温压Fe-2Cu-2Ni-1Mo-1C烧结材料的组织与疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温压技术是以低成本制造高密度、高性能粉末冶金零件的一种新方法。本文以部分扩散预合金Fe-2Cu-2Ni-1Mo-1C粉末为原料,利用模壁润滑温压工艺获得高密度压坯(7.35~7.40 g/cm3),采用网带烧结、钼丝煅烧炉烧结和烧结硬化三种工艺烧结,并对烧结试样进行了合理的热处理工艺。研究了不同烧结工艺下材料力学性能、显微组织及断口形貌的变化;对Fe-2Cu-2Ni-1Mo-1C烧结材料和热处理工艺条件下的材料进行弯曲超声疲劳试验,并用SEM和EDS对疲劳断口进行显微分析,研究了烧结材料的疲劳断裂行为和疲劳断裂机理以及热处理工艺对其疲劳性能的影响。
     研究结果表明:不同烧结工艺下Fe-2Cu-2Ni-1Mo-1C材料的显微组织及力学性能不同。网带烧结工艺,烧结密度为7.30 g/cm3,抗拉强度690 MPa,延伸率7.9%,表观硬度285HB;钼丝煅烧炉烧结工艺,烧结密度为7.32 g/cm3,抗拉强度760MPa,延伸率2.5%,表观硬度311HB;烧结硬化工艺,烧结密度为7.35 g/cm3,抗拉强度935MPa,延伸率3.5%,表观硬度302HB。烧结材料的最终显微组织均为马氏体、珠光体、贝氏体和残余奥氏体等多种类型组织混合存在。不同烧结工艺影响各相组织含量,钼丝煅烧炉烧结和烧结硬化工艺下马氏体含量相对增加,网带烧结工艺下主要为珠光体组织。
     Fe-2Cu-2Ni-1Mo-1C烧结材料的弯曲超声疲劳试验结果显示:三组不同烧结工艺处理的试样在104~109循环周次下的S-N曲线均为一条连续下降的曲线,随循环次数的增加,应力幅σα连续降低,不存在传统疲劳概念上的“疲劳极限”和无限寿命,只存在条件疲劳极限。根据Basquin方程求得不同工艺下试样的条件疲劳极限为:网带烧结态试样在106,107,108循环周次下的条件疲劳极限分别为358MPa,280MPa和219MPa。烧结硬化态试样在106,107,108循环周次下的条件疲劳极限分别为293MPa,239MPa和194MPa。
     Fe-2Cu-2Ni-1Mo-1C烧结试样疲劳断口显微分析显示:在107周次以下的疲劳断裂,疲劳裂纹在试样表面大体积孔洞或表面缺陷处萌生;而在107以上超高周周次的疲劳断裂,疲劳裂纹主要在次表面缺陷处或内部夹杂处萌生,表明粉末冶金Fe-2Cu-2Ni-1Mo-1C烧结材料的疲劳断裂存在两种形式。疲劳裂纹扩展以穿晶断裂为主,可明显观察到裂纹扩展的两个阶段,存在典型的解理和疲劳辉纹形貌,断裂区出现塑形韧窝。
     Fe-2Cu-2Ni-1Mo-1C烧结材料经热处理后在104~109周次范围的超声疲劳试验结果表明:热处理工艺可明显提高烧结材料在低、高周循环周次下的疲劳性能,但对超高周循环周次下的疲劳性能影响较小,且随着疲劳寿命的增加,影响越来越弱。因此,传统提高Fe-2Cu-2ni-1Mo-1C材料在低、高周阶段疲劳性能的热处理工艺,对超高周疲劳性能的提高将不会起明显作用。原因可能跟疲劳裂纹萌生有关:通过热处理工艺可以改变材料的组织,却不会改变材料本身固有夹杂的性质,比如孔隙率和夹杂物的成分。因此,热处理工艺并不能改变超高周疲劳裂纹的萌生,从而对材料超高周疲劳性能的改善并没有太大作用。
Warm compaction is a new powder metallurgy (PM) technology which can make parts with high density and high properties at low cost and short procedure. In this paper, partially-diffuse alloyed Fe-2Cu-2Ni-1Mo-1C powders were used as based materials. High density compacts were obtained by die wall lubricated warm compaction technology, then traditional sintering, calcite sintering and sinter-hardening processes were utilized subsequently. Effects of sintering process on the mechanical properties, microstructures and the fracture morphology of the sintered materials were discussed. The symmetric bending ultrasonic fatigue behaviors of Fe-2Cu-2Ni-1Mo-1C sintered materials were studied. Damage mechanism of the sintered materials during ultrasonic fatigue test was investigated. In addition, the sintered specimens which were treated by heat treatment are tested by the symmetric tension-compression fatigue system, and study the effect of heat treatment on fatigue behavior.
     Experimental results show that: sintering process can affect the microstructure and mechanical properties of the PM materials. In traditional sintering atmosphere,sinter density is 7.30g/cm3,the strength is 690MPa, the elongation is 7.9%,the hardness is 285HB;In molybdenum wire calcination sintering process, sinter density is 7.32g/cm3, the strength is 760MPa, the elongation is 2.5%,the hardness is 311HB; In hydrogen circumatances, powder sintering properties is best: sinter density is 7.35g/cm3 ,the strength is 935MPa,the elongation is 3.5%,the hardness is 302HB. The final microstructure of the sintering materials all consisted of martensite, bainite, pearlite and retained austenite. The amount of martensite in the final microstructure was significantly affected by the sintering process. The microstructure mainly contained martensite and troostite (fine pearlite) at calcination sintering and sinter-hardened process. In the traditional sintering process, martensite and troostite decreased significantly besides pearlite and retained austenite presented more.
     Fatigue behavior of the Fe-2Cu-2Ni-1Mo-1C material in cyclic range of 104~109 cycles regime was tested. Results showed that the S-N curves of the three sintering specimens displays the characteristic of“continually decreasing type”up to 109 cycles and there were no traditional horizontal plateau beyond 106 cycles. With the increasing number of cycles,the stressσαdecreased continually. Over 107 cycles, fatigue failure occurred yet. According to the Basquin equation, the fatigue limits of traditional sintering specimens were calculated to be 358MPa,280MPa and 219MPa at 106, 107 and 108 cycles, respectively. The fatigue limits of sinter-hardened specimen were 293MPa,239MPa and 194MPa at 106, 107 and 108 cycles, respectively.
     The observation of the fracture surface showed that fatigue cracks initiate from surface of specimen for short lives (<107 cycles) at high stress levels, fatigue cracks initiate from subsurface nonmetallic inclusions of specimens in ULCF regime. The dark areas are observed by scanning electron microscopy around the inclusions. This indicates that crack initiates mechanism of Fe-2Cu-2Ni-1Mo-1C P/M material are of two kinds. Cracks propagated mainly through trans-crystalline and modes. Cleavage fracture and typical fatigue striations were observed in the crack propagation region. Evidence of dimple ductile fracture was found in the rupture region of the samples.
     The results of heat-treating of Fe-2Cu-2Ni-1Mo-1C sintering materials in 104~109 cycles regime show that heat treatment have different influence on fatigue strength of Fe-2Cu-2Ni-1Mo-1C sintering materials in different regime, heat treatment enhanced fatigue behavior in LCF and HCF, but heat treatment have a little influence in UHCF regime compared with LCF and HCF. The reason is that heat treatments have different effects on different fatigue regime result from different crack initiation mechanism. In LCF and HCF regime, heat treatment can change material microscopic structure and enhance mechanical behavior, further enhance fatigue behavior that is controlled by surface crack initiation mechanism. But in UHCF regime, heat treatment cannot change the character of intrinsic inclusions and the diffusion rate of point defects, thereby cannot enhance the fatigue behavior that is controlled by interior crack initiation mechanism. Therefore the heat treatments that improve conventional fatigue behavior probably have no effect on UHCF fatigue behavior.
引文
[1]曲选辉.新材料的发展趋势与粉末冶金技术的作用.粉末冶金材料科学与过程,1998(2):117
    [2]黄伯云,易健宏.现代粉末冶金材料和技术发展现状[J].上海金属, 2007, 29(3): 1-7
    [3]李祖德.粉末冶金在机电工业和科学技术中的作用.粉末冶金技术,1992,10(增刊):9-10
    [4]倪冠曹.汽车用粉末冶金件对铁粉的需求[J].粉末冶金工业, 2003, 13(2): 26-28
    [5]黄培云.粉末冶金原理[M].第2版.北京:冶金工业出版社.2004: 377-389
    [6] Capus J., Pickering S., Weaver A. Hoeganaes offers higher density at lower cost [J]. Metal Powder Report, 1994, 49(7/8):22-24
    [7] Rutz H.G., Hanejko F.G. High density processing of high performance ferrous materials [J]. The International Journal of Powder Metallurgy,1995, 31(1):9-17
    [8]亓元钟, Ancordense.温压工艺[J].粉末冶金工业, 1995, 5(1):14-16
    [9]李明怡.金属粉末温压工艺的研究现状和进展[J].世界有色金属,1999(12):40~42.
    [10] Li Y.Y, Ngai T. L., Zhang D.T., et al. Effect of die wall lubrication on warm compaction powder metallurgy [J]. Journal of Materials Processing Technology, 2002, 129:354-358
    [11]果世驹,杨霞,陈邦峰,等. 316L不锈钢粉末温压与模壁润滑的高密度成形.粉末冶金技术, 2005, 23(6): 403-408
    [12] Babakhani A., Haerian A., Ghambari M. On the combined effect of lubrication and compaction temperature on properties of iron-based P/M parts [J]. Materials Science and Engineering A, 2006, 437: 360–365
    [13] James B. A. Die wall lubrication for powder compaction: a feasible solution [J]. Powder Metallurgy, 1987, 30(4): 273-280
    [14] Ball W.G., Hibner P.F., Winger F.W., et al. New die wall lubrication system [J]. Powder Metallurgy, 1997, 33(1): 23-30
    [15]韩凤麟.模壁润滑与温压技术—高密度与高强度粉末冶金零件制造新工艺[J].新材料产业, 2007, 1: 59-67
    [16] St-Laurent S. Warm pressing and die wall lubrication [A]. International Seminar on Powder Metallurgy [C]. Hangzhou, China, 2002: 16
    [17] Matsumoto N., Miyake T., Kondoh M., et al. Development of high strength sintered steelby high pressure warm compaction using die wall lubrication[J]. Materials Science Forum, 2007, 534-536: 265-268
    [18] Lemieux P., Thomas Y.,郭瑞金等.用静电模壁润滑—温压复合工艺增高粉末冶金零件生坯与烧结件性能[J].粉末冶金技术, 2006, (24)3: 227-232
    [19]李元元,李金花,倪东惠等.润滑剂含量对模壁润滑温压工艺的影响[J].粉末冶金技术, 2004, 22(6): 341-344
    [20]肖志瑜,张菊红,温利平等.模壁润滑温压Fe-2Ni-2Cu-1Mo-1C材料的烧结行为研究[J].粉末冶金技术, 2007, 25(1): 27-31
    [21] Ngai T. L., Chen W.P, Xiao Z.Y, et al. Die wall lubricated warm compaction of iron-based powder metallurgy material [J]. Trans. Nonferrous Met. Soc. China, 2002,12(6):1095-1098
    [22] James B. What is sinter-hardening [J]. Metal Powder Report, 1999, 54(1): 38
    [23] Ratzi R., Orth P. Sintering a path to cost-effective hardened parts [J]. Metal Powder Report, 2005, 60(6): 42-46
    [24] Suzuki H., Satoh M., Yoshida M., et al. Sinter hardening properties of Pre-alloyed powder 46F3H [A]. Advances in Powder Metallurgy & Particulate Materials [C]. Princeton: MPIF, 2000, 5: 125-136
    [25]郭瑞金, Poirier J., Chagnon F., et al.用烧结硬化工艺生产汽车分动箱链轮[J].粉末冶金技术, 2003, 21(6): 327-332
    [26]郑朝旭,郭瑞金.烧结硬化钢高速高扭矩齿轮的开发[J].粉末冶金技术, 2003, 21(6): 335-337
    [27]包崇玺,沈周强,舒正平.粉末冶金新技术在烧结齿轮中的应用[J].粉末冶金材料科学与工程, 2006, 11(3):140-145
    [28]陶华.超声疲劳研究[J].航空学报,1998,19(2):228-230
    [29] Kanazawa K., Nishijima S. Fatigue fracture of low alloy steel at ultra-long cycle regime under elevated temperature conditions [J]. Journal Sco Mater Sci, 1997, 46(12): 1396~1401.
    [30] Bathias C., Ni J.G., Wu T.Y., et al. Fatigue threshold of alloy at high frequency [J]. ICM6, 1991, 4: 463~468.
    [31] Bathias C. There is no Infinite Fatigue Life in Metallic Materials. Fatigue Fract EngngMater Struct, 1999, 22: 559~565.
    [32] Basquin O.H. The exponential law of endurance tests [J]. Proceedings of the American Society for Testing and Materials. 1910. 10: 625-630.
    [33] Wood W.A. Formation of fatigue cracks [J]. Philosophical Magazine. 1958. 3:692-699.
    [34] Irwin G. R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics. 1957. 24: 361-364.
    [35] Paris, P.C. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963. 85:528~534.
    [36] Forsyth P.J.E. A two stage process of fatigue crack growth [M]. In Crack Propagation: Proceedings of Canfield Symposium, London: Her Majesty’s Stationery Office. 1962, 76-94.
    [37] Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation [M]. In Fatigue Crack Propagation, Special Technical Publication 415, Philadelphia: The American Society for Testing and Materials. 1967, 131-168.
    [38] Peterson R.E. Notch sensitivity [M]. In Metal Fatigue (eds. G. Sines and J.L. Waisman), New York: McGrew-Hill. 1959, 293-306.
    [39] Mason W.P. Piezoelectric crystals and their application in ultrasonic [J]. New York, Van Nostrand, 1950: 161.
    [40]王清远.超声加速疲劳实验研究[J].四川大学学报(工程科学版),2002, 34 (3): 6~11.
    [41]郭瑞金, St-Laurent S., Chagnon F.烧结钼钢的动力学性能[J].粉末冶金技术, 2003, 21(6): 238-246
    [42] Wang C. L., Wang P., Shi Z.M. Fatigue Properties for Sinter-hardened Fe-Ni-Mo-Cu Materials [J]. Materials Science Forum, 2007, 534-536: 677-680
    [43] Chawla N., Murphy T. F., Narasimhan K. S., et al. Axial fatigue behavior of binder-treated versus diffusion alloyed powder metallurgy steels [J]. Materials Science and Engineering A, 2001, 308: 180-188
    [44] Carabajar S., Verdu C., Fouge`res R. Damage mechanisms of a nickel alloyed sintered steel during tensile tests [J]. Materials Science and Engineering A, 1997, 232: 80-87
    [45] Gerosa R., Rivolta B., Tavasci A., et al. Crack initiation and propagation in Chromium pre-alloyed PM-steel under cyclic loading [J]. Engineering Fracture Mechanics
    [46] Lawcock R.表面致密化齿轮的滚动接触疲劳[J].粉末冶金技术,2008,26(3):230~233
    [47]王安强,岳珠峰,杨治国.镍基粉末冶金高温合金的压缩疲劳性能研究[J].航空动力学报,2005,30(3):440~443
    [48]温志勋,岳珠峰,万建松等.粉末冶金涡轮盘简单模拟件低周疲劳寿命研究[J].实验力学,2007,22(1):90~96
    [49] Cui W.H., Wan J.S., Yue Z.F., et al. Tensile and Low Cycle Fatigue Properties of Nickelbase Powder Metallurgy Superalloy FGH95 [J]. RARE METAL MATERIALS AND ENGINEERING ,December 2007 Vol.36, No.12
    [50]宋迎东,高德平.粉末冶金与常规高温合金构件应力与疲劳寿命对比[J].机械工程材料, 1999,23(2):9~11(37)
    [51]刘建秀,高红霞,韩长生等.铜基粉末冶金摩擦材料高温摩擦疲劳性能测试[J].机械设计, 2004,21(4):24~27
    [52]吴艳青,牛莉莎,施惠基等.粉末冶金BeAl材料疲劳性能宏微观分析[J].稀有金属材料与工程,2006,35(6):890~894
    [53]果世驹.粉末烧结理论,第1版.北京:冶金工业出版社,1998: 86~88
    [54]刘全坤.材料成形基本原理.北京:机械工业出版社,2005
    [55]丁厚福,李吉泉,郑治祥.铁基粉末冶金材料的热处理[J].国外金属热处理, 2002, 23(3): 39-41
    [56]韩凤麟.铁基粉末冶金零件的化学热处理[J].粉末冶金工业, 2007, 17(5): 1-8
    [57]李桂芳.粉末冶金材料在摩托车上的应用.材料天地.2006,1:41
    [58] Chawla N., Deng X. Microstructure and mechanical behavior of porous sintered steels [J]. Materials Science and Engineering A, 2005, 390: 98-112
    [59] D’Armas H., Llanes L., Penafiel J., et al. Tempering effects on the tensile response and fatigue life behavior of a sinter-hardened steel [J]. Materials Science and Engineering A, 2000, 277: 291-296
    [60]沈元勋,肖志瑜,方亮等.部分扩散预合金温压铁-铜-镍-钼-碳材料的组织与性能[J].机械工程材料, 2007, 31(9): 30-33
    [61] Beiss P., Dalgic M. Structure property relationships in porous sintered steels [J]. Materials Chemistry and Physics, 2001, 67(1-3): 37-42
    [62] Williams J.J., Deng X., Chawla N. Effect of residual surface stress on the fatiguebehavior of a low-alloy powder metallurgy steel [J]. International Journal of Fatigue, 2007, 29(9-11): 1978-1984
    [63] Bengtsson S. Influence of density and microstructure on fatigue properties of warm compacted Fe-Cu-Ni-Mo steels [A]. Advances in Powder Metallurgy & Particulate Materials [C]. Princeton: MPIF, 2000, 6:69-80
    [64] Gerosa R., Rivolta B., Tavasci A., et al. Bergmark. Crack initiation and propagation in Chromium pre-alloyed PM-steel under cyclic loading [J]. Engineering Fracture Mechanics, 2008, 75(3-4):750-759
    [65] Verdu C., Carabajar S., Lormand G., et al. Fatigue crack growth characterization and simulation of a porous steel [J]. Materials Science and Engineering A, 2001, 319-321: 544-549
    [66]褚武扬.断裂与环境断裂[M].北京:科学出版社, 2000. 136.
    [67] Oriani, R.A. Ann. Rev. Mater. Sci. [M], 1978, 8: 327.
    [68]闫桂玲.非对称超高周疲劳实验研究[D].成都,西南交通大学.西南交通大学硕士学位论文. 2004, 15-16
    [69] Wang Q.Y. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires [J]. Fatigue Fract. Engng. Mater. Struct. 1999. 22: 673-677.
    [70] Shiozawa K. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel [J]. Fatigue Fract. Engng. Mater. Struct. 2001. 24: 781-790.
    [71] Murakami Y., Takada M. and Toriyama T. Super-long life tension–compression fatigue properties of quenched and tempered 0.46% carbon steel [J]. International journal of fatigue. 1998, 16(9): 661–667.
    [72] Shiozawa K., Lu L., Ishihara S. S-N curve Characteristics and subsurface crack initiation behavior in ultra-long life fatigue of high carbon-chromium bearing steel. Fatigue Fract Engng Mater Struct. 2001, 24: 781~790.
    [73] Lu L., Shiozawa K., Ishihara S. Characteristic of S-N curve and subsurface crack initiation behavior of high strength bearing steel in gigacycle fatigue. Mat. Sic. Res. Int. STP-1.2001: 35~40.
    [74] Shiozawa K., Lu L. Very high-cycle fatigue behavior of shot-peenedhigh-carbon-chromium bearing steel [J]. Fatigue Fract Engng Mater Struc. 2002, 28-8/9: 813~822.
    [75] Borbely A., Mughrabi H., Eisenmeier G., et al. A finite element modeling study of strain localization in the vicinity of near-face cavites as a cause of subsurface fatigue crack initiation [J]. International journal of fracture. 2001.
    [76] Stanzl-Tschegg S. E., Mayer H. M. Proceeding of the international conference on fatigue in the very cycle regime[C].Austria, Institute of Meteorology and physics,2001:35~49.
    [77]王弘. 40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨[A].西南交通大学博士论文集[C].成都:西南交通大学,2004,50~102.
    [78] Wang Q.Y., Bathias C., Kawagoishi N., et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength [J]. International journal of fatigue. 2002, 24: 1269~1274.
    [79] Carabajar S., Verdu C., Hamel A., et al. Fatigue behaviour of a nickel alloyed sintered [J]. Materials Science and Engineering A, 1998, 257: 225-234
    [80]菅野光辉,武田義信,アンダース·ベルマーク,等.贾成厂译.与低合金烧结钢零件形状相对应的后续处理条件最优化研究[J].粉末冶金技术, 2007, 25(1): 64-71
    [81] Deng X., Piotrowski G., Chawla N., et al. Fatigue crack growth behavior of hybrid and prealloyed sintered steels: Part II. Fatigue behavior [J]. Materials Science and Engineering A, In Press, Corrected Proof, Available online 16 January 2008
    [82] Suresh S.材料的疲劳[M].王中光等译.北京:国防工业出版社.1993: 144-148
    [83]钟群鹏,赵子华.断口学[M].北京:高等教育出版社. 2006: 254-255
    [84] Verdu C., Carabajar S., Lormand G., et al. Fatigue crack growth characterization and simulation of a porous steel [J]. Materials Science and Engineering A, 2001, 319-321: 544-549
    [85] Gething B.A., Heaney D.F., Koss D.A., et al. The effect of nickel on the mechanical behavior of molybdenum P/M steels [J]. Materials Science and Engineering A, 2005, 390: 19-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700