GH4169和1Cr17表面纳米化后耐高温氧化性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面喷丸具有操作简单、耗能少、效率高、适用面广等优点,是金属表面改性技术的有效手段。表面喷丸形成的纳米层能够促进金属在高温氧化过程中氧化物的形核,促进Cr等合金元素在氧化过程中由基体向基体/氧化物界面的扩散,从而提高表层氧化膜中的Cr含量及其致密度,使抗氧化性能得到提高。
     本文对GH4169高温合金和1Cr17铁素体不锈钢用高能喷丸塑性变形方法制备出纳米结构表层,并进行了耐高温氧化性试验,用X射线衍射仪(XRD)、透射电镜(TEM)、显微硬度、扫描电镜(SEM)及能谱(EDX)对纳米化表层和表层氧化膜组织形态与成分进行了分析,研究结果表明:
     应用下述喷丸工艺参数:直径Φ1mm的淬火铬钼合金钢丸,弹丸速度为55m/s;喷丸5min实现了GH4169高温合金的表面纳米化,表层晶粒尺寸约58.25nm,随着时间的进一步延长,晶粒逐渐细化,在喷丸180min时,表层晶粒尺寸约为17.83 nm;
     GH4169经过不同工艺高能喷丸后的样品表面硬度都有显著的提高,未喷丸样品表层的显微硬度为310HV;喷丸180 min样品表层显微硬度可达到610HV,硬化层深度可达约550μm;喷丸30 min样品表层显微硬度也达到了460HV,硬化层深度约230μm;
     GH4169高温氧化时表面产生的氧化物主要是Cr2O3;未喷丸样品经高温氧化时表面氧化物首先在晶界形核、长大,随着氧化时间的延长或氧化温度的升高,氧化物逐渐覆盖整个表面;纳米化样品经高温氧化时表面氧化物均匀的生长,覆盖整个表面;
     1Cr17未喷丸样品、纳米化样品和纳米化后退火样品在600℃空气中氧化1min后,表面已经被氧化;纳米化样品和纳米化后退火样品氧化3min时在表面局部观察到极少量、细小的针状氧化物,而未纳米化样品在氧化30min时才能观察到片状氧化物;
Surface peening is one of the effective methods of surface modification technique for metal due to its advantages such as simplicity of operation、energysa-save、efficient and wide-application. The nano-layer formed through surface peening can promote not only the nucleation of oxide during high-temperature oxidization but also the diffusion of alloying agent such as Cr from bulk to interface bulk/oxide so as to increase the content of Cr & density of surface oxidate layer and its anti-oxidation property.
     In this article, nano-structure surface layer was prepared through high-energy peening plastic formation method on GH4169 high-temperature alloy and 1Cr17 ferrite non-rust steel. then high-temperature resistance oxidization testing was done and the morphology & composition of nano-sized surface layer and surface oxidization layer were analyzed through XRD、TEM、SEM、EDX and micro-hardness.
     The results indicates that surface nanocrystallization of GH4169 high-temperature alloy was realized and surface layer grain size was 58.25nm approximately using under-mentioned peening processing parameter : quenchedΦ1mm sized Cr-Mo alloy steel shot, 55m/s velocity and peening for 5 min. As the peening time prolong, the grain size decreased gradually, the surface grain size was 17.83nm approximately when peening for 180 min.
     Hardness of GH4169 sample surface layer was increased significantly through different high energy peening. The micro-hardness of sample surface layer was 310HV without peening and 600HV with peening for 180 min and the depth of harding layer was 550um approximately. Even peening for 30 min, the micro-hardness was 460 HV, the harding layer was 230um.
     The main surface oxide was Cr2O3 when GH4169 was oxidized at high temperature, surface oxide nucleate and grow at the grain-boundary first when the sample without peening was oxidizated at high temperature, As the oxidizating time prolongs or the oxidizating temperature increases, oxide will cover the whole surface gradually. surface oxide grows evenly then cover the whole surface when peened sample was oxidized at high temperature.
     When 1Cr17 sample without peening、nano-sized sample and nano-sized annealed sample of 1Cr17 was oxidized 1min under atmosphere at 600℃, the surface has been oxidized. Minute quantity thin acicular oxide can be seen at part of the surface of nano-sized sample and nano-sized annealed sample when oxidized 3 min, while the oxide can only be seen after 30 min oxidization at samples without nanocrystallization.
引文
[1] Gleiter H,Marquardt p.Z Matall.[J].1984,75:263.
    [2] Birtingre R,Gleiter H,Klein H p,Marquardt P.[J].Phys Lett.1984,A102:365.
    [3] Lu K,Wang J T,Wei W D.[J].J Appl Phys.1991,69:522.
    [4] Lu K,Wang J T,Wei W D.[J].Ser Metall Mater.1991,25:619.
    [5] Koch C C.[J].Nanostruc Mater.1993,2:109.
    [6] Fecht H J.[J].Nanostruc Mater.1995,6:33.
    [7] ValievR Z.Chmelik F,Bordeaux F,Kapwlski G,Audelet B.[J].Ser Metall Mater.1992,27:855.
    [8] Languillaume J,Chmelik F,Kapelski G,Bordeaux F,Nazarov A A,Canova G,Esling C,Valiev R Z,Baudelet B.[J].Acta Metall Mater.1993,41:2953.
    [9] Jain M, Christman T.[J].J Mater Res.1996,11:2677.
    [10] Saito Y,T suji N,Utsunomiya H,Sakai T,Hong R G.[J].Scr Mater.1998,39:1221.
    [11]张立德,牟继美.纳米材料和纳米结构.第一版.北京:科学出版社,2001:6.
    [12] Gleiter H. Nanocrystalline Materials.Prog. Mater. Sci.1989,13:223.
    [13] Gleiter H, Hansen N, Horsewell A, Leffers T and Liholt H. (eds.). Deformation of Polycrystals: Mechanism and Microstructures. Riso National Laboratory, enmark, 1981, 15.
    [14]张志琨,崔作林.纳米技术和纳米材料.第一版.国防工业出版社,2000:45-67.
    [15]杨志伊.纳米科技.第一版.机械工业出版社,2004:12.
    [16] Lu K,Lu J.[J].J Mater Sci Tech.19999,15:193.
    [17]严东生。纳米材料合成由于制备[J]。无机材料学报,1995,10(1):1-6.
    [18] Lu J,Lu K.Procede mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures,2000,FR2812284.
    [19] Lu J,Lu K.Procede de traitement de nanostructures et dispositif de traitement de nanostructures,2000,FR2812285.
    [20] Lu J,Lu K. Procede de generation de nanostructures et dispositif de generation de nanostructures,2000,FR2812286.
    [21]熊天英,李铁藩,吴杰,金花子。金属表面超声波喷丸强化方法,02109192.7.
    [22]熊天英,吴杰,金花子,郑宗光。一种金属材料表面纳米化方法,02109696.1.
    [23] Fan X.M,Zhou B.S,Zhu L,Wang H.Z,Huang J.W.[J].Mater.Sci.Forum,2005,475-479:133.
    [24] Umemoto M,Todaka Y,Tsuchiya K.[J].Mater.Trans,2003,44,1488.
    [25] Todadk Y,Umemoto M,Watanabe Y,Tsuchiya K.[J].J.Japan Insti.Metals,2003,67:690.
    [26]刘刚,吕坚,卢柯。纳米表面工程[M],徐滨士,化学工业出版社,2004,352.
    [27]刘刚,吕坚,卢柯。中国材料工程大典[M],徐滨士,化学工业出版社,2005,1069.
    [28] Lu K. and Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach.J. Mater. Sci. Technol. 1999, 15(3): 193-197.
    [29]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状.中国表面工程. 2001(3):1-6.
    [30] Tong W.P,Tao N.R,Wang Z.B,Lu J,Lu K.[J].Science,2003,289:686.
    [31] Lu K,Lu J[J].Mater Sci Eng A,2004,375-377,38.
    [32] Tao N. R, Wang Z.B,Tong W.P,Sui M.L,Lu J,Lu K.[J].Acta Mater.2002,50:4603.
    [33]吕爱强,刘刚,刘春明. [J].金属学报,2004,40:943.
    [34] Zhang H.W,Hei Z.K,Liu G,Lu J,Lu K.[J].Acta Mater.2003,50:2075.
    [35] Zhu K.Y,Vassel A,Brisset F,Lu J.[J].Acta Mater.2004,52:4101.
    [36] Shin D.H,Seo C.W,Kim J,Park K.T,Choo W.Y.[J].Scr Mater.2000,42:695.
    [37]李铁藩.金属高温氧化和热腐蚀.第一版.化学工业出版社,2003:13-20.
    [38] Brylewski T., Nanko M., Maruyama T., Przybylski K..Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics. 2001,143:131.
    [39] Olsson C.-O.A., Landolt D.. Passive films on stainless steels chemistry, structure and growth. Electrochimica Acta, 2003,48:1093.
    [40] Kritzer P..Corrosion in high-temperature and supercritical water and aqueous solutions: a review. J. of Supercritical Fluids, 2004,29:1.
    [41]叶长江,李铁藩,周龙江.晶粒尺寸对含Zr的Ni3Al合金氧化行为的影响[J].金属学报.1995,31 (3):B109-115.
    [42]李铁藩.金属晶界在高温氧化中的作用.中国腐蚀与防护学报.2002,22(3):180-183.
    [43]雍兴平,刘刚,吕坚,卢柯.低碳钢表面纳米化处理及结构特征.金属学报.2002,38(2):157-160.
    [44] Lu K. and Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach.J. Mater. Sci. Technol. 1999, 15(3): 193-197.
    [45] Brylewski T., Nanko M., Maruyama T., Przybylski K..Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics. 2001,143:131.
    [46] Wurschum R.,et.al,“Structure and diffusional properties of nanocrystalline Pd”, Philo.Mag.B, 76(1997),407.
    [47]顾钰熹。特种工程材料焊接。辽宁科技出版社,1998;
    [48]李辛庚,何家文.喷丸处理提高TP304H耐热钢锅炉管抗水蒸气氧化性能应用效果的观察.中国腐蚀与防护学报.2003,23(3):172-174.
    [49]吴美艳.经喷丸处理的过热器、再热器管能显著提高其抗氧化性.山东电力技术.1995,1:93-100(摘译自“火力原子力发电”,1994,2).
    [50]李辛庚,王学刚,何家文.喷丸与电泳沉积稀土薄膜复合处理提高T91钢抗水蒸气氧化性能的研究.中国腐蚀与防护学报.2002,22(2):101-104.
    [51]温爱玲,陈春焕,郑德有,沈继原,任瑞铭.高能喷丸表面纳米化对工业纯钛组织性能的影响.表面技术.2003,2(3):6-18.
    [52] Lu K., and Lu J., Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater, Sci. Eng.. 2004, A375-377:38
    [53] Chen C. H., Ren R. M.(任瑞铭), Zhao X. J., and Zhang Y. J., Surface nanostructures in commercial pure Ti induced by high energy shot peening. Trans Nonferrous Met. Soc. China. 2004,14(S2):215
    [54]栾卫志.1Cr17不锈钢表面纳米化组织耐高温氧化性研究.大连交通大学.2005:06-10.
    [55]张文杰,赵秀娟,任瑞铭,杨德新,张罡,黄贺。纳米化对1Cr17不锈钢耐高温氧化的影响。大连交通大学学报.
    [56]范雄.金属X射线学[M].第一版.机械工业出版社.1996:113-114.
    [57] Ma guang, Luo yu, Chen chunhuan, Ren Ruiming, Wu wei, Surface Nanocrystallization ofCommercial Pure Titanium By Shot peening, The 4th International Conference on Surface Engineering,shenzhen,CHINA,29-31 October 2004.
    [58]温爱玲,陈春焕等,高能喷丸表面纳米化对工业纯钛组织性能的影响,表面技术,2003,vol 32.3
    [59]马光,通用抛丸机喷丸表面纳米化研究,大连交通大学硕士论文.
    [60]胡赓祥,蔡珣.材料科学基础.第一版.上海交通大学出版社.2004:330-331
    [61]卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-pitch关系.材料研究学报.1994,8(5):385-391
    [62]陆世英等.不锈钢.北京:原子能出版社,1995
    [63]张洪旺.AISI 304不锈钢的表面纳米化及混合表面纳米化研究.大连海事大学.2003:05
    [64] Ke,M.Hackney,S.A.,Milligan,W.W.and.Aifantis,E.C.,Nanostructured Mater.,1995,5,689
    [65]李辛庚,傅敏,何家文.喷丸对TP304H钢高温合金水蒸气氧化行为的作用.材料科学与工艺.2004,12(3):253-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700