超声冲击对镍基合金堆焊层微观组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对现有超声冲击装置进行优化改造的基础上,试图将超声冲击这种高质、高效、灵活、少污染的强化方式引入到核主泵的常用材料—镍基合金堆焊层的表面强化处理中,在改善镍基合金堆焊层的微观组织结构及表面性能的同时,使堆焊层中残余拉应力转变为残余压应力,从而提高堆焊层的疲劳强度,为提高核主泵运行的安全可靠性、延长核主泵的使役寿命提供必要的技术支持。
     本文主要运用表面三维形貌仪、x射线衍射仪、扫描电镜(SEM)、电子探针(EMPA)、显微维氏硬度仪、摩擦磨损试验机以及三电极动电位扫描仪等设备,对冲击强化前后堆焊层进行宏观形貌、微观组织结构、表面性能测试,对冲击前后堆焊层的宏观形貌、表面粗糙度、微观组织、成分、显微硬度、残余应力、摩擦磨损以及耐蚀性能的变化情况进行了分析。
     宏观形貌和微观组织结构分析表明:冲击前后粗糙度变化不大,但一些表面由机械加工而产生的刀痕缺陷被冲击针头压实。超声冲击前后,镍基合金堆焊层表面丛本没有发生相变。堆焊层的微观组织主要为奥氏体枝晶+枝晶间共晶化合物。冲击处理前奥氏体枝晶完整,碳(硼)化物连续,冲击处理后,组织发生了细化,碳化物明显破碎。超声冲击处理后,表层的微观组织变得均匀、致密,一些焊接裂纹和疏松缺陷被消除,成分偏析明显减少。
     表面性能测试表明:超声冲击处理可明显提高镍基合金堆焊层表层的硬度,提高幅度达70HVN左右。超声冲击可明显改善镍基合金堆焊层的应力状态,使堆焊层表层大的残余拉应力得到松弛,减小幅度达平均在500MPa以上,一部分拉应力已经完全转变为对延长堆焊层疲劳寿命有益的压应力。超声冲击前后堆焊层表面摩擦磨损系数不变,磨痕深度减小5μm左右,磨痕体积减小30%左右,耐磨性有明显改善。超声冲击对镍基合金堆焊层表面的耐蚀性无明显影响。即超声冲击处理镍基合金堆焊层表面,在保证改善其它表面性能的同时,不会降低其在核环境(硼酸水溶液)下耐蚀能力。
     本研究能为超声冲击在表面强化领域,尤其在堆焊层强化中的应用提供了实验与理论的支持。
In this paper, based on the existing ultrasonic impact treatment (UIT) device of optimizing reconstruction, trying to the high quality, high efficiency, flexible, less pollution into the way of strengthening the main manufacturing nuclear-main-pump materials-Ni-based alloy surfacing layer surface hardening, trying to improve surface properties and microstructure of nickel-based alloy surfacing layer, make its surfacing layer the residual tensile stress change into the residual press stress, which can improve the fatigue strength of the surfacing layer. It's to improve running the safety and reliability of the nuclear-main-pump and extend the service life of the nuclear-main-pump provide technical support.
     This paper mainly using three-dimensional profilometer, X-ray diffractometer, scanning electron microscopy (SEM), electron probe microanalysis (EMPA), microscopic vickers hardness tester, friction and wear tester and three electrodes dynamic potential scanners. And the changed situation that surfacing layer of before and after UIT macro and micro structure, surface performance testing, and macro morphology and surface roughness, microstructure, composition, microhardness, residual stress, friction and wear and corrosion resistance performance are analyzed.
     Macrostructure and microstructure show that:Roughness of surfacing layer surface unchanged before and after UIT, but some surface defects by mechanical processing were compacted by impact needle. Before and after UIT, surface of nickel-based alloy surfacing layer will not phase changed. The microstructure of surfacing layer was mainly for the austenite dendrites+interdendritic eutectic compound. Before UIT, austenite dendrite was complete, and carbide (boride) was continuous. After UIT, the microstructure refinement, the carbide was crushed obviously. After UIT, surface microstructure become even, density; welding crack and defects loose were eliminated; composition segregation reduced significantly.
     The surface performance test shows that:Nickel-based alloy surfacing layer surface hardness increased obviously by ultrasonic impact treatment, increase70HVN. Ultrasonic impact treatment could evident improved stress state of nickel-based alloy surfacing layer that residual tensile stress of surfacing layer surface relaxed and decreased, the decrease+500Mpa above, part of residual tensile stress has been completely changed into the residual press stress which benefited extend the fatigue life for surfacing layer. Wear resistance was improved obviously. Surfacing layer surface friction coefficient of Before UIT-Surfacc, After UIT-Surface and After UIT-Core unchanged, but the depth of grinding crack reduced about5μm, and the wear volume of grinding crack reduced about30%. Ultrasonic impact treatment has no contribution to the surface corrosion resistance of Ni-based alloy surfacing layer. Namely, surface treatment of Ni-based alloy surfacing layer by ultrasonic impact treatment will not decreased the corrosion resistant in nuclear environment (Boric acid aqueous solution) when other surface properties were improved.
     This study will provides experimental and theoretical support in the area of UIT, especially in the application of strengthening surfacing layer
引文
[1]Xinjun Yang, Jianxin Zhou, Xiang Ling. Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment [J]. Materials and Design,2011, doi:10.1016/j.matdes.2011.11.023.
    [2]姚寿山,李戈扬,胡文彬等.表面科学与技术[M].北京:机械工业出版社.2005,1.
    [3]曾晓雁,吴懿平.表面工程学[M].北京:机械工业出版社.2004,3.
    [4]徐滨士,朱绍华.表面工程理论与技术[M].北京:国防工业出版社.1999,469.
    [5]Wang X B, Liu H. Metal powder thermal behavior during the plasma transferred-arc surfacing proccs [J].Surface and Coatings Technology,1998,106:156-161.
    [6]Q.Y. Hou, Y.Z. He, Q.A. Zhang, J.S.Gao. Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process [J]. Materials & Design,2007,28(6):1982-1987.
    [7]Yang L J. Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimization of the processing parameters [J]. Journal of Materials Processing Technology,2001,113:521-526.
    [8]吴萍,姜恩永,周吕炽.激光熔覆Ni/WC复合涂层的组织和性能[J].中国激光,2003,30(4):357.
    [9]段慧玲,高俊峰,张书勤.Cr3C2对激光熔覆Ni合金层组织和性能的影响[D].上海:中困科学院上海冶金研究所材料物理与化学(专业),1999.
    [10]侯清宇,高甲生.Co-Cr-W系等离子弧堆焊合金层显微结构的研究[J].焊接技术,2003,32(5):9.
    [11]单际国,董祖珏,徐滨士.我国堆焊技术的发展及其在基础工业中的应用现状[J].中国表面工程,2002,4:19-22.
    [12]吴孔波.基于视觉的等离子堆焊熔池形貌及熔宽检测[D].武汉:华中科技大学,2007.
    [13]C. Sudha, P. Shankar, R.V. Subba Rao, R. Thirumurugesan, M. Vijayalakshmi, Baldev Raj. Microchemical and microstructural studies in a PTA weld overlay of Ni-Cr-Si-B alloy on AISI 304L stainless steel [J]. Surface & Coatings Technology,2008,202:2103-2112.
    [14]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版,2008,8-9.
    [15]鲍君峰,魏伟.镍基合金粉末等离子弧堆焊层的性能研究[J].有色金属(冶炼部分),2006,增刊:71-73.
    [16]傅立明.等离子堆焊[M].北京:农业出版社,1989:56-57.
    [17]侯清宇,何宜柱,高甲生.Cr3C2/镍基合金等离子堆焊层的组织及耐磨性能[J].机械工程材料.2007,31(2):53-57.
    [18]轧钢,刘海英,路会龙.超声波冲击和超声波喷丸强化技术的发展[A].2007年中国机械工程会年会之第12届全国特种加工学术会议论文集[C].2007年.
    [19]Integrity Testing Laboratory. Ultrasonic Peening of Parts and Welded Elements [EB/OL]. http://www.itlinc.com/pdf/37%20Info%20on%20UP%202005.pdf,2005-02-14/2007-06-10.
    [20]Aerospace Structures Repair Goes Ultrasonic [EB/OL]. U.S. Department of Transportation Federal Highway Administration. July 2003, Publication Number:FHWA-RD-03-019. http://www. fhwa.dot.gov/publications/focus/03jul/01.cfm
    [21]Amanda H Palmatier, Karl H Frank. Application of ultrasonic impact treatment to in-service signal mast arms. CTR Research Report, Report No. FHWA/TX-06/5-4178-01-2[R].2005-07.
    [22]王东坡.改善焊接接头疲劳强度超声冲击法实验装置的研究[D].天津:天津大学,1997.
    [23]徐士滨,朱绍华.表面工程理论与技术[M].北京:国防工业出版社.1999,469.
    [24]王东坡,尹丹青.超声冲击法提高T型焊接管接头疲劳性能[J].天津大学学报,2006,39(6):757-762.
    [25]饶德林,陈立功,倪纯珍,朱政强.超声冲击对焊接结构残余应力的影响[J].焊接学报,2006,26(4):48-50.
    [26]王冬生,陈东高,谭兵等.超声冲击对7A05铝合金焊接接头性能的影响[J].兵器材料科学与工程,2009,32(5):69-72.
    [27]王东坡,霍立兴,葛宝文,张玉凤.超声冲击法改善高强钢焊接接头的疲劳寿命[J].中国造船,2003,44(4):86-92.
    [2S]朱其芳,孙泽明,朱宝宏,熊柏青.超声冲击纳米化对7B04高强铝合金疲劳性能的影响[J].纳米科技,2009,6(6):25-28.
    [29]王东坡,霍立兴,张玉凤.超声冲击法改善LF21铝合金焊接接头的疲劳性能[J].中]国有色金属学报,2001,11(5):754-759.
    [30]上海宣邦金属新材料有限公司.HJ-111型超声冲击设备[M].用户手册,2010.
    [31]Y.Kudryavtsev, J.Kleiman, L.Lobanov. Fatigue life improvement of welded elements by ultrasonic peening [J]. INTERNATIONAL INSTITUTE OF WELDING,IIW Document XIII-2010-04,2004.
    [32]周炬,刘秀玲,周兴宇.工件表面粗糙度微机测量系统.控制工程.2003,10(3):285-288.
    [33]方博武.受控喷丸与残余应力理论[M].山东:山东科学技术出版社,1991.
    [34]菜泽高,刘以宽,王承忠,郑文龙等.金属磨损与断裂[M].上海:上海交通大学出版社,1985,57.
    [35]李建明.磨损金属学[M].北京:冶金工业出版社,1990,120.
    [36]V. Azar, B. Hashemi, Mahboobeh Rezaee Yazdi. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer's solution [J]. Surface & Coatings Technology,2010,204: 3546-3551.
    [37]张宝宏,丛文博,杨萍等.金属电化学腐蚀与防护[M].北京:化学工业出版社.2005,93.
    [38]P. J. Haagensen, E.S. Statnikov. Introductory fatigue tests on welded joints in high strength steel and aluminium improved by various methods including ultrasonic impact treatment [J]. International Institute of Welding, IIW Doc. XIII-1748-98.
    [39]王东坡,宋宁霞,王婷,霍立兴.纳米化处理超声金属表面[J].天津大学学报,2007,40(2):228-234.
    [40]李东,樊钊,廖礼宝,张莉.J507堆焊层超声冲击表面纳米化[J].焊接学报,2009,30(1):101-104.
    [41]X.An, C.A.Rodopoulos, E.S.Statnikov, V.N.Vitazev, and O.V.Korolkov. Study of the Surface Nanocrystallization Induced by the Esonix Ultrasonic Impact Treatment on the Near-Surface of 2024-T351 Aluminum Alloy [J] Journal of Materials Engineering and Performance, 15(3):2006—357.
    [42]B.N. Mordyuk, M.O. Iefimov, G.I. Prokopenko, T.V. Golub, M.I. Danylenko. Ti-reinforced surface layers in Al:Effect of particle size on microstructure, hardness and wear [J]. Surface & Coatings Technology,204(2010):1590-1598.
    [43]吕茂等.金属材料的超声冲击影响深度研究[A].中国钢结构协会钢结构焊接分会第二届学术年会.2005年.
    [44]Ohring s, Lugt H J. Numerical simulation of a time dependent 3D GMA weld pool due to a movillg arc [J]. Weldillg Research Supplement,1999,78(12):416-424.
    [45]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社.1990,55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700