合金钢显微组织超声无损表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据具有多种相结构合金钢不同热处理转变产物的组织特点,以及超声波在其中的传播规律,利用超声波速度、相对衰减系数以及功率谱分析三种方法,对三种钢(40Cr、38CrMoAl及GCr15SiMn)不同热处理(正火、淬火/退火、淬火+低温回火及淬火+高温回火)转变产物的显微组织进行了超声表征研究。比较了三种表征方法区分不同组织的灵敏度及特点,并提出了合金钢显微组织超声无损表征应遵循的多方法、多参量的原则。
     利用TI-40N高精度超声波测厚仪,研究了超声波在不同钢种、不同热处理转变产物中的超声波速度C_1:38CrMoAl钢淬火组织C_1最小,淬火后在200℃~650℃范围内进行回火处理时,随回火温度的升高,C_1逐渐升高,HRC与C_1之间具有较好的相关性;正火组织的C_1介于淬火后中温回火及高温回火产物组织的C_1之间。40Cr钢不同显微组织C_1变化规律与38CrMoAl钢相似。GCr15SiMn钢淬火+低温回火组织的C_1远大于正火、退火及淬火+高温回火组织的C_1;正火、退火及淬火+高温回火组织的C_1比较接近。不同显微组织弹性模量的差异,可能是造成上述实验结果的主要原因。
     在保证试样形状、尺寸、表面光洁度、系统参数设置、施加在探头上的压力以及耦合层厚度等测试条件一致的情况下,利用棒材圆柱面测衰减系数法,分别测定并比较上述不同热处理试样相对衰减系数的变化情况,得到的实验结果是:对于40Cr及38CrMoAl钢,α_(低温回火)<α_(淬火)<α_(高温回火)<α_(正火);对于GCr15SiMn钢,α_(低温回火)<α_(退火)<α_(高温回火)<α_(正火);且随着频率的提高,衰减系数均呈现增加的趋势。研究表明,通过比较圆柱面法测得的相对衰减系数,能够对具有多种相结构的较大尺寸合金钢试样进行超声表征。该方法克服了绝对衰减系数测定法对实验条件要求极为苛刻、难以实现的不足,使得超声表征技术更接近工程条件、更具实用价值。
     利用窄带信号频谱分析技术灵敏度高的突出优点,选取中心频率为1MHz的窄带超声信号,对上述不同热处理试样进行超声功率谱分析,发现不同热处理产物在功率谱主频率、谱峰特征(幅度、数量、分布)等方面,都存在不同程度的差异。由此提出,可以把超声波窄带功率谱技术用于多相结构合金钢显微组织的超声表征。
     超声波速度、相对衰减系数及功率谱分析三种方法,各自独立;同时,三种方法区分不同组织的灵敏度不同,实验结果能够互为补充。38CrMoAl钢的淬火与淬火+低温回火组织,用声速法和主频率比较法都难以区分,最好的方法是比较功率谱谱峰特征(幅度、数量、分布)。而对于利用比较谱峰特征(幅度、数量、分布)无法区分的GCr15SiMn钢退火与正火组织,则可以利用相对衰减系数法进行比较。
     分析三种方法的研究结果认为,对于合金钢这类具有多种相结构的材料,应综合运用多种方法、提取多个参量,从不同角度进行对比表征,才能得出全面可靠的结论。
According to structural characteristics of multi-phased alloy steels and the properties of ultrasonic propagation, microstructures characterization with different heat treatment processes (normalizing, quenching/annealing, quenching plus low tempering, quenching plus high tempering) for three steels (40Cr, 38CrMoAl, GCrlSSiMn) was studied experimentally by using ultrasonic methods. Ultrasonic velocity, relative attenuation coefficient, and power spectral analyses were researched on the same samples respectively, on the basis of theory and experiment, the sensitivity and other characterizations of the three methods used to distinguish different microstructures were compared. The principle of multi-method and multi-parameter is suggested, which should be followed during characterizing microstructures of alloy steels by ultrasonic NOT method.
    Ultrasonic velocity (C,) of transformation products through different heat processes of three steels was measured by high-accuracy ultrasonic installation. The velocity of quenched microstructure of 38CrMoAl is the lowest, which gradually increases with increasing tempering temperature between 200癱 and 650癱 after quenching process. There is good correlation between HRC and C,. The velocity in normalizing structure is between the velocity in medium temperature and high temperature tempering production after quenching. The variation principle of wave velocity in different microstructures of 40Cr is similar with that of 38CrMoAl. The velocity in quenching and low temperature tempering structure of GCrlSSiMn is much lower than the velocity in normalizing, annealing and high temperature tempering structure. The difference in velocity among normalizing, annealing and high tempering structures are all approaching. The difference among the elasticity modulus of various microstructures is probably the main reason, which caused the experiment results above.
    Under the same experiment conditions, such as sample shape, size, surface roughness, establishment of testing system, pressure on the probe, and thickness of coupling medium, the variety of relative attenuation coefficient (or) in different heat treatment samples is measured and compared by measuring the attenuation obtained from the cylindrical surface of column. The result is as following: for 40Cr and 38CrMoAl, a MT    Because of the good sensibility, ultrasonic narrow band signal analysis technique with
    
    
    
    1MHz central frequency was chosen to differentiate the heat treatment samples above-mentioned. There are obvious differences among heat treatment products in principal frequency, spectral peak's quantity, amplitude and distribution. That is to say, the technique of ultrasonic narrow band power spectral can be applied to characterize the microstructures of multi-phased alloy steels.
    The three methods are independent, supplement mutually and proved each other because the sensibility of every method is different when used to distinguish different microstructures. For example, the quenching and quenching plus low tempered structure of 38CrMoAl are hard to be differentiated by velocity method and the principal frequency technique. It will be better if they are differentiated by the method of relative attenuation coefficient. Moreover, the best way is to compare the characteristic of spectral peaks in frequency domain.
    It could be concluded that, when microstructures of multi-phased alloy steels are ultrasonically characterized, the complete and reliable results could be drawn from many methods and parameters.
引文
[1] 张俊哲等著,无损检测技术及应用[M],北京:科学出版社,1993
    [2] 李喜孟主编,无损检测概论[M],北京:机械工业出版社,2001
    [3] 杨柯等译,发展中的材料研究[M](edited by Peter A. Psaras and H.Dale Langford),沈阳:辽宁科学技术出版社,1994年,p328
    [4] Song, Sung-Jin; Shin, Hyeon Jae; Jang, You Hyun, Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components[J], Nuclear Engineering and Design, 214, 2002, ppl51-161
    [5] Miya, K.; Uesaka, M.; Yoshida, Y. Applied electromagnetics research and application[J], Progress in Nuclear Energy, 32, 1998, pp 179-194
    [6] Ryu, K.S.; Nahm, S.H.; Kim, Y.B.; Yu, K.M.; Son, D, Dependence of magnetic properties on isothermal heat treatment time for 1Cr-1Mo-0.25 V steel[J], Journal of Magnetism and Magnetic Materials, 222, 2000, pp 128-132
    [7] Guyon, M.; Mayos, M., Nondestructive evaluation of fatigue damage on steels using magnetic techniques[J], NDT & E International, 29, 1996, p333
    [8] Di Maio, A.A.; Traversa, L.P., Estimation of concrete strength in situ using nondestructive testing[J], NDT & E International, 30, 1997, p265
    [9] Nesvijski, Edouard G, Some aspects of ultrasonic testing of composites[J], Composite Structures, 48, 2000, pp151-155
    [10] Saintey M., An evaluation of the use of thermal techniques for the NDT of sprayed coat[J], NDT & E International, 30, 1997, p325
    [11] Hopwood, T.; Oka, V.G.; Deen, R.C., Reliability assessment of high-risk steel bridges by nondestructive test methods[J], NDT & E International, 28, 1995, p394
    [12] Bergander, M.J., Magnetic flux leakage examination of petro/chemical heat exchanger tubing[J], NDT & E International, 30, 1997, p34
    [13] Liang, Ming-Te; Su, Po-Jen, Detection of the corrosion damage of rebar in concrete using impact-echo method[J], Cement and Concrete Research, 31,2001, pp1427-1436
    [14] Smith, B., Thermography-A fast and reliable method for non-destructive testing[J], NDT & E International, 29, 1996, pp 397-398
    [15] 李家伟,陈积懋主编,无损检测手册[M],北京:机械工业出版社,2002
    [16] 耿朵生,新千年的无损检测技术[J],无损检测,2001,23(1):2-5
    [17] 张家俊,无损检测技术的发展及其对国民经济发展的影响[J],无损检测,1993,15(2):31-34
    [18] 刘镇清,刘骁,超声无损检测的若干新进展[J],无损检测,2000,22(9):403
    [19] 程志虎,王怡之,陈伯真,无损评价的概念与内涵[J],中国机械工程,1998,9(3):60-63
    [20] Alex Vary, NDE of the Universe: New ways to look at old facts[J], Materials Evaluation, 1993, 51 (3):380-387
    [21] 美国无损检测手册译审委员会,美国无损检测手册(超声卷·上册)[M],上海:世界图书出版公司,1996
    [22] 《材料科学技术百科全书》编辑委员会编,材料科学技术百科全书[M],北京:中国大百科全书出版社,1995
    [23] 杨风民,铸铁件的超声波检测[J],现代铸铁,2001,No.4,pp61-64
    [24] Collins, David N.; Alcheikh, W., Ultrasonic non-destructive evaluation of the matrix structure and the graphite shape in cast iron[J], Journal of Materials Processing Technology, 55, 1995, pp85-90
    
    
    [25] Badidi Bouda, A.; Lebaili, S.; Benchaala, A., Grain size influence on ultrasonic velocities and attenuation[J], NDT & E International, 36, 2003, pp1-5
    [26] Ahn, Bongyoung; Seok Lee, Seung; Taik Hong, Soon; Chul Kim, Ho; Kang, Suk-Joong L.,Application of the acoustic resonance method to evaluate the grain size of low carbon steels[J], NDT & E International, 32, 1999, pp85-89
    [27] Gao, Weimin; Glorieux, Christ; Kruger, Silvio Elton; Van de Rostyne, Kris; Gusev, Vitalyi; et. al., Investigation of the microstructure of cast iron by laser ultrasonic surface wave spectroscopy[J], Materials Science and Engineering: A, 313, 2001, pp 170 - 179
    [28] Kobayashi, M., Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation-part Ⅱ. Experiment and simulation[J], International Journal of Plasticity, 14, 1998, pp 523-535
    [29] Ohtani, Toshihiro; Ogi, Hirotsugu; Minami, Yoshikiyo; Hirao, Masahiko, Ultrasonic attenuation monitoring of fatigue damage in low carbon steels with electromagnetic acoustic resonance (EMAR) [J], Journal of Alloys and Compounds, 310, 2000, pp440-444
    [30] Deflis, Ch.; Le Marois. G.; Gentzbittel, J.M.; Robert, G.; Motet, F., Properties of HIPed stainless steel powder[J], Journal of Nuclear Materials, 233, 1996, pp 183-187
    [31] Komsky. I.N.; Achenbach, J.D.; Stolarski, P.J., A self-compensating ultrasonic system for flaw characterization in steel bridge structures[J], NDT & E International, 28, 1995, p388
    [32] Firestone, F.A., Supersonic reflectoscope[J], J. Acoust. Soc. Am., 17, 1946, pp 286-299
    [33] Sokolov, S., Dokl. Akad. Nauk U.S.S.R, 59, 1948, p883
    [34] Mason, W.P. and McSkimin, H.J., Attenuation and scattering of high frequency sound waves in metals and glasses[J], J. Acoust. Soc. Am. 19, 1947, pp466-473
    [35] Mason, W.P. and McSkimin, H.J., Energy losses of sound waves in metals due to scattering and diffusion[J], J. Acoust. Soc. Am. 20, 1948, p586
    [36] Mason, W.P., Piezo-electric crystals and their application to ultrasonics, D. Van Nostrand, New York, 1950
    [37] Huntington, H.B., On ultrasonic scattering by polycrystals[J], J. Acoust. Soc. Am. 22, 1950, pp362-364
    [38] Lifshitz, I.M. and Parkhomovskii, G.D., Theory of propagation of ultrasonic waves in polycrystals[J], Rec. Kharkov Stat. Univ., 27, 1948, p25
    [39] Merkulov, L.G., Investigation of ultrasonic scattering in metals[J], Soviet Phys. Tech. Phys. 1, 1956, pp59-69
    [40] Ying C.F. and Truell, R., Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid[J], d. appl. Phys., 27, 1956, pp1085-1097
    [4l] Bhatia,A.B., Scattering of high frequency sound waves in polycrystalline materials, Part I[J], J.Acoust. Soc. Am. 31, 1959, pp 16-23
    [42] Papadakis, E.P., Grain size distribution in metals and its influence on ultrasonic attenuation measurements[J], J. Acoust. Soc. Am. 33, 1961, pp1616-1621
    [43] Einspruch, N.G., Witterholt, E.J., and Truell, R., Scattering of a plane transverse wave by a spherical obstacle in an elastic medium[J], J. Acoust. Soc. Am. 31, 1960, pp 306-318
    [44] Bhatia,A.B., and Moore, R.A., Scattering of high frequency sound waves in polycrystalline materials, Part Ⅱ [J], J. Acoust. Soc. Am. 31, 1959, pp1140-1141
    [45] Knopoff, L. and Hudson, J.A., Scattering of elastic waves by small inhomogeneities[J], J. Acoust. Soc. Am. 36, 1964, pp338-343
    
    
    [46] Burke, J.E., Long wavelength scattering by hard spheroids[J], d. Acoust. Soc. Am., 40, 1966, pp325-330
    [47] Lord Rayleigh, Phil. Mag. 41, 1971, p107
    [48] Roth, W., Scattering of ultrasonic radiation in polycrystalline metals[J], J. Acoust. Soc. Am. 19, 1948, pp901-910
    [49] Dunagan, H.L., Grain size measurement in uranium by use of ultrasonic[J], Mater Evaluation 22, 1964, pp 353-359
    [50] Papadakis, E.P., Revised grain-scattering formulas and tables[J], or. Acoust. Soc. Am. 37, 1965, pp 7.03-710
    [51] Beecham, D., Ultrasonic scatter in metals—its properties and its application to grain size determination[J], Ultrasonics 4, 1966, pp67-76
    [52] DiGiacomo, CT., Ohlstein, G., and Jones, W.J., Development of an ultrasonic method for determination of grain size in cast steel[J], Mater Evaluation 28, 1970, pp271-276
    [53] Rokhlin, L.L., Scattering of ultrasonic in polycrystalline materials[J], Soviet Phys.-Acousr 18, 1972, pp71-75
    [54] Szilard, J. and Scruton, G., Revealing the grain structure by ultrasonics[J], Ultrasonics 11, 1973, pp114-120
    [55] Fay, B., Theoretical considerations of ultrasound back-scatter[J], Acoustica 28, 1973, pp354-357
    [56] Szilard, J. and Scruton, G., An ultrasonic system for examining the grain structure of metals, In Proceedings of the I.E.E.E. Ultrasonic Symposium, Milwaukee, 1974, pp707-710
    [57] Kopec B., Ultrasonic inspection of grain size in the materials for railway wheel sets[J], Ultrasonics 13, 1975, pp267-274
    [58] Papadakis, E.P., Buffer-rod system for ultrasonic attenuation measurements[J], J. Acoust. Soc. Am. 44, 1968, pp1437-1441
    [59] Lynnworth, L.C., Attenuation measurements using the pulse-echo AB method without multiple echo reverberation in specimen[J], Mater Evaluation 31, 1973, pp6-16
    [60] Seki, H., Granato, A., and Truell, R., Diffraction in the ultrasonic field of a piston source and its importance in the accurate measurement of attenuation[J], d. Acoust. Soc. Am. 28, 1956, pp230-238
    [61] Papadakis, E.P. and Reed, E. L., Ultrasonic detection of changes in the elastic properties of a 70-30 iron-nickel alloy upon heat treatment[J], J. Appl. Phys., 32, 1961, pp682-687
    [62] Kamigaki, K., Sci. Rep. RITU Tohoku Univ., 1957, A-9, pp48-77
    [63] Merkulov, L.G., Soviet Phys. Tech. Phys. 2, 1957, pp1282-1286
    [64] Papadakis, E.P., Ultrasonic attenuation in S.A.E. 3140 and 4150 steel[J], J. Acoust. Soc. Am., 32, 1960, pp1628-1639
    [65] Papadakis, E.P., Ultrasonic attenuation and velocity in three transformation products in steel[J], J. Appl. Phys., 35,1964, pp1474-1482
    [66] Papadakis, E.P., in 'Physical acoustics: principles and methods', Vol.4, Part B, (ed.W.P. Mason), 315-316; 1968, New York, Academic Press
    [67] Papadakis, E.P, d. Appl. Phys., 34, 1963, pp265-269
    [68] Papadakis E.P., Ultrasonic Attenuation and velocity in SAE 52100 steel quenched from various temperatures[J], Metallurgical Transactions, 1,1970, pp1053-1057
    [69] Papadakis E.P., Physical acoustics and microstructure of iron alloys[J], International Metals Review,29, 1984, pp1-24
    [70] Hirsekon, S., The scattering of ultrasonic wave in polycrystals[J], dASA, 72, 1982, pp1021-1031
    
    
    [71] Palanichamy, P.; Joseph, A.; Jayakumar, T.; Raj, Baldev, Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel[J], NDT & E International 28, 1995, pp179-185
    [72] Kwun, H., Measurement of stress in steels using magnetically induced velocity changes for ultrasonic waves[J], NDT & E International, 28, 1995, p119
    [73] Queheillalt, Douglas T.; Sypeck, David J.; Wadley, Haydn N.G., Ultrasonic characterization of cellular metal structures[J], Materials Science and Engineering: A 323, 2002, pp138-147
    [74] Souto, S.; Massot, M.; Balkanski, M.; Royer, D., Density and ultrasonic velocities in fast ionic conducting borate glasses[J], Materials Science and Engineering: B 64, 1999, pp33-38
    [75] Chang, L.-S.; Chuang, T.-H.; Wei, W.J., Characterization of alumina ceramics by ultrasonic testing[J], Materials Characterization, 45, 2000, pp221-226
    [76] Papadakis E.P., Ultrasonic velocity and attenuation measurement methods with scientific and industrial applications, Physical Acoustics: Principles and Methods, Vol.12, 1976, pp277-374, Academic Press, New York, NY
    [77] Vary, A., Computer signal processing for ultrasonic and velocity measurement for material property characterization (NASA TM-79180), Proceedings of the 12th Symposium on NDE, 1979, pp33-46, Southwest Research Institute, San Antonio, TX
    [78] 盛国裕,超声波测厚仪检测轴承内部组织[J],无损探伤,1998,No.3,pp16-18
    [79] 盛国裕,淬回火加热工艺对超声波声速的影响[J],无损探伤,2000,No.1,pp17-19
    [80] Jayakumar, T. et al, Influence of microstructure on ultrasonic velocity in Nimonic alloy PE16, Review of Progress in QNDE, edited by Thompson, D.O. and Chimenti, D.C., Plenum Press, New York, Vol.10, 1991, pp1693-1699
    [81] Papadakis E.P., "Ultrasonic attenuation caused by scattering in polycrystalline media", Chap. 15 of Physical Acoustics, Vol.4, Part 8, Mason, W.P., ed., Academic Press (New York)
    [82] Papadakis, E.P., Ultrasonic attenuation by scattering in polycrystalline metals[J], J. Acoust. Soc.Am, 37, 1965, pp711-717
    [83] Gericke, O.R., Ultrasonic spectroscopy of steel[J], Mater Res. Std., 5, 1965, pp 23-30
    [84] Mercier, N., Ultrasonic classification of metals by grain size, Proc. 1975 Ultrasonics International, pp64-67
    [85] Fitting, D.D. and Adler, L., Ultrasonic spectral analysis for nondestructive evaluation[M], 1981 Plenum Press, New York, pp131-135
    [86] Kumar, A. et al, Influence of grain size on ultrasonic spectral parameters in AISI type 316 stainless steel[J], Scripta Materials, 1999, 40(3):333-340
    [87] Yamada, Y. et al, Reports of the National Industrial Research Institute of Nagoya 43, p262, 1994
    [88] Dobmann, Gerd; Krning, Michael; Theiner, Werner; Willems, Herbert; Fiedler, Uwe, Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage[J], Nuclear Engineering and Design, 157, 1995, pp137-158
    [89] Rokhlin, S.I.; Chu, Y.C.; Huang, W., Ultrasonic evaluation of fatigue damage in metal matrix composites[J], Mechanics of Materials, 21, 1995, pp 251-263
    [90] Ting, Kuen; Ma, Yin Pang, The evaluation of erosion/corrosion problems of carbon steel piping in Taiwan PWR nuclear power plant[J], Nuclear Engineering and Design, 191, 1999, pp231-243
    [91] Obraz J., Frequency analysis in ultrasonic testing, World Conference on NDT, 1976, Vol.4(2): 3F3
    [92] 中国机械工程学会无损检测学会编,无损检测概论[M],北京:机械工业出版社,1993
    [93] 李靖等译,J.克劳特克洛默,H.克劳特克洛默著,超声检测技术[M],广州:广东科技出版
    
    社,1984
    [94] 李靖等译,日本学术振兴会制钢第19委员会编,超声波探伤法[M],广州:广东科技出版社,1981
    [95] Kimura, K., The measurement of ultrasonic attenuation in round bars with bottom echoes[J], Journal of the Japanese Society for Non-destructive testing, 13, 1963, pp 312-319 (in Japanese)
    [96] Kimura, K., Cylinder surface echoes in ultrasonic testing of round specimen[J], Journal of the Japanese Society for Non-destructive testing, 11, 1962, pp 191-196 (in Japanese)
    [97] 李喜孟,姜成刚等,超声无损评价离心球铁管质量的研究[J],无损探伤,1998,No.5,pp13-16
    [98] 姜成刚,离心球铁管超声波无损评价(NDE),大连理工大学硕土论文,1997
    [99] 陈军,李喜孟,林莉,HK-40转化炉管超声检测中的影响因素[J],无损探伤,2000,No.3,pp42-44
    [100] 陈军,李喜孟,林莉,HK-40炉管的蠕变损伤及检测方法[J],无损探伤,1999,No.4,pp43-45
    [101] 李喜孟,林莉,超声波频谱分析技术[M],大连理工大学校内教材,1999
    [102] 李喜孟,林莉,《超声波频谱分析技术》实验指导书[M],大连理工大学校内教材,1999
    [103] 李喜孟,林莉译校,无损评价与宇宙观——从全新的角度看问题(1),无损探伤,1997,No.5,pp29-33
    [104] 李喜孟,林莉译校,无损评价与宇宙观——从全新的角度看问题(2),无损探伤,1997,No.6,pp31-34
    [105] 赵建华译(李喜孟,林莉校),选取NDE(无损评价)技术的知识框架[J],无损探伤,1999,No.3,pp24-29
    [106] 李喜孟,林莉,孙井方,金属材料超声无损评价进展[J],无损探伤,1999,No.1,pp37-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700