基于微电阻测试技术的曲轴疲劳损伤表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年,中国汽车的产销量约1000万辆,成为继美国之后的第二大汽车产销大国,与此同时,年报废汽车量已达保有量的6%。再制造技术是解决报废汽车难题的最好方法之一,但再制造前退役零部件的剩余疲劳寿命是影响再制造产品可靠性的关键因素。因此,研究典型汽车零部件疲劳损伤规律,用于指导剩余疲劳寿命评估是当前的一项紧迫任务。
     本论文以汽车发动机典型零件曲轴为研究对象,采用微电阻测试技术,以微电阻为参量全程表征曲轴的疲劳损伤过程,从而获得曲轴疲劳损伤的微电阻变化规律。
     首先,以48Mn钢标准试件为研究对象,开展旋转弯曲疲劳损伤微电阻表征实验,并与推导的金属疲劳损伤电阻模型作比较。结果表明:实测数据与理论模型有较好的一致性,损伤开始至宏观裂纹萌生阶段吻合得较好,宏观裂纹萌生点相差较大,之后,两者趋向一致,达到无穷大。同时,也验证了微电阻表征疲劳损伤的可行性。
     其次,为了开展曲轴的疲劳损伤试验,开发了基于虚拟仪器技术的曲轴弯曲疲劳损伤试验系统,实现了模拟正弦信号输出,振动信号实时采集,自动扫描系统共振频率,“恒载荷”调节,曲轴失效自动诊断,输出与采集数据信号的实时显示与保存,微电阻测试等功能。
     最后,开展了曲轴单拐的全程疲劳损伤微电阻表征试验。结果表明:在整个疲劳寿命内,微电阻值随着循环次数的增加而增大,载荷越大,微电阻增大速度越快。对于2500NM载荷下的单拐而言,从试验开始到宏观裂纹萌生前阶段(占整个寿命的70~80%),微电阻值增加缓慢,在宏观裂纹萌生时微电阻值有较大的变化,此后微电阻值变化加快直到曲轴失效。整个微电阻变化值约占原电阻的20%~30%。此外,探讨了曲轴疲劳损伤的微电阻表征模型并建立了函数表达式。
     本文通过曲轴疲劳损伤全程微电阻表征实验,得到了曲轴疲劳损伤的微电阻变化规律和表征模型,开辟了曲轴疲劳损伤表征新方法,为指导退役曲轴剩余寿命评估提供了依据。
In 2008 about 10 million vehicles were produced and sold in China. China has become the country whose number of vehicles produced and sold was the second after USA. At the same time, the annual number of End-of-Life Vehicles (ELV) covers 6 percent of existing ones. Remanufacturing is one of the best methods of solving the difficulty. But the residual life of the components of ELV is the key factor affecting the reliability of remanufactured components. Therefore studying the fatigue damage law of typical components is the urgent task to guide the assessment of the residual life.
     This paper studied the typical crankshafts of auto engines. Based on micro-electrical resistance measurement technology, the fatigue damage course was investigated by using micro-electrical resistance as a parameter to discover the fatigue damage law of micro-electrical resistance of crankshafts.
     Firstly, do the experiment of investigation of micro-electrical resistance to the rolling-bend standard 48MnV specimen. Compared with the theoretical model of metal fatigue damage, the measuring result indicates that the measuring data has the agreement with the theoretical model, and the data fit well with the model during from the beginning to the moment of crack emergency. At the moment of crack emergency the data differ from the theoretical model. After that they have the same trend and get to infinite maximum. Meanwhile this experiment proved that the parameter of micro-electrical resistance describing the procress of fatigue damage of crankshafts is feasible.
     Secondly, in order to do the experiment of fatigue damage of crankshafts, the bend fatigue damage measuring system of crankshafts was developed based on virtual instrument technology. The system has the functions as follow: output of analogue sine wave signal, data acquisitions, scanning resonance frequency automatically, adjusting constant load, automatic diagnosing the failure of crankshafts, display and saving of real sigal, micro-electrical resistance measureing and so on.
     Finally, the experiment of parameter characterization for fatigue damage of crankshafts using micro-electrical resistance was made. The experiment drew the conclusions as follow: during the whole fatigue life the micro-electrical resistance is becoming bigger and bigger with the increase of cycle numbers, and the bigger the load is, the more speed the micro-electrical resistance increases. Under the load level of 2500NM for crankshafts, the micro-electrical resistance is increasing slowly at the stage from the beginning to macro crack emergency which covers 70~80 percent of whole life, and the micro-electrical resistance varied badly at the moment of macro crack emergency. After that the micro-electrical resistance increased quicklly until the failure of crankshafts. The whole increased amplitude of micro-electrical resistance allows of 20~30 percent of original one. Otherwise the theoretical model of fatigue damage was explored and the functional formular was expressed.
     This paper attained the law and model of micro-electrical resistance for fatigue damage of crankshafts through the experiment, explored the new method describing the fatigue damage of crankshafts, and gave guidance to asses the residual fatigue lfie of ELV crankshafts.
引文
[1] Chen Ming.“The 2005 International Workshop on Sustainable Manufacturing”. JOM. 2006, 58(2):38-39
    [2]楼志文.损伤力学基础[M].西安交通大学出版社,1991,西安
    [3] J.勒迈特(法)著.损伤力学教程[M].北京:科学出版社,1996.
    [4]凌中,白以龙.一种铝合金层裂破坏的分形[J].爆炸与冲击,1994, 14(1):1-8.
    [5]赵银燕,周利.用变截面试样测量损伤变量D(E) [J].航空学报,1998,19(2):164-168.
    [6]谢和平.经典损伤定义中的“弹性模量法”探讨[J].力学与实践,1997(2):1-5.
    [7]施明泽.高周疲劳损伤变量的测试和损伤演变规律的研究[J].浙江大学学报,(自然科学版),1994, 28(6):660-665.
    [8]赵永宁,岳增武.密度法测定蠕变损伤在火电厂中的应用.山东电力技术,1998(1):53-55.
    [9]刘尚慈.密度法测定火电厂蒸汽管道的蠕变损伤.武汉水利电力学院学报,1986(6):63-69
    [10]平安.材料疲劳性能变化规律与剩余寿命预测[J].东北大学学报, 1994,
    [11] Ye Duyi, Wang Zhenlin. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue [J]. International Journal of Fatigue. 2001(23):679-687.
    [12]叶笃毅,王德俊.疲劳损伤过程中45#钢剩余力学性能的变化特征[J].材料研究学报,1996, 10(4):357-362.
    [13] Ye Duyi, Wang Zhenlin. An approach to investigate pre-nucleation fatigue damage of cyclically loaded metals using Vickers microhardness tests [J]. International Journal of Fatigue. 2001(23): 85-91.
    [14]Ye Duyi. Fatigue hardening/softening behavior investigated through Vickersmicrohardness measurement during high-cycle fatigue [J. Materials Chemistry and Physics. 1998(56):199-204.
    [15]叶笃毅,王德俊.中碳钢高周疲劳损伤过程中表面显微硬度变化特征的实验研究[J].机械强度,1996, 18(2):63-65.
    [16]叶笃毅,王德俊.疲劳损伤过程中45#钢剩余力学性能的变化特征[J].材料研究学报,1996, 10(4):357-362.
    [17]胡明敏.用疲劳寿命计实现的寿命预测方法[J].机械强度,1994, 16(2):9-11.
    [18]胡明敏.疲劳寿命计退火特性及电阻变化推算载荷谱的研究[J].理化检验-物理分册,2000, 36(1):24-27.
    [19]胡明敏,陈杰,陶宝祺.疲劳寿命计性能研究[J].航空学报,1994, 15(3):336-339.
    [20]胡明敏.用等效平均损伤模型计算剩余寿命方法的研究[J].航空学报,2000, 21(3): 262-266.
    [21]胡明敏,方义庆.疲劳寿命计疲劳响应模型研究[J].河海大学学报(自然科学版),2004, 32(3):287-290.
    [22]魏平,胡明敏.疲劳寿命计的电阻变化特性研究[J].理化检验-物理分册,2004,40(10):511-513.
    [23]魏平,王洪凯.疲劳寿命计电阻变化的灰色建模研究[J].理化检验-物理分册,2003,39(8):392-397.
    [24]周克印,陶宝祺.复合材料层板疲劳过程中疲劳寿命计的电阻变化规律研究[J].数据采集与处理,1999, 14(2):204-209.
    [25]周克印,胡明敏,熊克.基于疲劳寿命计的疲劳状态诊断方法研究[J].理化检验-物理分册2002,38(10):427-430
    [26]钟斐晖.用超声波法测试20钢低周疲劳过程中弹性常数的变化[J].金属学报2002,38(3):334-336
    [27] Cantrell, J.H. Yost, W.T. Nonlinear ultrasonic characterization of fatigue microstructures [J], International Journal of Fatigue. 2001, 23 (1):487-490.
    [28] Gremaud, G. Bujard, M. Benoit, W. The coupling technique: A two-wave acoustic method for the study of dislocation dynamics [J]. Journal of Applied Physics. 1987,61(5): 1795-1805.
    [29] Granato, A., Lücke, K. Theory of Mechanical Damping Due to Dislocations [J]. Journal of Applied Physics.1956, 27 (6):583-593.
    [30] Hirotsugu Ogi. Masahiko Hirao. Kiyoshi Minoura, Non-contact measurement of ultrasonic attenuation during rotating fatigue test of steel [J]. Journal of Applied Physics.1997, 81(8): 3677-3684.
    [31] Ogi, Hirotsugu. Hamaguchi, Takayuki,Hirao, Masahiko, In-situ monitoring of ultrasonic attenuation during rotating bending fatigue of carbon steel with electromagnetic acoustic resonance [J]. Journal of Alloys and Compounds. 2000, 310(1-2):436-439.
    [32] X.H. Min. H. Kato. Change in ultrasonic parameters with loading/unloading process in cyclic loading of aluminum alloy [J]. Materials Science and Engineering A. 2004(372): 269-277.
    [33]童小燕,姚磊江等.疲劳能量方法研究回顾[J].机械强度,2004,26(8):216-221.
    [34] Inglis N P. Hysteresis and fatigue of wohler rotating cantileve specimen. The Metallurgist, 1927,1(1):23 ~ 27.
    [35] Golos K, Ellyin F. Total strain energy densitytheory as a fatigue damage parameter. Advances in Fatigue Science and Technology, Proc. NATO Advanced Study Institute, Alvor,Portugal,1989.849 ~ 853.
    [36] Blotny R, Kaleta J. A method for determining the heat energy of the fatigue process in metals under uniaxial stress: part 1. determination of the amount of heat liberated from a fatigue-tested specimen. Int J Fatigue, 1986, 8(1): 29 ~ 34.
    [37] Tiitto K. Use of Barkhausen Effect in Testing for Residual Stress and Material Defect[J].Nondestructive Testing-Australia,1989,26(2):36-41.
    [38]古屋泰文等.パルヶハウソノイグ变化に基づム碳素钢の低サイタル疲劳寿命评价[J].非破坏检查,1992.41(4):215-218.
    [39]李强,袁祖贻.用巴克豪森噪声测量材料损伤的实验研究[J].中国铁道科学2000,21(2);80-85
    [40] Tomita Y, Hashimoto K, Osawa N, Inai H. Non-destructive estimation of fatigue damage for steel by Barkhausen noise analysis [A]. Proceedings of the special offshore symposium China (SOSC-94/PACOMS-94)[C]. Beijing, China, 1994 (17-18):195–203.
    [41] Donzella G, Granzotto S. Some experimental results about the correlation between Barkhausen noise and then fatigue life of steel specimens [J]. J Magn Magn Mater, 1994, 133(1–3):613–6.
    [42] Karjalainen LP, Moilanen M. Detection of plastic deformation during fatigue of mild steel by the measurement of Barkhausen noise [J]. NDT Int 1979, 13(3):51–55.
    [43] Biachnio J, Dutkiewicz J, Salamon A. The effect of cyclic deformation in a 13% Cr ferritic steel on structure and Barkhausen noise level [J]. Mater Sci Eng A. 2002, 323(1–2):83–90.
    [44]戴光,王文江,李伟.不同构件的磁记忆检测及分析方法研究[J].无损检测,2002, 24(6):262-266.
    [45]余婷,石道渝.利用地磁场检测钢球表面裂纹的可行性研究[J].无损检测,2001, 23(8):330-333.
    [46]黄松岭.用金属磁记忆方法检测应力分布[J].无损检测,2002, 24(5):212-214.
    [47]任吉林,胡伟利.磁记忆检测技术在飞机起落架检测中的应用[J].无损检测, 2002, 24(8):346-351.
    [48]池永滨,刘宇哲,胡先龙,马得举.气轮机叶片金属磁记忆诊断技术[J].无损检测, 2002, 24(10):440-442.
    [49] P. Starke, F. Walther PHYBAL—A new method for lifetime prediction based on train,temperature and electrical measurements[J]. Int. J. Fatigue 28 (2006)1028–1036.
    [50]孙斌祥,郭乙木.基于电阻耗散的金属材料疲劳损伤测量[J].力学季刊2003,24(3):416-422
    [51]黄丹,许平聪.金属疲劳剩余寿命预测模型的一种探索[J].实验力学,2003,18(1):113-117.
    [52]姜菊生,许金泉.金属材料疲劳损伤的电阻研究法[J].机械强度.1999,21(3):232-234.
    [53]刘金海,曾大本.用电阻法测量球墨铸铁的疲劳损伤[J]清华大学学报(自然科学版).1999,39(2):14-17
    [54]马宝钿,杜百平.电阻法检测疲劳损伤及预测修复效果探讨[J].理化检验-物理分册.2002,38(11):493-495.
    [55]范军峰.曲轴模拟弯曲疲劳损伤的磁记忆参数表征[D].上海交通大学硕士学位论文,2007(2)
    [56]陈胜震.基于磁记忆参数的车用曲轴疲劳损伤表征研究[D].上海交通大学硕士学位论文,2008(1).
    [57]冯美斌,徐家帜.曲轴弯曲疲劳试验方法评述[J].汽车技术.1990 (11):25-29
    [58]徐家炽. DC-1电磁共振式疲劳试验台架的介绍[J].汽车科技,1990(2):32-35
    [59]谢丽颖.汽车发动机曲轴疲劳试验方法[J].汽车工艺与材料.2006(3):9-12
    [60]赵会兵.虚拟仪器技术规范与系统集成[M].北京:清华大学出版社,北方交通大学出版社,2003.
    [61]刘君华,贾惠芹,丁晖等.虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电子科技大学出版社,2001.10-43
    [62]乔瑞萍,林欣译.Robert H. Bishop. LabVIEW6实用教程[M].北京:电子工业出版社,2003
    [63] National Instruments Corporation. LabVIEW Data Storage[M]. NationalInstruments Application Note. 2000.55-59
    [64]杨乐平,李海涛,肖相生.Labview程序设计与应用.北京:电子工业出版社,2001.7
    [65]林青松,孟凡深,陈耀廉.基于LabVIEW虚拟仪器的曲轴弯曲疲劳试验机[J].拖拉机与家用运输车,2002,(04),27~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700