al. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors [J]. Angew Chem Int Ed, 1999, 38(13-14): 1912-1915.
    [108] Cui D X, Ozkan C S, Kong Y,et al. Encapsulating pt-labelled DNA molecule inside CNT[J]. Mechanism and chemistry of biological system, 2004, 1(2):112-121.
    [109] Chen R J, Zhang Y G, Dai H J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J Am Chem Soc, 2001,123(16): 3838-3839.
    [110] Lii C Y , Stobinski L , Tomasik P , et al. Single-walled carbon nanotube-potato amylose complex [J]. Carbohydrate Polymers,2003,51(1),93-98.
    [111] Stobinski L , Tomasik P , Lii C Y , et al. Single-walled carbon nanotube-amylopectin complexes [J]. Carbohydrate polymers, 2003 ,51(3),311-316.
    [112] Xue B, Chen P, Hong Q, et al. Growth of Pd, Pt, Ag, and Au nanoparticles on carbon nanotubes [J]. J Mater Chem, 2001, 11(9): 2378-2381.
    [113] Ang L M, Andy Hor T S, Xu G Q, et al. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method [J]. Chem Mater, 1999, 11(8): 2115-2118.
    [114] Arai S, Endo M, Kaneko N. Ni-deposited multi-walled carbon nanotubes by electrodeposition [J]. Carbon, 2004, 42(3): 641-644.
    [115] Ang L M, Hor T S A, Xu G Q, et al. Decoration of actived carbon nanotubes with copper and nickel [J]. Carbon, 2000, 38(3): 363-372.
    [116] 陈小华, 张高明, 李宏建等. 碳纳米管的化学镀银及 SEM 研究[J]. 湖南大学学报, 1999, 26(6): 14-18.
    [117] 陈小华,颜永红,张高明等. Ni-Co 合金包覆碳纳米管的研究[J]. 微细加工技术, 1999, 2: 17-22.
    [118] Hernadi K, Ljubovic E, Seo J W, et al. Synthesis of MWNT-based composite materials with inorganic coating [J]. Acta Mater, 2003, 51(5): 1447-1452.
    [119] 陈慧敏,闵娜,李四年,等.碳纳米管表面化学镀 Ni 的研究[J].湖北工学院学报,2004,19(1):30-32.
    [120] Kovtyukhova N I,Mallouk T E,Pan L,et al. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of cabon nanotube ropes[J].J Am Chem Soc,2003,125(32):9761-9769.
    [121] Pan H, Guo Z X. Carbon nanotubols from mechanochemical reaction[J]. Nano letter, 2003, 3(1): 29-32
    [122] Huang W Z, Zhang X B, Tu J P, et al. The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes[J]. Materials Chemistry and Physics, 2003, 78 (1): 144-148
    [123] Xia H S, Zhang C H, Wang Q. Study on ultrasonic induced encapsulating emulsion polymerization in the presence of nanoparticles[J]. J Appl Poly Sci ,2001, 80(8): 1130-1139.
    [124] Wang Q , Xia H S, Zhang C H. Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation[J]. J Appl Poly Sci,2001, 80(9): 1478-1488.
    [125] Qin Y J, Shi J H, Wu W, et al. Concise route to functionalized carbon nanotubes [J]. J Phys Chem B, 2003, 107(47): 12899-12901
    [126] Liu J, Rinzler A G, Smalley R E, et al. Fullerene pipes [J]. Science, 1998, 280(5367): 1253-1256.
    [127] Bubert H, Haiber S, Brandl W, Marginean G, Heintze M, Brüser V. Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diamond Relat Mater, 2003, 12(3-4): 811-815
    [128] Ma X and Wang E G. CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition[J]. Appl Phys Lett, 2001, 78(26): 978-980
    [129] Zhang X T, Lu Z, Wen M T, et al. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties[J]. J Phys Chem B, 2005,109 ():1101-1107
    [130] Ajayan P M, Stephan O, Colliex C et al. Aligned carbon naotube arrays formed by cutting a polymer resin-nanotube composite [J]. Science, 1994,265:1212-1214.
    [131] Haggenmueller R, Gmommans H H , Rinzler A G, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods [J]. Chemical Physics Letters, 2000, 330(3-4): 219-225.
    [132] Satish K, Harit D, Mohan S, et al. Fibers from polypropylene/nano carbon fiber composites [J]. Polymer, 2002, 43(5): 1701-1703.
    [133] Shaffer M S P, Alan H W. Towards the production of large-scale aligned carbon nanotubes [J]. Adv Mater, 1999, 11(11): 937-655.
    [134] Kaushal R, Nachiket R R, Kim D Y, et al. Enzyme? polymer? single walled carbon nanotube composites as biocatalytic films [J]. Nano Letters, 2003, 3(6): 829-832.
    [135] Musa I, Baxendale M, Amaratunga G A J, et al. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites [J]. Synthetic Metals, 1999, 102(1-3): 1250-1250.
    [136] Harry J B, Francisco P, O’Rear E A, et al. SWNT filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization [J]. Nano Letters, 2002, 2(8): 797-802.
    [137] Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers [J]. Applied Physics Letters, 1999, 75(9): 1329-1331.
    [138] Kay H A, Kwan K J, Jeong K H, et al. High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole [J]. Nano Letters, 2002, 149(8): A1058-A1062.
    [139] Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbon nanotubes [J]. Chemical Physics Letters, 1998, 296(1-2): 188-194.
    [140] 陈平,刘胜平. 环氧树脂 [M]. 北京:化学工业出版社,1999: 3-8.
    [141] 毕红,吴先良,李民权. 镀钴碳纳米管/环氧树脂基复合材料的制备及其微波吸收特性研究 [J]. 宇航材料工艺. 2005, 35(2): 34-37.
    [142] 袁观明,李轩科,张铭金等. 碳纳米管对环氧树脂力学性能的影响 [J]. 宇航材料工艺. 2005, 35(2): 38-41.
    [143] 王世凯,陈晓红,宋怀河等. 多壁碳纳米管/环氧树脂纳米复合材料的摩擦磨损性能研究 [J]. 摩擦学学报. 2004, 24(5): 387-391.
    [144] Gojny F H, Wichmann M H G, Fiedler B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: A comparative study [J]. Composites Science and Technology 2005, 65(15-16): 2300-2313.
    [145] Zhu J, Peng H Q, Rodriguez-Macias F, et al. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes [J]. Adv Funct Mater, 2004, 14(7):643-648.
    [146] Kim Y J, Shin T S, Choi H D, et al. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites [J]. Carbon, 2005, 43(1): 23-30.
    [147] Martin C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites [J]. Polymer, 2005, 46(3): 877-886.
    [148] Breton Y, Desarmot G, Salvetat J P, et al.Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology [J]. Carbon, 2004, 42(5-6): 1027-1030.
    [149] Eitan A, Jiang K Y, Dukes D, et al. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites [J]. Chem Mater, 2003, 15(16): 3198-3201.
    [150] Zhu J, Kim J D, Peng H Q, et al. Improving the dispersion and integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization [J]. Nano Letters, 2003, 3(8): 1107-1113.
    [151] Ren Y, Li F, Cheng H M, et al. Fatigue behaviour of unidirectional single-walled carbon nanotube reinforcedepoxy composite under tensile load [J]. Advanced Composites Letters, 2003, 12(1): 19-24.
    [152] Hsiao K T, Alms J, Advani S G. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites [J]. Nanotechnology, 2003, 14(7): 791-793.
    [153] Penumadu D, Dutta A, Pharr G M, et al. Mechanical properties of blended single-wall carbon nanotube composites [J]. Journal of Materials Research 2003, 18(8): 1849-1853.
    [154] Tiano T, Roylance M, Gassner J. Functionalization of single-wall nanotubes for improved structural composites [J]. In: International SAMPE Technical Conference. 2000, 32: 192-199.
    [155] Wagner H D, Lourie O, Feldman Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix [J]. Applied Physics Letters 1998, 42(2): 188-190.
    [156] Jin L, Bower C. Alignment carbon nanotubes in a polymer matrix by mechanical stretching[J]. Applied Physics Letters, 1998, 73(9): 1197-1199.
    [157] Zhang X X, Li Z Q, Wen G H, et al. Microstructure and growth of bamboo-shaped carbon nanotubes[J]. Chem Phys Lett,2001, 333(6): 509-523
    [158] Lourie O, Cox D M, Wanger H D. Buckling and collapse of embedded carbon nanotubes[J]. Physical Review Letters, 1998,81(8): 1638-1641.
    [159] Lozano K, Barrera E V. Nanofiber-reinforced thermoplastic composites- thermoanalytical and mechanical analyses[J]. Journal of Applied Polymer science, 2001, 79(1): 125-133.
    [160] Ajayan P M, Schadler L S, Giannaris C, Rubio A. Single walled carbon nanotubes polymer composites: strength and weakness[J]. Advanced Materials, 2000, 12(10): 750-753
    [161] Qian D, Dickey E C. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letters, 2000, 76(20): 2868-2870.
    [162] Tibbetts G G, Mchugh J J. Mechanical properties of vapor grown carbon fiber composites with thermoplastic matrices[J].Journal of Materials Science, 1999, 14(7): 2871-2880.
    [163] 朱曾慧. 纳米技术在复合材料中的应用[J].化工新型材料,1999,27(10):28-32.
    [164] Sandler J, Shaffer M S P, Prassc T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer, 1999, 40(21): 5967-5971.
    [165] Qiao Y L, Cui L, Cui S, et al. Investigation into the preparation of the purified multiwalls carbon nanotubes-epoxy-polyether-sulfone composites [J]. Journal of Materials Science Letters,2002, 21 (23): 1813-1815.
    [166] Tang M S, Wang C Z, Chan C T, et al. Environment-dependent tight-binding potential model[J]. Physical Review B, 1996, 53(3): 979-982.
    [167] Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices[J]. Adv Mater, 1999, 11(15): 1281-1285.
    [168] Curran S A, Ajayan P M, Blau W J, et al. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics[J]. Adv Mater, 1998, 10(14):1091-1093.
    [169] Liu J, Casavant M J, Cox M, et al. Controlled deposition of individual single-walled carbon naotubes on chemically functionalized templates[J]. Chem Phys Lett, 1999, 303(1-2): 125-129.
    [170] Dai L, Mau A W H. Controlled synthesis and modification of carbon nanotubes and C60: carbon nanotubes for advanced polymeric composite materials[J]. Adv Mater, 2001, 13(12-13): 899-913.
    [171] Chen Q, Dai L, Gao M, et al. Plasma activation of carbon nanotubes for chemical modification[J]. J Phys Chem B, 2001, 105(3): 618-622.
    [172] Gong X Y, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites[J]. Chem Mater, 2000, 12(4): 1049-1052.
    [173] Lordi V, Yao N. Molecular mechanics of binding in carbon nanotube pddme composites[J]. J Mater Res, 2000, 15(12): 2770-2779.
    [174] Cooper C A, Young R J, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2001, 32(3-4): 401-411.
    [175] Richard C R, Ajayan P M, Ajayan P M. Organization of polymers onto carbon nanotubes: a route to nanoscale assembly[J]. Nano Letters, 2001, 1(8): 423-427
    [176] Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotubes expoxy composites[J]. Applied Physics Letters, 1998, 73(26): 3842-3844.
    [177] 朱绍文,贾志杰. 碳纳米管及其应用的研究现状 [J]. 功能材料,2000,31(2):119-120.
    [178] Mamedov A A, Kotov N A, Prato M, et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites [J]. Nat Mater, 2002, 1(3): 190-194.
    [179] Ren Y, Li F, Cheng H M, et al. Tension-tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite [J]. Carbon, 2003,41(11):2159-2179.
    [180] Erik T T and Tsu W C. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization [J]. J Phys D: Appl Phys, 2002, 35(16):L77-80.
    [181] Li D S, An J W, Lee H J. Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites [J]. Wear, 2002,252(5-6):512-517.
    [182] Tang W H, Michael H S, Suresh G A, Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene(MWNTs/HDPE) composite films [J]. Carbon, 2003, 41(14):2779-2785.
    [183] Zeng J, Saltysiak B, Johnson W S, et al. Processing and properties of poly(methyl methacrylate)/carbon nanofiber composites [J]. Composites: Part B, 2004, 35(2): 173-178.
    [184] Meincke O, Kaempfer D, Weickmann H, et al. Mechanical properties and electrical conductivity of carbon nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene [J]. Polymer, 2004,45(3):739-748.
    [185] Cai H, Yan F Y, Xue Q J. Investigate of tribological properties of polymide/carbon nanotube nanocomposites [J]. Materials Science and Engineering A, 2004,364(1-2):94-100.
    [186] Jurewicz K, Delpeux S, Bertagna V, et al. Supercapcitors from nanotubes/polypyrrole composites [J]. Chem Phys Lett, 2001, 347(1-3): 36-40.
    [187] Frackowiak E, Jurewicz K, Delpeux S, et al. Nanotubular materials for supercapacitors [J]. J Power Sources, 2001, 97-98(8): 822-825.
    [188] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular matericals as electrodes for supercapacitors [J]. Fuel Process Technol, 2002, 77-18(1):213-219.
    [189] Coleman J N, Dalton A B, Urran S, et al. Hase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer [J]. Adv Mater, 2000, 12(3): 213-216.
    [190] Deng J G, Ding X B, Zhang W C, et al. Carbon nanotube-polyaniline hybrid materials [J]. Eur Polym J, 2002, 38(12): 2497-2501.
    [191] Huang J E, Li X H, Xu J C, et al. Well-dispersed single-walled carbon nanotube/polyaniline composite films [J]. Carbon, 2003, 41(14): 2731-2736.
    [192] Lota K, Khomenko V, Frackowiak E, Capacitance properties of poly(3,4-ethylenedixythiopene)/carbon nanotubes composites [J]. J Phys and Chem of Solids, 2004, 65(2-3): 295-301.
    [193] Nuria F A, Kaempgen M, Skakalova V, Ursula D W, et al. Synthesis and characterication of carbon naotube-conducting polymer thin films [J]. Diam Relat Mater, 2004, 13(2): 256-260.
    [194] Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion precess for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J]. Polymer, 1999, 40(21): 5967-5971.
    [195] Carthy M B, Dalton A B, Coleman J N, et al. Spectroscopic investigation of conjugated polymer/single-walled carbon nanotubes interactions [J]. Chem Phys Lett, 2001, 350(1-2): 27-32.
    [196] Tang B Z, Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes [J]. Macromocules, 1999, 32(8): 2569-2576.
    [197] Riggs J E, Guo Z X, Carroll D L, et al. Strong luminescence of sulubilized carbon naotubes [J]. J Am Chem Soc, 2000, 122(24): 5879-5880.
    [198] Tanaka K, Aoki H, Ago H, et al. Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes[J]. Carbon, 1997, 35(1): 121-125
    [199] Coleman J N, Curren S, Dalton A B, et al. Percolation-dominated conductivity in a conjugated-polymer-carbon nanotube composite [J]. Phys Rev B, 1998, 58(12): R7492-R7495.
    [200] Ogasawara T, Ishida Y, Ishikawa T, et al. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites [J]. Composites Part A, 2004, 35(1): 67-74.
    [201] Potschke P, Fornes T D, Paul D R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites[J]. Polymer, 2002,43(11): 3247-3255.
    [202] Qin, S., D. Qin, W. T. Ford, D. E. Resasco and J. E. Herrera, 2004, Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods[J]. Macromolecules, 2004, 37(3): 752-757.
    [203] Valetini L, Biagiotti J, Kenny J M, et al. Effects of single-walled carbon naotube on the crystallization behavior of polypropylene [J]. J Appl Polymer Sci, 2003, 87(4): 708-713.
    [204] Valetini L, Biagiotti J, Kenny J M, et al. Physical and mechanical behavior of single-walled carbon naotube/polypropylene/ethylene-propylene-diene rubber nanocomposites [J]. J Appl Polymer Sci, 2003, 89(10): 2657-2663.
    [205] Xia H S, Wang Q, Li K S, Hu G H. Preparation of polypropylene/carbon nantube composite powder with a solid-state mechanochemical pulverization process [J]. J Appl Polym Sci, 2004, 93(1): 378-386
    [206] Assouline E, Lustiger A, Barber et al. Nucleation ability of mutiwall carbon nanotubes in polypropylene composites [J]. J Polym Sci Part A: Polym Phys, 2003,41(1): 520-527.
    [207] Bhattacharyyaa AR, Sreekumara TV, Liua T, Kumara S, Ericsonb LM, et al. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite[J]. Polymer, 2003, 44(8): 2373–2377
    [208] Jacob C K, Robert L S. Polypropylene fibers reinforced with carbon nanotubes [J]. J Appl Polym Sci, 2002, 86(8): 2079-2084.
    [209] 陈传胜. 有机小分子修饰碳纳米管及复合镀层的研究:[湖南大学博士学位论文]. 长沙: 湖南大学材料科学与工程学院,2006,24-25.
    [210] 胡静. 碳纳米管改性聚丙烯复合材料的研究: [湖南大学硕士学位论文]. 长沙: 湖南大学材料科学与工程学院,2005,22-23.
    [211] Seguela R, Staniek E, Escaig B, Fillon B. Plastic deformation of polypropylene in relation to crystalline structure [J]. J Appl Polym Sci, 1999, 71(11): 1873-1885
    [212] 李文华,陈小华,张刚等.溶液法制备聚丙烯/碳纳米管复合材料的结晶行为[J]. 高分子材料科学与工程, 2007,23(2):194-197.
    [213] Liu Z, Shen Z, Zhu T, et al. Organizing single-walled carbon nanotubes ongold using a wet chemical self-assembling technique [J]. Langmuir, 2000, 16(8): 3569-3573.
    [214] Dresselhaus M S, Dresselhaus G, R Saito. Physics of carbon nanotubes [J]. Carbon, 1995, 33(7): 883-891.
    [215] 李文华,陈小华,张刚等. 碳纳米管改性硅橡胶的电学特性研究 [J].华东理工大学学报, 2006, 32(6): 681-685.
    [216] 张雄伟, 黄锐. LDPE/碳黑复合导电材料PTC/NTC效应形成机理的探讨[J]. 成都科技大学学报, 1994, 5(1): 38-44.
    [217] 章苏宁,娄丽颖, 顾明初等. 马来酸酐溶液法接枝无规聚丙烯的研究[J]. 功能高分子学报, 1999, 12(4): 419-422.
    [218] Gao C, Jin Y Z, Kong H, Whitby R L D, et al. Polyurea-functionalized multiwalled carbon naotubes: synthesis, morphology, and spectroscopy[J]. J Phys Chem B 2005,109(24), 11925-1932.
    [219] 杨植,陈小华,刘云泉,陈宪宏等. 碳纳米管的羟甲基化及其马来酸酐接枝研究[J]. 化学学报,2006,64(3):203-207
    [220] Park S J, Cho M S, Lim S T, Cho H J, Jhon M S. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization[J]. Macromol Rapid Commun, 2003,24(18):1070-1073
    [221] 何曼君,陈维孝,董西侠. 高分子物理[M]. 上海,复旦大学出版社. 2005, 325-337.
    [222] Li L Y, Li C Y, and Ni C Y. Polymer crystallization-driven, periodic patterning on carbon nanotubes [J]. J Am Chem Soc, 2006, 128 (5):1692-1699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700