杯形工具变幅杆振动系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波加工已广泛应用于各种工程领域,并且在半导体和不导电非金属硬脆材料的精密加工中,体现出了普通加工无法比拟的工艺优越性。超声振动磨削加工是超声加工方法中的一种,其与传统磨削加工相比在提高材料去除率、提高工件表面加工质量等方面具有十分显著的优势。
     杯形磨削工具在硬脆材料加工中具有十分广泛的应用,例如可用于平面的超声辅助磨削加工、大直径孔和圆柱棒料的套料加工等,但其尺寸通常较大且形状较为复杂,对超声系统的振动状态影响较大。因此,为了获得准确的超声系统谐振频率、稳定均匀的超声振幅输出,将杯形磨削工具与变幅杆进行一体化设计。
     本文基于超声波纵弯模态转换,对杯形工具变幅杆振动系统进行了理论设计、有限元仿真、振动状态验证试验以及设计仿真软件的开发,主要工作及研究内容如下:
     1.结合杯形工具变幅杆振动系统的结构特点,对超声波在中间段薄圆盘中的振动模态进行分析,推导出描述薄板弯曲振动模态的位移方程,并进一步分析得出超声波在系统中的模态转换形式,以此为基础并结合系统三段的位移函数以及相应的边界条件,通过变幅杆的传统设计法推导出杯形工具变幅杆振动系统的频率方程,并带入预设的已知材料属性参数与尺寸参数对系统进行了理论设计。
     2.利用大型通用有限元分析软件ANSYS对理论设计的杯形工具变幅杆振动系统进行有限元仿真分析,建模参数为预设的材料属性参数及利用所推导频率方程计算出的系统尺寸参数,有限元分析类型选择模态分析,仿真出的振动系统振动状态良好,振幅放大作用明显,仿真频率(22370Hz)与理论设计频率(25000Hz)较为接近,验证了系统的模态转换理论。
     3.搭建杯形工具变幅杆振动系统振动状态验证试验平台,试验平台由超声波发生器、压电陶瓷超声换能器、杯形工具变幅杆振动系统、激光位移传感器以及示波器组成。试验测量结果显示,系统输出端面振幅为6μm,系统谐振频率为20223Hz,略低于有限元仿真频率22370Hz,系统振动状态良好,输出端面振幅均匀,与理论设计与有限元仿真分析结果符合的很好。
     4.基于MATLAB与ANSYS的联合调用,开发了一款变幅杆设计软件,软件主要用于对杯形工具变幅杆振动系统及常用的各种类型变幅杆进行理论设计与有限元仿真分析,软件界面友好,操作简便,功能强大。
Ultrasonic processing has been widely used in all kinds of engineering fields, which shows great superiority over the traditional processing, especially in the precision processing of semiconductors and non-conducting nonmetallic hard brittle materials. Ultrasonic vibration aided grinding is one of ultrasonic processing methods, which has greater advantage in increasing material removal rate and making the quality of processing surface higher compared with the traditional grinding.
     Cup grinding tools are widely used in the processing of hard brittle materials, such as the ultrasonic vibration aided grinding of parts'surface, the nesting processing of the large diameter hole and the cylindrical bar. But the size of the cup grinding tools are always big, which has big effect on the vibrating condition of the ultrasonic vibration system. So for getting an accurate resonant frequency, stable and average output, integrated design of the horn and the cup grinding tool is proposed.
     This article is based on the longitudinal-bending mode transition of the ultrasonic in the vibration system, which performs a theoretical design, finite element simulation and develops a design software for the cup tool horn vibration system. The main work and results are as follows:
     1. According to the structural characteristics of the cup tool horn vibration system, analysis has been performed on the ultrasonic vibration mode in the thin disk of the vibration system, the bending mode displacement equation of the thin disk is given, eventually the mode transition form of the ultrasonic in the vibration system is. figured out. Based on the mode transition form and combined with the displacement equation of the vibration system's three parts and their relevant boundary conditions, using the traditional horn design method the frequency equation of the vibration system is derived. With the default material attribute parameters and size parameters bringing into the derived frequency equation, the theoretical design of the vibration system is finally accomplished.
     2. Finite element simulation is performed using ANSYS on the vibration system that has been theoretically designed, the modeling parameters are from the default material attribute parameters and the derived size parameters, simulation type is chosen as the mode analysis. The analysis results reveal that the vibration system performs quite good vibrating condition and the magnification factor is quite big. The simulation resonant frequency(22370Hz) is quite close to the theoretically designed resonant frequency(25000Hz), proving the mode transition theory of the vibration system.
     3. The vibrating condition testing experimental platform for the designed vibration system is set up, the platform is made up of ultrasonic generator, piezoelectric ceramic transducer, cup tool horn vibration system, laser displacement sensor and oscilloscope. The measuring results show that the amplitude of the output surface is6μm, the resonant frequency the vibration system is20223Hz which is a little lower than the simulation resonant frequency, the vibrating condition of the vibration system is excellent, the amplitude of the output surface is quite even. The experimental results correspond perfectly with the results of finite element simulation and theoretical design.
     4. Based on the combined use of the MATLAB and ANSYS, a horn design software has been developed. This software is used for the theoretical design and finite element simulation of the cup tool horn vibration system and other common types of horns, it provides friendly interface, convenient operation and strong function.
引文
[1]谨亚辉.超声波变幅杆优化设计及加工机理试验研究[D].太原:太原理工大学,2010.
    [2]岳军,刘混举.工程陶瓷的旋转超声加工方法[J].电子工艺技术.2008(1):49-52.
    [3]曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势[J].电加工与模具.2005(S1):25-31.
    [4]郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报(自然科学版).2009(11):1799-1804.
    [5]Shoh.Industrial Applications of Ultrasound-A review l.High Power Ultrasound[J]. IEEE Trans on Sonics andUltrasonics.1975, SU-22(2):60-71.
    [6]Parrini L.New Methodology For The Design Of Advanced Ultrasonic Transducers For Welding Devices[J]. Proceedings of the IEEE International Ultrasonics Symposium.2000:699-714.
    [7]W W, Cimino L J B. Physics of Ultrasonic Surgery using Tissue Fragmentation [J]. Proceedings of the IEEE International Ultrasonics Symposium.1995:1597-1600.
    [8]K F, Graf P. Applications of Power Ultrasonics-A Review[J]. Proceedings of the IEEE International Ultrasonics Symposium.1974:628-641.
    [9]A N E.Ultrasonic Machining nad Fomring Poreess. [R].30th Intenrational MATADOR Conefernee,1993.
    [10]冯冬菊.超声波铣削加工原理及相关技术研究[D].大连:大连理工大学,2006.
    [11]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [12]梁志强,王西彬,吴勇波等.超声振动辅助磨削技术的现状与新进展[J].兵工学报.2010(11):1530-1535.
    [13]刘井权.超声切割机理及切割要素设计研究[D].哈尔滨:哈尔滨工业大学,2001.
    [14]陈桂生.超声换能器设计[M].北京:科学出版社,1984.
    [15]杨昆严等.超声变幅器的机械阻抗分析[J].现代电力.1999,16(1):24-29.
    [16]林书玉,张福成.大尺寸矩形断面超声变幅杆固有频率的研究[J].声学学报.1992,17(6):451-455.
    [17]林书玉,张福成.超声塑料焊接工局横向振动及开槽的研究[J].声学技术.1992,11(4):24-36.
    [18]俞宏沛.非轴对称变幅杆的设计及阶梯形变幅杆圆滑过渡的研究[J].声学与电子工程.1994(1):9-13.
    [19]Amin S.Computer-aided Design of Acoustic Horns for Ultrasonic Machining Using Finite-element Analysis[J].Joumal of Materials Processing Teehnology.1995,55 (3-4):254-260.
    [20]Wise T B T D. Review on Ultrasonic Machining[J]. Intenrational Joumal of Machine Tools and Manufacture.1998,38(4):239-255.
    [21]张云电.超声加工及其应用[M].北京:国防工业出版社,1995.
    [22]杨超华.大截面超声变幅杆振动特性研究及设计软件开发[D].广东:广东工业大学,2006.
    [23]张云电等.超声变幅杆的超声精密加工[J].应用声学,1994.
    [24]Mason W P.Maximing the probability of Aehieving a Goal in the case of a Partially observed Dritf Proeess[P]. US Patent,2514080,1945.
    [25]MEPKYOBJ I, XAPUTANOBJ I B.Akyct.1959(5):183-189.
    [26]EISNERE, JASA.1963(35):1367-1378.
    [27]森荣司,伊藤胜彦.日本音响学会研究发表讲演论文集[C].1968(5):285.
    [28]MASON W P. Electromechanical Transducer and Wave Filters[M].New York:Van Nostrand,1948.
    [29]Guangping Zhou.The performance and design of ultrasonic vibration system for exural mode[J].Ultrasonies,2000,38:979-984.
    [30]E Mori, K Itoh, A Imamura. Analysis of a short column vibrator by apparent elasticity method and its application[R]. Ultrasonics International 1977 Conference Proceedings,262.
    [31]Andrea Cardoni, Margaret Lueas. Enhanced vibration performance of ultrasonic block horns[J].Ultrasonics,2002(40):365-369.
    [32]K 0 Shea. Enhanced vibration control of ultrasonic tooling using finite element analysi s[J]. Proc.ASME,1991(37):259-265.
    [33]K Adachi, S Ueha,E Mori. Modal vibration analysis of ultrasonic Plastic welding tools using the finite element method[J]. Proeeedings of Ultrasonic International, London,UK,1986,727-732.
    [34]林书玉,张福成.大尺寸矩形断面超声变幅杆固有频率的研究[J].声学学报,1992,17(6):451-455.
    [35]阮世勋.超声弯曲谐振杆准确计算和应用的几个问题[J].应用声学,1990,9(4):29-34.
    [36]林书玉.纵-扭复合振动模式指数型复合超声变幅杆的研究[J].应用声学,1997,16(5):42-46.
    [37]林书玉.大功率纵-弯超声振动系统的研究[J].声学技术,1997,16(4):205-208.
    [38]阮世勋.以双曲正割型杆为基础的新型扭振变幅杆[J].声学学报,1994,19(6):444-449.
    [39]阮世勋.余弦型和类余弦型超声变幅杆的研究[J].声学技术,1997(1):22-25.
    [40]阮世勋.几种扭振复合超声变幅杆的研究[J].应用声学,1998,17(1):21-27.
    [41]阮世勋.扭振超声变幅杆谐振参量测量方法的研究[J].应用声学,1996,15(2):17-19.
    [42]万德安,刘春节.超声变幅杆的模态分析[J].机械与电子,2004(4):10-13.
    [43]Sherrit S, Askins S A, Gradziol M, Dolgin B P, Bao X, Chang Z, Bar-Cohen Y. "Novel Horn Designs for Ultrasoinc/Sonic Cleaning Welding, Soldering, Cutting and Drilling", Proc.SPIE Smart Structure and Materials,2002.
    [44]Chang Z, Sherrit S, Bao X, Bar-Cohen Y. "Design and Analysis of Ultrasonic Horn for USDC (Ultrasoinc/Sonic Driller/Corer)", Proc. SPIE Smart Structure and Materials,2004.
    [45]Zensheu Chang, Stewart Sherrit, Mircea Badescu, Xiaoqi Bao, Yoseph Bar-Cohen. "Design and analysis of ultrasonic actuator in consideration of length-reduction for a USDC(Ultrasonic/Sonic Driller/Corer", Proc. SPIE Smart Structure and Materials,2005.
    [46]皮钧,纪跃波.纵波回形变幅杆的研究[J].振动、测试与诊断,2010,30(1):65-69.
    [47]许龙,林书玉.一种新型的纵一弯模式转换圆筒形超声塑焊工具头的设计[J].声学技术,2009,28(5):185-186.
    [48]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版社,2000:166-207.
    [49]李显宏MATLAB 7.X界面设计与编译技巧[M].北京:电子工业出版社,2006.
    [50]阮沈勇,王永利,桑群芳MATLAB程序设计[M].北京:电子工业出版社,2004.
    [51]周灵.详解MATLAB工程科学计算与典型应用[M].北京:电子工业出版社,2010.
    [52]隈部淳一郎,韩一昆,薛万夫译.振动切削<基础与应用>[M].北京:机械工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700