稳健回归技术及其在光谱分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业生产过程中,为了严格控制产品质量,降低能耗与生产成本,减少对环境的污染,需要加强对产品质量的监测分析。产品质量分析方法主要包括化学分析法与仪器分析法,目前仪器分析法已成为分析方法的主流。光谱分析技术,因其分析速度快、对样品无损、操作技术要求低等优势,已成为一类常用的仪器分析方法,近年来得到了普遍的重视与广泛的应用。光谱定量分析大都采用如下方法:首先基于一组已知组成或属性的训练样本与对应的谱图建立光谱分析模型,再基于该模型与未知样品的谱图对未知样品的组成或性质进行分析计算。
     然而,实际应用中,受环境干扰、仪表偏差和人为失误等因素的影响,训练样本数据集中很可能存在部分异常样本;这些异常样本显著地降低了分析模型的可靠性与准确性。如何避免或减少异常或错误训练样本对分析结果的不利影响,已成为当前迫切需要解决的问题。本文以光谱定量分析为背景,对稳健回归技术进行了深入的研究,具体包括:
     1.针对现有稳健偏最小二乘(Partial Least Squares, PLS)的不足,提出了一种具有异常样本自动剔除功能的稳健PLS算法。该算法在建模过程中进行迭代计算,通过PLS回归误差分布确定置信区间,并由此自动剔除异常样本。同时,在现有局部回归的基础上,提出了稳健局部主成分回归(Principle Component Regression, PCR)算法。该算法对PCR所涉及的主成分分析和多元线性回归两个步骤都进行了稳健化处理,并在多元线性回归时采用了局部回归。上述稳健算法已应用于汽油辛烷值近红外光谱分析中,结果表明:这两种算法在稳健性和准确性上都优于其他线性稳健回归方法。
     2.为了提高现有最小二乘支持向量机(Least Squares Support Vector Machine, LS-SVM)的稳健性,提出了一种稳健的LS-SVM算法。该算法使用LS-SVM回归误差分布的稳健置信区间选择训练样本中尽可能多的正常样本用于LS-SVM建模,同时尽可能多地剔除异常样本。为了减少迭代计算时间,又提出了相应的快速算法。仿真与试验结果验证了算法的有效性。在此基础上,将该算法应用于汽油品质拉曼光谱分析仪中,运行结果表明,该方法能够有效检测出异常样本,模型预测精度符合实际应用的要求。
     3.针对原始加权LS-SVM (Weight LS-SVM, WLS-SVM)在收敛性和稳健性方面的不足,提出了一种WLS-SVM的稳健化迭代算法。该算法修正了原始WLS-SVM求取回归误差的计算公式,从根本上解决了WLS-SVM的收敛性问题;同时,对原始算法求权值的步骤进行了改进,采用回归误差的中值作为计算加权值的比较基准,从而大幅度提高了WLS-SVM的稳健性。
     4.为进一步提高WLS-SVM的稳健性,提出了一种结合M估计器的LS-SVM算法(MLS-SVM)。该算法用M估计器的残差代替LS-SVM目标函数中的最小二乘残差,并利用迭代方式求解修正后的优化问题。针对红外光谱分析的实验结果显示了该算法比WLS-SVM及其它常用的支持向量机算法更稳健,且计算时间与LS-SVM相差无几,可用于需要实时计算的场合。
     5.在上述研究的基础上,提出了广义LS-SVM算法(generalized LS-SVM, GLS-SVM)。该算法利用一般意义下的递减的残差偶函数代替了LS-SVM中的残差平方和,并采用迭代算法对GLS-SVM进行求解。在迭代计算过程中,并不需要计算残差偶函数,而只需要构造一个关于残差的加权函数;本文同时给出了几种典型的加权函数。针对烟草属性近红外光谱分析的研究结果表明,经过选择合适的加权函数,GLS-SVM具有良好的稳健性和预测精度。
     最后,在总结全文的基础上,对稳健回归技术及其应用进行了展望。
In order to guarantee product quality and to reduce energy consumption, production costs as well as environmental pollution, quality monitoring need to be paid more attention in modern industries. Quality analysis mainly consists of chemical analysis and instrumental analysis. The instrumental analysis has become mainstream. Due to the advantages of spectral analysis, such as fast, non-destructive, easy to operate, etc., it has recently been used in many different fields. The principle of spectral analysis is demonstrated as follows:first, an analytical model is constructed based on a training data set with known compositions or properties and the spectra; then the compositions or properties of a testing sample can be calculated based on the model and its spectrum.
     However, in industrial applications, because of environmental factors, instrumental bias, human operation mistake and other reasons, there may be some outliers in the training samples; these outliers may greatly influence on the reliability and accuracy of the calibration model. How to avoid or reduce the influence of outliers has become an urgent problem. In this thesis, a series of robust regression algorithms have been proposed and applied in spectral quantitative analysis, which can be summarized as follows:
     1. In order to address the disadvantages of existing robust Partial Least Squares (PLS) algorithms, a novel robust PLS with outlier detection is proposed. New algorithm can automatically eliminate outliers based on the confidence interval, which is determined by PLS regression errors. Meanwhile, a robust local Principle Component Regression (PCR) algorithm is also proposed. In this algorithm, two steps of PCR, i.e., principle component analysis and multivariate linear regression, are both improved to enhance model robustness. Besides, a local regression method has been introduced to multivariate linear regression. The above two algorithms are applied in near infrared spectral analysis of gasoline octane number. Experimental results show that they perform better than other linear robust algorithms.
     2. To improve the robustness of Least Squares Support Vector Machine (LS-SVM), a novel robust LS-SVM algorithm is developed. In this algorithm, the confidence interval of the residual distribution is applied iteratively to detect outliers and select normal samples, and then the LS-SVM model is developed based on the selected subset which has no outliers. In order to reduce the computing time, the corresponding fast algorithm is also proposed. The novel robust LS-SVM is applied in a Raman analyzer to predict gasoline properties. Application results show it can detect outliers effectively; the predictive accuracy of the analyzer is suitable for industrial applications.
     3. A robust iterative algorithm of Weighted Least Squares Support Vector Machine (WLS-SVM) is proposed to address shortcomings of the original WLS-SVM in convergence and robustness. In this algorithm, the calculation formula for regression residual in the original WLS-SVM algorithm is revised to ensure the iterative convergence; another formula to compute weighted value is also improved to enhance the robustness of WLS-SVM, in which the median value of regression error is selected as a criterion to compute weighted value.
     4. In order to further improve the robustness of WLS-SVM, a new robust LS-SVM algorithm based on M-estimator (MLS-SVM) is proposed. The residual in M-estimator firstly replaces the least squares residual in the LS-SVM objective function; then an iterative algorithm is used to solve the improved optimization problem. The MLS-SVM is applied to an infrared spectral analysis example. The result shows that MLS-SVM is more robust and accurate than WLS-SVM and other traditional SVMs; besides, the computation time of MLS-SVM is close to that of LS-SVM, which means MLS-SVM can be used in online analysis.
     5. A generalized LS-SVM (GLS-SVM) is proposed, in which a general decreasing residual even function is used to replace the sum of residuals squares in LS-SVM objective function. An iterative algorithm is proposed to solve the corresponding optimization problem, in which only a weighted function of the residuals is required to construct. Some typical weighted functions are also proposed. GLS-SVM is applied in the NIR spectral analysis of tobacco properties. Experimental results show its advantages on both robustness and accuracy when a proper weighted function is chosen.
     Finally, conclusions and future issues about robust regression are illustrated.
引文
Agull'o J. (1997). Exact algorithms to compute the least median of squares estimate in multiple linear regression. The IMS Lecture Notes-Monograph Series,31: 133-146.
    Andrade J M, Sanchez M S, Sarabia L A. (1999). Modern nonlinear regression methods. Chemometrics and Intelligent Laboratory Systems,46 (1):41-55.
    Atkinson A C. (1985). Plots transformations and regression. Oxford:Clearendon Press, 68-73
    Andrews D F, Bickel P J, Hampel F R, Huber P J, Rogers W H, Tukey J W. (1972). Robust Estimates of Location:Survey and Advances, Princenton University Press, Princenton.
    Atkinson A C, Mulira H M. (1993). The statistic plot for the detection of multivariate outliers. Statistics and Computing,14(3):27-35.
    Baffi G, Martin E B, Morris A J. (1999). Non-linear projection to latent structures revisited (the quadratic PLS algorithm). Computer and Chemical Engineering, 23:395-411,1293-1307.
    Balabin R M, Safieva R Z, Lomakina E I. (2007). Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction. Chemometrics and Intelligent Laboratory Systems,88: 183-188.
    Balabin R M, Safieva R Z, Lomakina E I. (2008a). Gasoline classification by source and type based on near infrared (NIR) spectroscopy data. Fuel,87:1096-1101.
    Balabin R M, Safieva R Z, Lomakina E I. (2008b). Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra. Chemometrics and Intelligent Laboratory Systems,93:58-64.
    Barnes R J, Dhanoa M S, Lister S J. (1989). Standard normal variate transfor-mation and de-trending of near-infrared diffuse reflectance spectra. Application Spectroscopy,43:772-777.
    Barnett V, Lewis T. (1993). Outlier in Statistical Data. New York:Wiley & Chichester, 197-221
    Barzilai I L, Sela I, Bulatov V, Zilberman I, Schechter I. (1997). On-line remote prediction of gasoline properties by combined optical methods. Analytica Chimica Acta,339:193-199.
    Baudet G M. (1978). Asynchronous iterative methods for multiprocessors. Journal of the Association for Computing Machinery,25(2):226-244.
    Beaton A E, Turkey J W. (1974). The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics,24(16):147-185.
    Bergman E L,Brage H,Josefson M,Svensson,Sparen A. (2006). Transfer of NIR calibrations for pharmaceutical formulations between different instruments. Journal of Pharmaceutical and Biomedical Analysis,41(l):89-98.
    Blank T B, Sum S T, Brown S D. (1996) Transfer of near-infrared multivariate calibrations without standards. Analytical Chemistry,68:2987-2995.
    Borin A, Ferrao M F, Mello C, Maretto D A, Poppi R J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta,579(10):25-32.
    Bouveresse E, Massart D L. (1996a). Standardization of near-infrared spectrometric instruments:a review. Vibrational Spectrosccopy,11:3-15.
    Bouveresse E, Massart D L. (1996b). Improvement of the piecewise direct standardisation procedure for the transfer of NIR spectra for multivariate calibration. Chemometrics and Intelligent Laboratory Systems,32(2):201-213.
    Branden K V, Hubert M. (2004). Robustness properties of a robust least squares regression method. Analytica Chimica Acta,515:229-241.
    Brown C W, Lynch P F, Obremski R J, Lavery D S. (1982). Matrix representations and criteria for selecting analytical wavelengths for multicomponent spectroscopic analysis. Analytical Chemistry,54:1472-1479.
    Brown S D, Sun S T, Despagne F. (1996). Chemometrics. Analytical Chemistry,68: 21-61.
    Brudzewski K, Kesik A, Kolodziejczyk K, Zborowska U, Ulaczyk J. (2006). Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach. Fuel,85:553-538.
    Cavero D, Tolle K H, Rave G, Buxade C, Krieter J. (2007). Analysing serial data for mastitis detection by means of local regression. Livestock Science,110(1): 101-110.
    Centner V, Massart D L. (1998). Optimization in locally weighted regression. Analytical Chemistry,70:4206-4211.
    Chen J, Wang X Z. (2001). A new approach to near-infrared spectral data analysis using independent component analysis. Journal of Chemical Information and Computer Science,41:992-1001.
    Chung H, Lee H, Jun C H. (2001). Determination of research octane number using NIR spectral data and ridge regression. Bullet of Korean Chemical Society,22(1): 37-42.
    Chen Q, Zhao J, Fang C H, Wang D. (2007). Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochimica Acta,66(3):568-574.
    Chauchard F, Cogdill R, Roussel S, Roger J M, Bellon-Maurel V. (2004). Application of LS-SVM to non-linear phenomena in NIR spectroscopy:development of a robust and portable sensor for acidity prediction in grapes. Chemometrics and Intelligent Laboratory Systems,71:41-150.
    Chauchard F, Svensson J, Axelsson J, Andersson-Engels S, Roussel S. (2008). Localization of embedded inclusions using detection of fluorescence:Feasibility study based on simulation data, LS-SVM modeling and EPO pre-processing. Chemometrics and Intelligent Laboratory Systems,91:34-42.
    Christmann A, Steinwart I, (2004). On robustness properties of convex risk minimization methods for pattern recognition. Journal of Machine Learning Research,5:1007-1034.
    Chuang C, Su S, Jeng J, Hsiao C. (2002). Robust support vector regression networks for function approximation with outliers. IEEE Transactions on Neural Networks, 13:1322-1330.
    Cirrincione M, Pucci M. (2005). Sensorless direct torque control of an induction motor by a TLS-based MRAS observer with adaptive integration. Automatica,41: 1843-1854.
    Clancey V J. (1947). Statistical methods in chemical analysis. Nature,17(159): 339-340.
    Clarke R H, Londhe S, Womble M E. (1998). Low-resolution Raman spectroscopy as an analytical tool for organic liquids. Spectroscopy,13(10):28-35.
    Colliez J, Dufrenois F, Hamad D. (2006). Robust optic flow computation with support vector regression. Proceedings of the 2006 16th IEEE Signal Processing Society Workshop,409-414.
    Coakley C W, Hettmansperger T P. (1993). A bounded influence, high breakdown, efficient regression estimator. Journal of the American Statistical Association, 88:872-880.
    Cook R D, Weisberg S. (1982). Residuals and Influence in Regression. New York: Chapman & Hall.98-111.
    Cooper J B, Wise K L, Groves J, Welch W T. (1995). Determination of octane number and Reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis. Analytical Chemistry, 67:4096-4100.
    Cooper J B, Wise K L, Welch W T, Bledsoe R R, Sumner M B. (1996). Determination of weight percent oxygen in commercial gasoline:A comparison between FT-Raman, FT-IR, and dispersive near-IR spectroscopies. Applied Spectroscopy, 50 (7):917-721.
    Cooper J B, Wise K L, Welch W T, Sumner M B, Wilt B K, Bledsoe R R. (1997). Comparison of near-IR, Raman, and mid-IR spectroscopies for the determination of BTEX in petroleum fuels. Applied Spectroscopy,51 (11):1613-1620.
    Cummins D J, Andrews C. (1995). Iteratively reweighted partial least squares:A performance analysis by monte carlo simulation. Journal of Chemometrics,9: 489-507.
    Daszykowski M, Kaczmarek K, Heyden Y V, Walczak B. (2007). Robust statistics in data analysis-a review. Chemometrics and Intelligent Laboratory System,85, 203-219.
    Davies L, Gather U. (1993). The identification of multiple outliers. Journal of American Statistical Association,88(423):797-801.
    David H A. (1998). Early sample measures of variability, Statistic Science,13: 368-377.
    Drucker H, Wu D, Vapnik V N. (1999). Support vector machines for spam categorization. IEEE Transactions on Neural Networks,10(5):1048-1054.
    Dou Y, Mi H, Zhao L, Ren Y, Ren Y. (2006). Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry,351:174-180
    Dufrenois F, Colliez J, Hamad D. (2007a). Crisp weighted support vector regression for robust single model estimation:application to object tracking in image sequences, IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22.
    Dufrenois F, Colliez J, Hamad D. (2007b). Weighted support vector regression for robust single model estimation:application to motion segmentation in image sequences, Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, Aug.12-17.
    Dyrby M, Engelsen S B, Norgaard L. (2002). Chemometric quantitation of the active substance in a pharmaceutical tablet using near-infrared transmittance and FT-Raman spectra. Applied Spectroscopy,56(5):579-585.
    Egan W J, Morgan S L. (1998). Outlier detection in multivariate analytical chemical data. Analytical Chemistry,79:2372-2379.
    Eriksson L, Gottfries J, Johansson E, Wold S. (2004). Time-resolved QSAR:an approach to PLS modeling of three-way biological data. Chemometrics and Intelligent Laboratory Systems,73:73-84.
    Estienne F, Massart D L. (2001). Mutlivariate calibration with Raman data using fast principal component regression and partial least squares methods. Analytica Chimica Acta,50:123-1294.
    Eubank R L. (1999). Nonparametric Regression and Spline Smoothing, Statistics: Textbooks and Monographs,2nd edition, Marcel Dekker, New York.
    Fcrraro J R. (1996). A history of Raman spectroscopy. Spectroscopy,11(3):18-25.
    Flecher P E, Cooper J B, Vess T M, Welch W T. (1996). Remote fiber optic Raman analysis of benzene, toulene, and ethylbenzene in mock petroleum fuels using partial least squares regression analysis. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1235-1244:52.
    Gerrard D L. (1994). Raman spectroscopy. Analytical Chemistry,66(12):547-557.
    Gislum R, Micklander E, Nielsen J P. (2004). Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research,88:269-277'.
    Hampel F R,Ronchetti E M, Rousseeuw P J, Stahel W A. (1986). Robust statistics:the approach based on influence function. New York:John Wiley & Sons.
    Hawkins D W. (1980). Identification of outliers. London:Chapman&Hall.
    Hodges J L. (1967). Efficiency in normal samples and tolerance of extreme values for some estimates of location. Proceeding of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,27(1):163-168
    Hu Y Z, Massart D L. (1990). Outlier detection in calibration. Chemometrics and Intelligent Laboratory Systems,24(9):31-42.
    Hu Y, Smeyers-Verbeke J, Massart D L. (1989). Quality assurance program for the chemical characterization of soils. Journal of Analytical Atomic Spectrometry, 46(4):605-615.
    Huber P J. (1981). Robust Statistics, New York:John Wiley & Sons.
    Hubert M, Verboven S. (2003). A robust PCR method for high-dimensional regressors, Journal of Chemometrics,17(8-9):438-452.
    Hubert M, Vanden Branden K. (2003). Robust Methods for Partial Least squares Regression. Journal of Chemometrics,17(10):537-549.
    Jordaan E M. (2002). Development of robust inferential sensors, industrial application of support vector machines for regression, Ph. D thesis, Eindhaven University of Technology.
    Jordaan E M. (2004). Robust outlier detection using SVM regression.2004 IEEE International Joint Conference,3:2017-2022.
    Kelly J, Barlow C, Jinguji T, Callis J. (1989). Prediction of Gasoline Octane Numbers from Near-Infrared Spectral Features in the Range 660-1215 nm. Analytical Chemistry,61(3):313-320.
    Kelly, J, Callis J B. (1990). Nondestructive analytical procedure for simultaneous estimation of the major classes of hydrocarbon constituents of finished gasoline. Analytical Chemistry,62(14):1444-1451.
    Krasker W S, Welsch R E. (1983). Efficient bounded-influence regression estimation, Journal of the American Statistical Association,77(379):595-604.
    Ku M, Chung H. (1999). Compositional analysis of naphtha by FT-Raman spectroscopy. Bulletin of the Korean Chemical Society,20:159-162.
    Lavine B K. (1998). Chemometrics. Analytical Chemistry,70:209R-228R.
    Lavine B K. (2000). Chemometrics. Analytical Chemistry,72:91R-97R.
    Lavine B K, Workman J. (2008). Chemometrics. Analytical Chemistry.80: 4519-4531.
    Li H, Liang Y, Xu Q, Cao D. (2009). Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta,648(1):77-84.
    Li Y, Shao X, Cai W. (2007). A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta,72(1): 217-222.
    Lillhonga T, Geladi P. (2005). Replicate analysis and outlier detection in multivariate NIR calibration, illustrated with biofuel analysis. Analytica Chemica Acta,544: 177-183.
    Lindsay B G. (1994). Efficiency versus robustness:the case for minimum Hellinger distance and related methods. The Annals of Statistics,87(22):1081-1114.
    Luco J M, Ferretti F H. (1997). QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. Journal of Chemical Information and Computer Science,37(2):392-401.
    Luts J, Heerschap A, Suykens J A K, Van Huffel S. (2007). A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection. Artificial Intelligence in Medicine, 40:87-102.
    Marengo E, Bobba M, Robotti E, Liparota M C. (2005). Modeling of the polluting emissions from a cement production plant by partial least-squares, principal component regression, and artificial neural networks. Environmental Science & Technology,40:272-280.
    Massart D L, Kaufman L, Rousseeuw P J, Leroy A. (1986). Least median of squares:a robust method for outlier and model error detection in regression and calibration. Analytica Chimica Acta,22(187):171-179
    McClure W F, Hamid A, Giesbrecht F G, Weeks W W. (1984). Fourier analysis enhances NIR diffuse reflectance spectroscopy. Applied Spectroscopy,38: 322-329.
    McCreery R L. (2000). Raman Spectroscopy in Chemical Analysis. John Wiley & Sons, Inc.
    Mendes L S, Oliveira F, Suarez P, Rubim J. (2003). Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries. Analytica Chimica Acta,493:219-231.
    Naes T. (1989). Leverage and influence measures for principal component regression. Chemometrics and Intelligent laboratory systems,13(5):155-168.
    Naes T, Martens H. (1988). Principal component regression in NIR analysis: viewpoints, background details and selection of components. Journal of Chemometrics,2:155-167.
    Navea S, Tauler R, Juan A. (2005). Application of the local regression method interval partial least-squares to the elucidation of protein secondary structure. Analytical Biochemistry,336:231-242
    Nielsen A S, Batchelder D N, Pyrz R. (2002). Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer,43:2671-2676
    Noordm E. (1994). Tutorial:Multivariate calibration standardization. Chemometrics and Intelligent laboratory systems,25:85-97
    Ortiz M C, Sarabia L A, Herrero A. (2006). Robust regression techniques:a useful alternative for the detection of outlier data in chemical analysis. Talanta,70: 499-512
    Osbome B, Fearn T, Hindle P H. (1986). Near Infrared Spectroscopy in Food Analysis. John Wiley & Sons, New York.
    Park K S, Ko Y H, Lee H, Jun C H, Chung H, Ku M S. (2001). Near-infrared spectral data transfer using independent standardization samples:a case study on the trans-alkylation process. Chemometrics and Intelligent Laboratory Systems, 55(13):53-65.
    Pasti L, Jouan-Rimbaud D, Massart D L, de Noord O E. (1998). Application of Fourier transform to multivariate calibration of near-infrared Aata. Analytica Chimica Acta,364:253-26.
    Pell R J. (2000). Multiple outlier detection for multivariate calibration using robust statistical techniques, Chemometrics and Intelligent Laboratory Systems,52(8): 87-104
    Perez-Marin D, Garrido-Varo A, Guerrero J E. (2007). Non-linear regression methods in NIRS quantitative analysis, Talanta,72:28-42.
    Philips G R, Eyring E R. (1983). Comparison of conventional and robust regression in analysis of chemical data. Analytical Chemistry,37(55):1134-1138.
    Qin S J, McAvoy T J. (1992). Non-linear PLS modeling using neural networks. Computers & Chemical Engineering,16:379-391.
    Qin X S, Dai L K. (2004). Determination of gasoline octane number using Raman spectroscopy and least squares support vector machines. Proceedings of the 5th World Congress on Intelligent Control and Automation,3805-3809.
    Ortiz C M, Sarabia L A, Herrero A. (2006). Robust regression techniques:A useful alternative for the detection of outlier data in chemical analysis, Talanta,70: 499-512
    Rousseeuw P J. (1984). Least median of squares regression. Journal of the American Statistical Association,79:871-880.
    Rousseeuw P J, Driessen K V. (1999). A fast algorithm for the minimum covariance determinant estimator, Technometrics,41,3:212-223.
    Rousseeuw P J, Driessen K V. (2006). Computing LTS regression for large data sets", Data Mining and Knowledge Discovery,12:29-45.
    Rousseeuw P J, Leroy A M. (2001). Robust Regression and Outlier Detection. John Wiley & Sons, New York.
    Rutan. (1988). Comparison of robust regression methods based on least-median and adaptive Kalman filtering approaches applied to linear calibration data. Analytica Chimica Acta,38(215):131-136
    Saptoro A, Yao H M, Tade M O, Vuthaluru H B. (2008). Prediction of coal hydrogen content for combustion control in power utility using neural network approach. Chemometrics and Intelligent Laboratory Systems,94:149-159.
    Savitzky A, Golay M J E. (1964). Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry,36:1627-1639.
    Semeels S, Croux C, Filzmoser R, Van Espen P J. (2005). Partial robust M-regression. Chemometrics and Intelligent Laboratory Systems,79:55-64.
    Shao Z, Yang X, Wen W, Hao Z. (2006). A Local-Density-Ratio based algorithm for setting weight in weighted least squares support vector machine, Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications,167-171.
    Shen Qi, Shi Weimin, Kong Wei, Ye Baoxian. (2007). A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification. Talanta,3:1679-1683.
    Simpson D G, Ruppert D, Carroll R J. (1992). On one-step GM-estimates and stability of inferences in linear regression. Journal of the American Statistical Association,87:439-450.
    Sjoblom J, Svensson O, Josefson M, Kullberg H,Wold S. (1998). An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent Laboratory Systems,44(14):229-244
    Stromberg A J. (1993). Computing the exact least median of squares estimate and stability diagnostics inmultiple linear regression. SIAM Journal of Scientific Computing,14:1289-1299.
    Staudte R G. (1990). Robust Estimation and Testing. New York:John Wiley&Sons.
    Steele M, Steiger W. (1986). Algorithms and complexity for least median of squares regression. Discrete Applied Mathmatics.14:93-100
    Sundell T, Fagerholm H, Crozier H. (1996). Isotacticity determination of polypropylene using FT-Raman spectroscopy. Polymer,37:3227-3231
    Suykens J A K, Vandewalle J. (1998). Nonlinear Modeling:Advanced Black-box Techniques, Boston:Kluwer Academic Publishers.
    Suykens, J A K, Vandewalle J. (1999). Least squares support vector machine classifiers. Neural Processing Letters,9(3):293-300.
    Suykens J A K, Vandewalle J, De Moor B. (2001). Optimal control by least squares support vector machines, Neural Networks,14:23-35.
    Suykens J A K, de Brabanter J, Lukas L, Vandewalle J. (2002). Weighted least squares support vector machines:robustness and sparse approximation, Neurocomputing,48:85-105.
    Svetnik V, Liaw A. (2001). Detecting novel samples in mass spectral data:a clustering approach. Computing Science and Statistics,33.
    Thomas E V, Haaland D M. (1990). Comparison of multivariate calibration methods for quantitative spectral analysis. Analytical Chemistry,62:1091-1099.
    Vapnik V N. (1998). Statistical Learning Theory. John Wiley. New York.
    Vanden Branden K, Hubert M. (2004). Robustness properties of a robust partial least squares regression method. Analytica Chimica Acta,515:229-241.
    Wakeling I N, MacFie H J H. (1992). A robust PLS procedure. Journal of Chemometrics,6:189-198.
    Walczak B, Massart D L. (1995). Robust principle components regression as a detection tool for outliers, Chemometrics and Intelligent Laboratory Systems,36: 41-54.
    Walczak B, Massart D L. (1998). Multiple outlier detection revisited, Chemometrics and Intelligent Laboratory Systems,41(6):1-15
    Wang F T, Scott D W (1994). The method for robust nonparametric regression. Journal of American Statistical Association,55(89):65-76.
    Wang Y D, Veltkamp D J, Kowalski B R. (1991). Multivariate instrument standardization. Analytical Chemistry,63:1991-1997
    Wen W, Hao Z, Shao Z, Yang X, Chen M. (2006a). A heuristic weight-Setting algorithm for robust weighted least squares support vector regression, Proceedings of the 13fth International Conference on Neural Information Processing,1:773-781.
    Wen W, Hao Z, Shao Z, Yang X. (2006b). A Kernrl-Based weight-setting method in robust weighted least squares support vector regression. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,4206-4211.
    Williams K P J, Aries R E, Cutler D J, Lidiard D P. (1990). Determination of gas oil cetane number and cetane index using near-infrared Fourier transform Raman spectroscopy. Analytical Chemistry,62:2553-2556.
    Willis M J, Montague G A, Di Massimo C, Tham M T, Morris A J. (1992). Artificial Neural Networks in Process Estimation and Control. Automatica, 26(6):1181-1187
    Wold H. (1975). Soft modeling by latent variables:the partial least squares approach. Perspectives in Probability and Statistics, J. Gani. Academic Press, London.
    Wold S, Martens H, Wold H. (1983). The multivariate calibration method in chemistry solved by the PLS method. Proceedings on the Conference on Matrix Pencils, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg,286-293.
    Wold S, Cheney J, Kettaneh N, McCready C. (2006). The chemometric analysis of point and dynamic data in pharmaceutical and biotech production (PAT)— some objectives and approaches. Chemometrics and Intelligent Laboratory Systems,84: 159-163.
    Wold S, Wold N K, Skagerberg B. (1989). Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems,7:53-56.
    Wolters R, Kateman G. (1989). The performance of least squares and robust regression in calibration of analytical methods under non-normal noise distributions. Chemometrics,78(3):329-342.
    Workman J. (2002). The state of multivariate think for scientists in industry: 1980-2000. Chemometrics and Intelligent Laboratory Systems,60:13-23.
    Yu H Y, Niu X Y, Lin H J, Ying Y B, Li B B, Pan X X. (2009). A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines. Food Chemistry;,113(1):291-296.
    Zhang M H, Luypaert J, Pierna J A F, Xu Q S, Massart D L. (2004). Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration. Talanta,62:25-35
    Zhang Y, Cong Q, Xie Y, Yang J, Zhao B. (2008). Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Spectrochimica Acta Part A.711.408-1413.
    包鑫,戴连奎.(2008).基于局部最小二乘支持向量机的光谱定量分析.分析化学,36(1):75-78.
    陈文灿,崔卉,梁逸曾.(1995).一个多元校正的稳健诊断新方法.高等学校化学学报,16(9):1349-1354.
    陈希孺.(1989).最小一乘线性回归.数理统计与管理.8(5):48-55.
    成忠,陈德钊.(2006).快速稳健偏最小二乘回归及其在近红外光谱分析中的应用.光谱学与光谱分析,26(6):1046.1050.
    褚小立,袁洪福,陆婉珍.(2001).光谱多元校正中的模型传递.光谱学与光谱分析,21(6):881-885.
    褚小立,袁洪福,陆婉珍.(2002).普鲁克分析用于近红外光谱仪的分析模型传递.分析化学,30(1):114-119.
    褚小立,袁洪福,陆婉珍.(2005).基础数据准确性对近红外光谱分析结果的影响.光谱学与光谱分析.25(6):886-889.
    褚小立,袁洪福,骆献辉,许育鹏,陆婉珍.(2008).支持向量回归建立测定醇烯比的近红外光谱校正模型.光谱学与光谱分析.28(6):1227-1231.
    戴波,赵晶,周炎.(2008).基于支持向量机的管道腐蚀超声波内检测.化工学报,59(7):1812-1817.
    韩言正,戴连奎.(2005).基于近红外光谱的汽油辛烷值在线分析仪.化工自动化及仪表,2005,32(3):68-70.
    何大阔,李延强,王福利.(2001).基于单纯形算子的混合遗传算法.信息与控制,30(3):276-278.
    侯振雨,王伟,蔡文生,邵学广.(2006).基于独立成分的局部建模方法及其在近红外光谱分析中的应用研究.计算机与应用化学,23(3):224-226.
    李灿,李美俊(2003).拉曼光谱在催化研究中应用的进展.分子催化,17(3):213-240.
    李丽娟苏宏业褚健.(2007).基于在线最小二乘支持向量机的广义预测控制.自动化学报,33(11):1182-1188)
    李艳坤,邵学广,蔡文生.(2007).基于多模型共识的偏最小二乘法用于近红外光 谱定量分析.高等学校化学学报,2007,28(2):246-249
    梁逸曾,俞汝勤.(2000).分析化学手册(第十分册):化学计量学,化学工业出版社.
    梁逸曾,周声劢,崔卉.(1996).多元分析的稳健方法.化学通报,6:26-31.
    林碧华,顾幸生.(2008).基于差分进化算法-最小二乘支持向量机的软测量建模.化工学报,59(7):1681-1685.
    刘蓉,陈文亮,徐可欣,邱庆军,崔厚欣.(2005).奇异点快速检测在牛奶成分近红外光谱测量中的应用.光谱学与光谱分析,25(2):207-210
    刘毅,王海清,李平.(2007).局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用.化工学报,58(11):2846-2851.
    陆婉珍,袁洪福,徐广通.(2001). 现代近红外光谱分析技术.北京.中国石化出版社.
    陆婉珍,袁洪福,徐广通.(2007).现代近红外光谱分析技术,第二版,中国石化出版社.
    吕剑峰,戴连奎.(2007).加权最小二乘支持向量机改进算法及其在光谱定量分析中的应用.分析化学35(3):340-344.
    孟秀红,孙兆林,张晓彤,李梦龙,印家健.(2003).重整汽油近红外光谱的稳健偏最小二乘解析.化学研究与应用,15(2):244-248.
    闵顺耕,李宁,张明祥.(2004).红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,24(10):1205-1209.
    牛智有,林新.(2009).茶叶定性和定量近红外光谱分析方法研究.光谱学与光谱分析.29(9):2417-2420.
    瞿海斌,刘晓宣,程翼宇.(2004).中药材三七提取液近红外光谱的支持向量机回归校正方法.高等学校化学学报,25(1):39-43.
    任哲,陈明华.(2000).污染数据回归分析中参数的最小一乘估计.应用概率统计.16(3):262-268.
    石雪,蔡文生,邵学广.(2008).局部建模方法用于烟草样品的近红外光谱定量分析.老谱学与光谱分析.28(11):2561-2564.
    史月华,陆勇,徐光明,徐元值,徐铸德.(2001).主成分回归残差神经网络校正算法用于近红外光谱快速测定汽油辛烷值.分析化学,29(1):87-91.
    施玉珍,陈志春,林贤福.(2005).拉曼与红外光谱无损检测技术新进展.分析化学,33(2):272-276.
    宋浩威,王洪艳,王多禧,王占龙.(1996).稳健偏最小二乘光度法同时测定贵金属元素锇和钌.分析化学.21(10):1162-1165.
    孙德山,吴今培,肖健华(2003).基于SVR的异常数据检测.计算机工程与应用,26:40-41.
    汪国桢.(1985).现代工程教学册.武汉:华中理工大学出版社.122-124
    王家俊,李娟.(2008).基于FT-NIR分析技术的SIMCA建模及其在卷烟配方过程质量监测中的应用.烟草科技,3:5.9
    王家俊,汪帆,马玲.(2005)ATR—FTIR光谱法快速测定BOPP薄膜的厚度和定量.光谱实验室,22(5):999-1002
    王家俊,汪帆,马玲.(2006)SIMCA分类法与PLS算法结合近红外光谱应用于卷烟纸的质量控制.光谱学与光谱分析26(10):1858-1862.
    王彤,何大卫.(1997).线性回归中多个异常点的诊断.中国卫生统计,14(6):7-10.
    王旭东,邵惠鹤.(1997).RBF神经网络理论及其在控制中的应用.信息与控制,26(4):272-283.
    魏国,刘剑,孙金玮,孙圣和.(2008).基于LS-SVM的非线性多功能传感器信号重构方法研究,自动化学报,34(8):869-875.
    魏万之,朱文洪.(1996).稳健方法用于光度法药物制剂的多组分测定.湖南大学学报,1996,23(1):51-55.
    吴迪,曹芳,冯水娟,何勇.(2008).基于支持向量机算法的红外光谱技术在奶粉蛋白质含量快速检测中的应用.光谱学与光谱分析.28(5):1071-1075.
    吴瑾光主编.(1994).近代傅立叶变换红外光谱技术及应用(上卷).北京:科学技术文献出版社.
    武中臣,徐晓轩,杨仁杰,俞钢,张存洲.(2005).互相关分析在近红外光谱模型传递中的应用.光谱学与老谱分析,12: 1975-1977.
    谢玉珑,王继红,梁逸曾.(1994).化学计量学中的稳健估计方法.分析化学,22(3):294-300.
    谢玉珑,王继红,俞汝勤.(1993).通用模拟退火用于稳健多元分析校正.高等学校化学学报,14(2):175-179.
    徐广通,袁洪福,陆婉珍.(2000).现代近红外光谱技术及应用进展.光谱学与光谱分析,20(2):134-142.
    许禄,邵学广.(2004).化学计量学方法.第二版.北京:科学出版社.
    许育鹏,袁洪福,陆婉珍.(2002).采用相关分析解析石油产品近红外光谱.现代仪器,(6):23-25.
    杨飚,张曾科,孙政顺.(2005).非线性稳健估计方法.清华大学学报(自然科学版).45(10):1316-1319.
    姚肖刚,戴连奎,方骏.(2004).基于支持向量机的柴油十六烷值近红外光谱测量方法.化工自动化及仪表,31(2):48-51.
    液体石油产品烃类测定法(荧光指示剂吸附法)GB/T 11132—89
    殷宗玲,齐洪祥,陆婉珍,袁洪福,王艳斌.(2000).人工神经网络用于近红外光谱测定柴油闪点.分析化学,28(9):1070-1073.
    虞科,程翼宇.(2006).一种基于最小二乘支持向量机算法的近红外光谱判别分析方法.,分析化学,34(4):561-564.
    俞汝勤.(1990).化学计量学导论,长沙:湖南教育出版社.
    曾安,陈仓,陈闽杰.(2009).红外光谱法检测润滑油中水分含量的研究,润滑与密封,34(9):102-104.
    张华.(2006).分析化学中的稳健回归及奇异点诊断方法研究,湖南大学硕士学位论文.
    张琳,张黎明,李燕,刘丙萍,胡兰萍,王俊德.(2005).正交信号校正用于傅里叶变换红外光谱的模型传递,分析化学,33(12): 1709-1712.
    张录达,金泽宸,沈晓南.(2005).SVM回归法在近红外光谱定量分析中的应用研究,光谱学与光谱分析,25(9):1400-1403.
    张其可,戴连奎.(2006).用于近红外校正模型的训练样本选择,传感技术学报,19(4):1190-1194.
    张勇,丛茜,谢云飞,赵冰.(2009).烟草组分的近红外光谱和支持向量机分析,高等学校化学学报.30(4):697-700..
    赵永平,孙建国.(2008).基于滚动窗法最小二乘支持向量机的稳健预测模型,模式识别与人工智能.21(1):1-5.
    郑小霞,钱锋.(2006).基于证据框架的最小二乘支持向量机在精对苯二甲酸生产 中的应用,化工学报.57(7):1612-1616.
    朱尔一,杨芃原.(2001).化学计量学技术及应用,科学出版社.
    祝诗平,王一鸣,张小超,吴静珠(2004).近红外光谱建模异常样品剔除准则与方法.农业机械学报,35(4):115-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700