聚合物微流控芯片超声波键合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
键合是制造微流控芯片的关键环节之一,基片上的微结构只有通过键合才能形成封闭的微通道网络,键合在很大程度上决定了芯片的制作质量。将聚合物超声波焊接技术引入到聚合物微流控芯片的键合能大大提高微流控芯片的键合效率,超声波的局部加热使得微结构以及芯片整体键合前后变形很小,此外该方法还具有不需要中间介质、键合强度高、生物兼容性好等优点。但是目前采用超声波键合聚合物微器件尚停留在小面积封接微阀、连接导管等应用上,微流控芯片整体键合尚无报道。此外,将传统的聚合物超声波焊接运用于关键尺寸在微米量级的微流控芯片的键合时,键合精度难以满足要求。因此本文基于聚合物在超声波作用下的分段产热机理,提出键合过程非熔融控制方法,实现高精度的聚合物微流控芯片非熔融整体键合
     首先,本文从聚合物微流控芯片超声波键合相关理论和实验研究出发,提出一种聚合物微流控芯片超声波熔融键合方法,设计了适用于该方法的面接触导能筋结构,以延缓熔体产生速率,通过对聚合物超声波键合过程进行分阶控制,实现微熔融键合目的,避免熔融物堵塞微通道。超声波熔融键合方法采用振幅较高,输入到焊接区域的能量较大,局部容易因过热出现气泡等质量问题,因此提出基于局部溶解性激活和热辅助两种聚合物微流控芯片超声波非熔融键合方法。基于局部溶解性激活的超声波键合方法是利用超声波局部产热原理和溶剂的温变溶解特性来实现对微流控芯片的封接,导能筋在焊接过程中起到能量引导和集中作用,因此导能筋存在的部位将是键合过程热源产生的部位,通过对导能筋的设计达到使热量产生在需要键合的部位的目的。所用溶剂在常温下对芯片基体材料不产生溶解作用,而在低于材料玻璃转化温度的某温度段对基体材料产生溶解,这样才会随着超声作用下键合界面温度的升高,溶剂对材料的溶解性被激活来实现芯片的有效键合。热辅助超声波键合方法是利用材料在玻璃转化温度附近键合界面分子的扩散作用,在压力作用下界面分子运动并相互缠结达到使界面联接的目的。键合前通过热板加热聚合物材料到玻璃点转化温度Tg以下的某温度值,并在外部压力的作用下使得联接表面紧密接触,然后开始超声键合过程,随着键合界面温度的升高,聚合物材料的大分子链具有了一定的活性,能够跨越界面而形成联接,实现对微流控芯片的键合。利用必能信2000XF超声波焊接机进行了上述几种微流控芯片超声波键合实验,通过实验方法对键合工艺参数进行优化,得到了很好的微流控芯片键合质量。
Bonding is one of the key procedures of manufacturing microfluidic chips. The micro structure on the substrate can form seal micro channel net only by bonding. The bonding process decides the quality of manufacturing chips. The bonding efficiency can improve a lot by introducing ultrasonic polymer welding technology to the bonding of microfluidic chips. The ultrasonic bonding process has some advantages, such as the chips have little distortion after bonding, external substance free, higher bonding strength, shorter bonding time, have no limitation in biological compatibility, etc. Ultrasonic welding technology often used to bond micro pump or valve, it is seldom used to bond microfluidic chips. Traditional ultrasonic welding technology is suit to macro polymer material, when it is used to the bonding of microfluidic chips which key dimension is in the level of micron, there are some problems about bonding quality and precision. By researching on the ultrasonic micro-melting or non-melting bonding method of polymer microfluidic chips, we can resolve this problem and get good bonding quality.
     First, this paper introduces the relate ultrasonic bonding theory and experiment research of polymer microfluidic chips, it proposed a ultrasonic micro-melting bonding method of polymer microfluidic chips and design a area contact micro energy director structure that is suit to this method, it can control the ultrasonic bonding process according to every bonding phase and finish the micro-melting process without melting material flow into the channel of microfluidic chips. But this bonding method must adopt very high amplitude, then some quality problems such as cavitations will be produced on some place of the chip for overheat. So a local solubility activated method and a thermally assisted non-melting method for ultrasonic bonding of polymer microfluidic chips are proposed. A local solubility activated method is based on ultrasonic local heating and temperature dependent solubility of PMMA in isopropanol (IPA). Energy director place a important role during ultrasonic bonding process, because it can make the ultrasonic vibration and the heating energy produced on special place that need it. The solvent should have no solubility for the substrate material at room temperature, but it have solubility for the substrate material when the temperature is below the material's glass transition temperature, only that can the two substrate be bonded for the solvent's solubility when the temperature of the bonding area is raised to a certain level. A thermally assisted method for ultrasonic bonding of polymer microfluidic chips take advantage of the material's molecule movement when the temperature of bonding area get to near the glass transition temperature. Under certain bonding pressure, the molecule of the bonding surface entwist with each other and form the strength between the two substrate as a result. Before the bonding process begin, the material should be heated up to a certain temperature which is below the glass transition temperature, the bonding surface is compact closely under external bonding force, the bonding surface's total temperature can rise up to the glass transition temperature after the ultrasonic vibration is placed on the bonding surface, then the big molecule is activated, they twist each other and form the bonding strength. The PMMA substrate and cover are bonded on Branson ultrasonic 2000xf assembly system successfully and the bonding process is optimized by using some experimental method. Last, the microfluidic chips are bonded very well.
引文
[1]MANZ A,BECKER H.Microsystem Technology in Chemistry and Life Science[J].Berlin:Springer-Verlag,1999:3-4.
    [2]温敏.塑料微流控芯片微沟道热压成形及键合工艺研究[D].大连:大连理工大学,2005.
    [3]朱海兵.多功能微流控芯片测试与控制系统的设计与构建[D],南昌:南昌大学,2006.
    [4]罗怡,王晓东,王立鼎.聚合物微流控芯片的键合技术与方法[J].中国机械工程,2008,19(24):12-17.
    [5]张宗波,罗怡,王晓东,王立鼎.塑料超声波焊接及其用于聚合物MEMS器件键合的研究进展[J].焊接,2008,(8):9-15.
    [6]OCVIRK G,VERPOORTE E,MANZ A,et al.Integration of a Micro Liquid Chromatograph onto a Silicon Chip[C].IEEE Transducers 1995-Eurosensors Ⅸ:756-759.
    [7]DUFFY D,MCDONALD J C,SCHULLLER O J A,et al.Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)[J].Anal.Chem.1998,70(23):4974-4984.
    [8]陶琳.微流控芯片超声波键合能量引导微结构设计及工艺[D],大连:大连理工大学,2008.
    [9]CHOI J W,BEAUCAGE G,NEVIN J H,LEE J B,PUNTAMBEKAR A,LEE JY.Disposable Smart Lab on a Chip for Point-of-care Clinical Diagnostics[C].IEEE,2004:154-173.
    [10]王晓东,刘冲,罗怡,王立鼎.塑料微流控芯片的制作及其自动化[J].高技术通讯.2004.
    [11]温敏,王晓东,刘冲,马骊群.PMMA微流控芯片微通道热压成形与键合工艺研究[J].光学精密工程.2004,12:272-276.
    [12]BECKER H,GARTNER C.Polymer Micro Fabrication Methods For Microfluidic Analytical Applications[J].Electrophoresis,2000,21:12-26.
    [13]CHENG J Y,WEI C W,HSU K H,YOUNG T H.Direct-write Laser Micromachining and Universal Surface Modification of PMMA for Device Development[J].Sensor Actuat B-Chem,2004.99:186-96.
    [14]TAI-RAN H.微机电系统封装[M].北京:清华大学出版社,2002.
    [15]GLASGOW I K,BEEBE D J,WHITE V E.Design Rules for Polyimide Solvent Bonding[J].Sensors and Materials,1999,11(5):269-278.
    [16]MAAS D,BUSTGENS B,FAHRENBERG J,KELLER W,RUTHER P,SCHOMBURG W K,SEIDEL D.Fabrication of Microcomponents Using Adhesive Bonding Techniques[C].Proceedings,IEEE ninth Annual International Workshop on Micro Electro Mechanical Systems(MEMS).1996:331-336.
    [17]GERLACH A,LAMBACH H,SEIDEL O,Propagation of Adhesives in Joints During Capillary Adhesive Bonding of Microcomponents[J],Microsystem Technology.1999,6:19-22.
    [18]CHENJ W,JERRY Z,JAMES C.Diode Laser Bonding of Planar[C],MEMS-MOEMS & Microfluidic Devices.2005 MRS Spring Meeting.
    [19]PHAM A-V H,SUTONO A,LASKAR J,et al.Development of Microwave multilayer Plastic Based Multichip Modules[C],IEEE Trans on Advanced Packaging,2001,24(1):37-40.
    [20]TRUCKENMULLER R,AHRENS R,CHENG Y,et al.An Ultrasonic Welding Based Process for Building Up New Class of Inert Fluidic Microsensors and Actuators from Polymers[J].Sensors and Actuators A,2006,132(1):385-392.
    [21]TRUCKENMULLER R,CHENG Y,AHRENS R,et al.Micro Ultrasonic Welding:Joining of Chemically Inert Polymer Microparts for Single Material Fluidic Components and Systems[J].microsystem Technologies,2006,12(10/11):1027-1029.
    [22]弗兰茨·阿贝尔(F Abel),孟宪知(泽).塑料超声波焊接[J].焊接,1999(6):30-33.
    [23]孙强义,辛乐.超声塑焊技术的发展[J].声学技术,1994,(4):149-150.
    [24]JIROMARU T,TAKARO U,Welding Characteristics of Ultrasonic Plastic Welding Using Two-Vibration-System of 90kHz and 27kHz and Complex Vibration System[J].Ultrasonic 36(1998):67-74.
    [25]SUJINO,J,TAMURA,T U,TAKARO U.Improvement of Welding Characteristics of Ultrasonic Plastic Welding Using High and Low Frequency Vibration Systems of 90kHz and 27or 20kHz[C],Proceedings of the IEEE Ultrasonic Symposium v2 Nov3-6 1996 Sponsored by:IEEE p1027-1032.
    [26]VOLKOV,S S,GARANIN,I N,KHOLOPOV,Y V.Ultrasonic Welding of Different Types of Plastic Using a Thermoplastic Liner and the Effect of the Surface Roughness on the Weld Ability[J].Russian Ultrasonics v27n2 1997:71-77.
    [27]DAVID A.GREWELL.AMPLITUDE AND FORCE PROFILING:STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS.Branson Ultrasonics Corporation.
    [28]杨士勤,阎久春,田修波,王小峰,蔡七雄.超声波塑料焊接机的能量控制模式[J].焊接学报,1995,16(2):118-123.
    [29]田修波,杨士勤,阎久春,董震.压力可变的超声波塑料焊机[J].电焊机.1999,29(12).
    [30]KOPECKY D J,MALLOY R A.The Effect of Metal Flow Rate on the Ultrasonic Weld Ability of Polycarbonate[C].ANTEC.1990:867-873.
    [31]刘川.超声波塑料焊接机理和工艺实验研究[D].大连:大连理工大学,2003.
    [32]侯旭光.超声波塑料焊接工艺参数的研究[D].哈尔滨:哈尔滨工业大学,2001.
    [33]牛勇.塑料超声熔焊特性的研究Ⅱ[J].声学学报,第23卷第5期,1998年9月.
    [34]方少元.超声塑焊接机电源及频率自适应控制系统[J].华南理工大学学报,1997:53-57.
    [35]BENATAR,A.Ultrasonic Welding of Thermoplastics in the Near-Field[J].Polymer Engineering and Science v29 n23 MidDec 1989:1689-1698.
    [36]中国机械工程学会焊接学会.焊接手册[M].机械工业出版社,1993:503-515,675-699.
    [37]董庆刚.超声波焊接聚乙烯的工艺研究及接头温度场的检测计算[D].哈尔滨:哈尔滨工业大学,1994:27-33.
    [38]韦鹤,王晓东,刘冲,廖俊峰.塑料微流控芯片的超声波焊接键合的仿真[J].中国机械工程,2005,16(增刊):82-85.
    [39]陶琳,罗怡,张彦国,张宗波,王晓东.超声波键合能量导引微结构PMMh基片的制作[J].光学精密工程,2009,17(6).
    [40]杨士勤,董庆刚,田修波,王小峰,魏强.超声波焊接聚乙烯接头温度场的计算及检测[J].焊接学报,1995,16(13):172-178.
    [41]赵学曾,侯旭光,侯国璋,宫伟,代礼周.超声波塑料焊接机工艺参数的研究[C].2001中国控制与决策学术年会论文集,1147-1150.
    [42]张振强.塑料微流控芯片超声波机理的仿真预实验研究[D].大连:大连理工大学,2008.
    [43]张振强,张宗波,罗怡,王晓东,王立鼎.超声波塑料焊接粘弹性热的仿真计算[J].焊接学报,2009,30(9).
    [44]NONHOF C J,LUITEN G A.Estimates for Process Conditions During the Ultrasonic Welding of Thermop Lastics[J].Polymer Engineering and Science,1996,36(9):1177-1183.
    [45]SHAH J J,GEIST J,LOCASCIO L E,et al.Capillarity Induced Solvent-actuated Bonding of Polymeric Microfluidic Devices[J].Anal Chem,2006,78:3348-3353.
    [46]Ng S H,TJEUNG R T et al.Thermally Activated Solvent Bonding of Polymers[J].Micro System Technology,2008,14:753-75.
    [47]TAKEDA K,TANAKA H,TSUCHIYA T,KANEKO,S.Molecular Movement During Welding for Engineering Plastics Using Langevin Transducer Equipped with Half-wave-length Step Horn[J],Ultrasonics,Elsevier,36(1998)75-78.
    [48]王晓林.聚醚醚酮超声热_形变规律及焊接工艺研究[D].哈尔滨:哈尔滨工业大学.2007.
    [49]姚李英,张瑜,陈涛,王升启,左铁钏.激光制备PMMA基PCR微流控芯片的热压键合研究[J],激光杂志,Vol.27,No.1,2006:75-77.
    [50]CHUAH Y K,CHIEN L H.Effect of the Shape of the Energy Director on Far Field Ultrasonic Welding of Thermoplastics[J].Society of Plastic Engineering,2000,40(1):157-167.
    [51]FRANTZ J.Joining Plastics in Sound Way[J].Machenic De2 sign,1997,69(7):61-65.
    [52]刘文卿.实验设计[M].北京:清华大学出版社,2005.
    [53]ZONGBO Z,YI L XIAODONGW,ZHENGQIANG Z,LINGDING W.Ultrasonic Bonding of Polymer Microfluidic Chips.2008 International Conference on Electronic Packaging Technology & High Density Packaging[C],2008.
    [54]黄文浩,朱兰芳,陈宇航等.基于原子力显微镜的PMMA飞秒激光纳米加工[J],光学精密工程,2007,15(12).
    [55]文伟力,左春柽,于建群等,P删A微流控芯片微通道尺寸的检测[J],光学精密工程,2007,15(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700