超声加载频率对GCr15钢超高周疲劳性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波振动加载实验是实现超高周疲劳实验研究的一种加速实验方法。然而对于钢铁材料,超声振动一方面可能带来“频率效应”,即,由于材料的位错运动速度远远小于超声波加载速度,材料的塑性变形响应滞后于加载速度,实际承受应力小于加载应力,导致实验获得的材料疲劳强度上升和寿命的延长;另一方面,超声振动使材料的内摩擦加剧,可能引起“温度效应”,即,疲劳实验过程中试样升温,造成试样的热损伤,导致疲劳寿命下降。
     高速铁路机车车辆的转向架构架及其零部件,航空航天机械、汽车、发动机、发电机及海洋结构、桥梁等在服役期内要承受109次以上的交变载荷,要保证这些设备和结构的长期安全使用,必须研究结构材料的超高周疲劳性能。因此,研究超声加载频率对结构材料超高周疲劳性能的影响,从而确定加速疲劳实验的妥当性十分必要。
     本论文对比研究了80Hz轴向疲劳加载和20kHz超声轴向疲劳加载的加载频率对GCr15轴承钢超高周疲劳性能的影响。对于超声疲劳实验,分别采用了压缩空气和水冷却试样,并采用连续和间歇加载方式,以比较超声振动引起的试样升温对疲劳性能的影响。断口观察表明,80Hz轴向加载试样,在全应力幅范围既发生表面破坏又发生由夹杂物引起的内部破坏;压缩空气冷却的连续加载超声试样,在全应力幅范围以夹杂物引起的内部破坏为主,当萌生裂纹的夹杂物距试样表面较深时,夹杂物周围伴有高温烧痕;水冷却的连续加载超声试样,在高应力幅区,发生不受水腐蚀影响的内部破坏;压缩空气冷却的间歇加载超声试样,在全应力幅范围均为夹杂物引起的内部破坏。实验结果及分析表明,超声加载频率提高了试样的寿命,超声振动引起的高温降低了试样的寿命。
Ultrasonic fatigue testing system delivers accelerated testing of materials fatigue in giga-cycle region. However, for Iron and Steel Materials, on the one hand, ultrasonic vibration may lead to "frequency effect", that is, the stress that materials practical endure is less than theoretical loading stress, in that dislocation velocity of materials is far less than ultrasonic loading speed, resulting to increase fatigue life of materials.On the other hand, the Aggravation of inner friction induced by the ultrasonic vibration, probably induces "temperature effect", namely, temperature rising in the experimental process that leads to thermal damage of materials, resulting in decrease fatigue life of materials.
     Many mechanism and engineering structure, such as bogie frame, automobile, engine, generator, marine structure and bridge etc., bears alternating load over 109 cycles in service period. It is essential to research giga-cycle fatigue properties of these structures and equipments to guarantee safe running in the long term. Therefore, it is necessary to determine the appropriateness of ultrasonic fatigue test for researching the effect of frequency on giga-cycle fatigue properties for structural materials.
     In order to investigate the effect of frequency on giga-cycle fatigue properties for GCr15 steel, ultrasonic fatigue (test frequency:20kHz, continuous loading and interval loading) and cyclic axial loading (test frequency:80Hz) tests with stress ratio R=-1 were carried out for GCr15 steel using hourglass-shaped specimens.During fatigue test, the specimens used for ultrasonic fatigue were cooled with dry air and water, respectively, to examine the effect of temperature raising inside specimens.The fractography observation results show that the fatigue fracture occurred at surface flaws, a surface inclusion or an internal inclusion in the whole stress amplitude level under 80Hz cyclic axial loading, whereas it mainly occurred at an internal inclusion in the whole stress amplitude level under ultrasonic continuous loading with dry air cooling. Under the condition of dry air cooling, when an inclusion induced fatigue facture locates at the deeply interior of specimen, a burned area surrounding the inclusion was observed by optical microscope. Under ultrasonic continuous loading with water cooling, it mainly occurred at an internal inclusion in the high stress amplitude level. Under ultrasonic interval loading with air cooling, it all occurred at an internal inclusion in the whole stress amplitude level.
     Experimental results show that the ultrasonic loading frequency increased the fatigue life of GCr15 steel, and the high temperature originated in ultrasonic vibration decreased the fatigue life of GCr15 steel.
引文
[1]SchRtz Walter. A history of fatigue[J]. Engineering Fracture Mechanics,1996,54(2):263-300.
    [2]Rankine William John Macquorn, E. Assoc. Inst. C. On the causes of the unexpected breakage of the journals of railway axles; and on the mean of preventing such accidents by observing the law of continuity in their construction[J]. Journal of the Franklin Institute,1843,36(3):178-180.
    [3]Braithwaite F. On the fatigue and consequent fracture of metals[J]. Institution of Civil Engineers, Minutes of Proceedings,1854,58(3):463-467.
    [4]Lanza G. Strength of shafting subjected to both twisting and bending[J]. Transactions of the ASAE, 1886(8).
    [5]Basquin O. H. The exponential law of endurance tests[J]. Am Soc Test Mater Proc, 1910,10:625-630.
    [6]Griffith A. A. The phenomenon of rupture and flow in solids[J]. Philosophical transactions of the Royal society of London. Series A, Mathematical and physical sciences. VOL221,1921:163-198.
    [7]Weibull W. A statistical distribution function of wide applicability [J]. J. Appl. Mech.-Trans. ASME,1951,18(3):293-297.
    [8]Manson S. S. Fatigue behaviour in strain cycling in the low and inter-cycle range[J]. Syracuse University Press,1964.
    [9]Irwin G. R. Analysis of stress and strains near the end of a crack traversing s plate[J]. Journal of applied mechanics,1957,24:361-364.
    [10]Neuber H. Theory of stress concentration for shear-strained prismatic bodies with arbitrary nonlinear stress-strain law[J]. Jour. Appl. Mech,1961,28:544-551.
    [11]Paris P. S., Gomez M. P., Anderson W. E. A rational analytic theory of fatigue[J]. The Trend in Engineering,1961,13(1):9-14.
    [12]Paris P., Erdoga F. A critical analysis of crack propagation laws[J]. J Basic Eng, Trans Am Soc Mech Eng,1963,10:528-534.
    [13]Elber W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970,2:37-45.
    [14]Ritchie R. O., Suresh S., Moss C. M. Near-threshold fatigue crack growth in 21/4 Cr1Mo pressure vessel steel in air and hydrogen.[J]. Journal of Engineering Materials and Technology, 1980,102:193-299.
    [15]Wetzel R. M. Fatigue under complex loading:analyses and experiments[J]. Society of Automotive Engineers, Warrendale, PA,1977,6:137-144.
    [16]Pearson S. Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of very short cracks[J]. Eng Fracture Mech,1975,7:235-247.
    [17]Naito T., Ueda H., Kikuchi M. Observation of Fatigue Fracture Surface of Carburized Steel[J]. J. Soc. Mat. Sci., Japan,1983,32,No.361:1162-1166.
    [18]Masuda C., Isii A., Nishijiama S. Heat-to-Heat Variation in Fatigue Strength of SCr420 Carburized Steels[J]. Trans. JSME, Part A,1985,51,No.464:847-852.
    [19]Masuda C., Nishijiama S., Tanaka Y. Relationship Between Fatigue Strength and Hardness for High Strength Steels[J]. Trans. JSME, Part A,1986,52,No.476:847-852.
    [20]Emura H., Asami K. Fatigue Strength Characteristics of High Strength Steel[J]. Trans. JSME, Part A, 1989,55,No.509:45-50.
    [21]Kuroshima Y., Saito Y., Shimizu M. Relationship between Fatigue Crack Propagation Originating at Inclusion and Fracture-Mode Transition of High-Strength Steel[J]. Trans. JSME, Part A, 1994,60,No.580:2710-2715.
    [22]Nakamura T., Kaneko M., Tanabe T. Cause of the second drop of the S-N diagram of ADI after levelling off [J]. Trans. JSME, Part A,1995,61,No.582:441-446.
    [23]Kuroshima Y., Ikeda T., Harada M. Subsurface Crack Growth Behavior on High Cycle Fatigue of High Strength Steel[J]. Trans. JSME, Part A,1998,64, No.626:2536-2541.
    [24]Murakami Y., Takadat M., Toriyama T. Super-long life tension compression fatigue properties of quenched and tempered 0.46% carbon steel[J]. Int. J. Fatigue,1998,20:661-667.
    [25]Nishijima S., Kanazawa K. Stepwise S-N curve and fish-eye failure in gigacycle fatigue[J]. Fatigue Fract. Engng. Mater. Struct,1999,Vol.22:601-607.
    [26]Sakai T., Takeda M., Shiozawa K. Experimental evidence of duplex S-N characteristics in wide life region for high strength steels:Fatigue '99, Proceeding of the seventh International Fatigue Congress Vol.1,1999[C].
    [27]Murakami Y., Nomoto T., Ueda T. On the mechanisms of fatigue failure in the superlong life regime[J]. Fatigue Fract. Engng. Mater. Struct,2000,23:893-910.
    [28]Murakami Y., Yokoyama N., Nagata J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue Fract. Engng. Mater. Struct,2002,25:735-746.
    [29]Sakai T., Sato Y., Oguma N. Characteristics S-N properties of high carbon chromium bearing steel under axial loading in long-life fatigue[J]. Fatigue Fract. Engng. Mater. Struct,2002,25:765-773.
    [30]Ochi Y., Matsumura T., Masaki K. High-cycle rotating bending fatigue property in very long-life regime of high-strength steels[J]. Fatigue Fract. Engng Mater. Struct,2002,25:823-830.
    [31]Shiozawa K., LU Liantao, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fract. Engng. Mater. Struct,2001,24:781-790.
    [32]Shiozawa K., LU Liantao. Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel[J]. Fatigue Fract. Engng. Mater. Struct,2002,25:813-822.
    [33]Shiozawa K., MORII Y., NISHINO S. A Study of Subsurface Crack Initiation and Propagation Mechanism of High Strength Steel by Fracture Surface Topographic Analysis[J]. J. Soc. Mat. Sci, Japan,2003,52, No.11:1311-1317.
    [34]Shiozawa K., NISHINO S., MORII Y. Subsurface Crack Initiation and Propagation Mechanism of High Strength Steel in Very High Cycle Fatigue Regime[J]. Proceedings of the Third International
    Conference on Very High Cycle Fatigue,2004:85-92.
    [35]Shiozawa K., NISHINO S., Shibata N. Effect of Tempering Temperature on Super-long Fatigue Behavior of Low Alloy Steel, SNCM439[J]. Proceedings of the Third International Conference on Very High Cycle Fatigue,2004:609-616.
    [36]Wu T. Y., Jago G., Bechet J. Accelerated vibratory fatigue test by ultrasonic frequency at cryogenic temperature[J]. Engineering Fracture mechanics,1996,54(6):891-895.
    [37]Bathias C., EL Alami K., Wu T. Y. Influence of mean stress on Ti6Al4V fatigue crack growth at very high frequency[J]. Engineering Fracture Mechanics,1997,56(2):255-264.
    [38]Jago G., Bechet J. Influence of microstructure of (a+β) Ti-6.2.4.6 alloy on high-cycle fatigue and tensile test behavior[J]. Fatigue Fract. Engng. Mater. Struct,1999,22:647-655.
    [39]Bayraktar E., Bathias C., XUE H. Q. On the giga cycle fatigue behaviour of two-phase (a2+y) TiAl alloy[J]. Int. J. Fatigue,2004,26:1263-1275.
    [40]Wang Q. Y., Bathias C. Fatigue characterization of a spheroidal graphite cast iron under ultrasonic loading[J]. Journal of Materials Science,2004,39(2):687-689.
    [41]Wang Q. Y., Berard J. Y., Dubarre A. Gigacycle fatigue of ferrous alloys[J]. Fatigue Fract. Engng. Mater. Struct,1999,22:667-762.
    [42]Wang Q. Y., Berard J. Y., Rathery S. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires[J]. Fatigue Fract. Engng. Mater. Struct,1999,22:673-677.
    [43]Marines I., Dominguez G., Baudry G. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz[J]. Int. J. Fatigue,2003,25:1037-1046.
    [44]Sun Z. D., Bathias C., Baudry G. Fretting fatigue of 42CrMo4 steel at ultrasonic frequency[J]. Int. J. Fatigue,2001,23:449-453.
    [45]Bathias C. There is no infinite fatigue life in metallic materials[J]. Fatigue Fract. Engng. Mater. Struct,1999,Vol.22:559-566.
    [46]Stanzl-Tschegg S. E., Plasser O., Vasudevan A. K. Influence of microstructure and load ratio on fatigue threshold behavior in 7075 aluminum alloy[J]. Int. J. Fatigue,1999,21:255-262.
    [47]Stanzl-Tschegg S. E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies [J]. Fatigue Fract. Engng. Mater. Struct,1999,22:567-580.
    [48]Mayer H. R., Papakyriacou M., Pippan R. Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1.5 aluminium alloy[J]. Materials Science and Engineering A, 2001,314:48-54.
    [49]Stanzl-Tschegg S. E., Mayer H. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles[J]. Int. J. Fatigue,2001,23:231-237.
    [50]Stanzl-Tscbegg S. E., Mayer H., Stich A. Variable amplitude loading in the very high-cycle fatigue regim[J]. Fatigue Fract. Engng. Mater. Struct,2002,25:887-896.
    [51]Mayer H., Papakyriacou M., Zettl B. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys[J]. Int. J. Fatigue,2003,25(245-256).
    [52]Furuya Y.. Matsuoka S., Abe T. Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz,600 Hz, and 20 kHz[J]. Scripta materialia,2002,46(2):157-162.
    [53]纪子堤,晃城本,Veronique DOQUET,等.低炭素鋼の疲勞強度特性に及ぽす(?)繰返レ速度の影響[J].日本機械学會論文集.A编,2006,72(715):317-325.
    [54]Urabe N., Weertman J. Dislocation mobility in potassium and iron single crystals[J]. Materials Science and Engineering,1975(18):41-49.
    [55]Shiozawa K., Lu L. T., Ishihara S. Fatigue Facct Eng Mater Struct[J].2001,46(157).
    [56]Murakami Y., Nomoto T., Ueda T. Fatigue Facct Eng Mater Struct[J].1999,48(1112).
    [57]Lu L. T., Shionzawa K., Ishihara S. Mater Sci Res Int STP-1 [J]. Japan:Soc Mater Sci Jpn,2001,35.
    [58]村上敬宜,玉昭太郎,小沼静代.高強度鋼の疲勞强度に及ばす介在物の影響。定量的評价法[J].日本概械学会论文集A,1988,54(500):688-695.
    [59]酒井连雄,左藤陽介,小熊规泰.高炭素夕口ム轴受钢の畏寿命轴荷重疲勞特性に(?)する研究[J].日本概械学会論文集A,2001,64(664):104-111.
    [60]李伟.GCr15钢超高周疲劳行为的研究[D].西南交通大学硕士论文,2007.
    [61]Matikas. T. E. Specimen design for fatigue testing at very high frequencies[J]. Journal of Sound and Vibration,2001,247(4):673-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700