超高周范围16Mn母材及焊接接头疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的发展,许多工业零部件受高速交变载荷的作用,在服役期内构件疲劳工作寿命已达109周次,甚至更高。使用常规疲劳试验技术只已经不能满足工业技术发展的要求。因此,关于材料在107周次以上疲劳寿命引起了广泛关注。
     用现有的常规疲劳试验方法完成107~1010超高周范围内疲劳试验要耗费大量的时间和费用。因此,本文利用一种加速疲劳实验装置即超声疲劳实验装置对以16Mn为材料的超声疲劳试件进行了研究。
     由于一直以来超声疲劳设备的研制是困扰人们研究材料超高周疲劳的一个重要问题,因此本文首先对本次试验所使用的,本课题组自行研制的HJ-Ⅱ型超声冲击机作了简要介绍,并对其数字化核心技术DSP硬件控制电路设计作了详细的说明。
     同时由于超声疲劳试验对试件的尺寸和样式有严格的要求,因此本人又对试件的样式进行了设计,并按照严格的公式推导出试件的尺寸。
     最后对以16Mn为材料的试件进行了超声疲劳试验,并得出与传统的在107存在疲劳极限的不同的S-N曲线,即连续下降的S-N曲线。因此得出用107循环周次下的条件疲劳极限去设计服役寿命在109循环周次以上的结构件是很危险的,这一重要结论。
     同时通过显微电镜对断口的宏观行貌进行观察,发现裂纹一般在试件表面或次表面起裂,区别于当今国际上关于材料超高周疲劳裂纹萌生机制的主流观点。即在对材料施加超高周循环载荷的情况下,材料的裂纹在内部或次表面夹杂处萌生。
With the development of industrial technology, a lot of industry components were affected by high speed cycle of loading. The working life of the component already needs to endure 109 cycles even higher in the military service. Using the routine fatigue test technology is unable to adjust to the request of development of industrial. Thus the fatigue property of metallic materials in the UHCF range tends to be an important subject in the mechanical design to ensure the long term safety of the mechanical structures.
     Since performing experiments of the ultra-high-cycle regime in the range of 107-1010 cycles using a conventional fatigue testing method is very time consuming and expensive, in this paper, a kind of acceleration fatigue test technique, called the ultrasonic fatigue testing, was developed and studied. The design of ultrasonic fatigue equipment is an important question which makes people puzzled a long time. So, I fist introduce the experiment equipment called HJ-II ultrasonic peening machine which was developed by our team, and make a detail about the core technique-the designing of the hardware circuit of DSP.
     A the same time , ultrasonic fatigue specimen must be designed very precisely ,so I did the job and designed the shape and dimension by accurately deducing. At last I used the specimen which is made of 16Mn to do the ultrasonic fatigue test. As a result of the test I got an S-N curve which is different from the traditional one. It is a curve which is declined continuously. So I made an important conclusion which is that it is too dangerous to design a structure which only can endure 107 cycles, but were used in the situation where the loading were 109 cycles.
     In addition, I inspect the macro shape of the fracture section by electronic microscope, and found that the crack always originate inside. It is just as the same as the main idea about the law of which the crack originate. It is that the crack of material will originate inside or in the semi-surface in which there is a lot of defect when the material is exerted super high cycle loading.
引文
[1]程存弟,贺西平,功率超声振动系统研究进展,声学技术[J],1995,14(2):87~90
    [2]《电子工业技术词典》编委会,电子工业技术词典——超声,北京:国防工业出版社[M],1977
    [3]王东坡,改善焊接接头疲劳强度超声冲击方法的研究:[博士学位论文],天津,天津大学2000
    [4] T.B. THOE, D.K. ASPINWALL, M.L.H. WISE, Rewiew on ultrasonic machining, Tools Manufact, 1990,38(4):239~255
    [5]倪金刚,超声疲劳试验的理论与分析,[博士学位论文],北京,北京航空航天大学1994
    [6]杨宏凯,钢中夹杂对超声疲劳性能的影响和预测,[硕士学位论文],鞍山,鞍山科技大学2005
    [7]霍立兴,焊接结构的断裂行为及安全评定,北京:机械工业出版社[M],2000
    [8]王弘,40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨,[博士学位论文],西安,西南交通大学2004
    [9] Stanzl-Tschegg S E, Mayer H, Variable amplitude loading in the very high cycle regime, Fatigue Fract, Engng, Mater, Struct, 2002, 25: 887~896
    [10] [10] Murakami Y, Yokoyama N N, et al. Mechanism of fatigue failure in ultralong life regime, Fatigue Fract, Engng, Mater, Struct, 2002, 25: 735~746
    [11] [11] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high strength low-alloy steel at 100Hz, 600Hz, and 20KHz. Scripta Materialia, 2002, 46(2):157~162
    [12]顾峰,超声功率源的系统功能设计,声学技术[J],1991,(10):2~5
    [13] J. Holtz, Highspeed Drive System with Ultrasonic MOSFET PWM Inverter and Simple Chip Microprocessor Conctrol, IEEE, 1987, IA-16(4): 1010~1015
    [14] Y.H. Edwardy, Effect of Gate Driwe Circuits on GTO Thyristor Characteristics, IEEE, 1986, IE-33(3):325~331
    [15]薛红前,陶华,20 kHz频率下高强度钢超高周疲劳研究,机械工程材料[J],2005,29(5),12-15
    [16]焊接结构152-154
    [17]薛红前等,LY10超声疲劳性能研究,机械科学与技术[J],2004,23(4),471-473
    [18] Miller K J, A historical perspective of the important parameters of metal fatigue;and problems for the next century, In: Wu X R, Wang Z G, eds. Proceedings of the 7th International Fatigue Congress, Beijing, 1999, 15~39
    [19] Schijve J, Fatigue of structures and materials in the the 20th Century and the state of the art, International Journal of Fatigue, 2003, 25 :679~702
    [20] Stanzl-Tschegg SE,Ultrasonic Fatigue, Fatigue 96, Proceeding of the Sixth International Fatigue Congress, 1996,1887-1898
    [21] Tie J K. State of Ultrasonic fatigue.Ultrasonic Fatigue, AIME, USA,1982, 1-14
    [22] Wang QY, Berard JY, Bathias C,et. al.Gigacycle fatigue of ferrous alloys,Fatigue and Fracture of Engineering Materials and Structures, 1999, 22,667-672
    [23]束德林,工程材料力学性能[M],北京:机械工业出版社,2003:11 2—138
    [24] Marines, G. Dominguez, G. Baudry Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. International Journal of Fatigue 25(2003) 1037-1046
    [25]林书玉,超声换能器的原理及设计,北京:科学出版社[M],2004
    [26]林仲茂,超声变幅杆的原理和设计,北京:科学出版社[M],1987
    [27]彭启琮,管庆.DSP集成开发环境.北京:电子工业出版社,2004.
    [28]TDS2407EA用户使用手册.闻亭科技发展有限责任公司.2003.
    [29]江思敏.TMS320LF240x DSP硬件开发教程.北京:机械工业出版社,2003.
    [30]TDS510USB2.0仿真器使用说明书.闻亭科技发展有限责任公司.2003.
    [31]章云,谢莉萍,熊红艳.DSP控制器及其应用.北京:机械工业出版社,2002
    [32]刘和平等.TMS320LF240x DSP结构原理及应用.北京:北京航空航天大学出版社,2002
    [33][33]刘畅生,张耀进,宣宗强等.新型集成电路简明手册及典型应用.西安电子科技大学出版社,2005
    [34] H. Fukui, Paralleling of Gate Turn-off Thyristors, IEEE-IAS-1982 Annual Meeting, 1982:741~748
    [35] H.Ohashi, Snubber Circuit for High-Power Gate Turn-off Thyristors, IEEE, 1983, IA-19:656~664
    [36]李志民等,GTO电流型PWM逆变器,电力电子技术[J],1989,3:29~32
    [37] T. E. MATIKAS, Specimen design for fatigue testing at very high frequencies, Journal of Sound and Vibration, 2001, 247(4): 673~681
    [38] Bathias C, Drouillac L, Francois P Le. How and why the fatigue S-N curve does not approach ahorizontal asymptote[J]. Intenrational Jounral of Fatigue, 2001, 23:S143-S151
    [39]赵家萍,等.冲击速度对20Cr和40Cr钢应变速率、动态屈服强度作用的研究[J].材料科学与工艺,1996,(4) 38.
    [40] Bathias C, There is no infinite fatigue life in metallic materials, Fatigue Fract. Engng. Mater, Struct, 1999, 22: 559~565
    [41] W. P. Mason, Piezoelectric Crystals and Their Applications, Van Nostrand, New York USA, 1950, 61
    [42] Tanaka, K. Fatigue crack propagation behavior derived from S-N data in very high cycle regime [M]. Proceeding of the International Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2- 4, July, 2001, 61
    [43] Mayer H, Larid C, Influence of cyclic frequency on strain localization and cyclic deformation in fatigue, Mater, Sci. Eng., 1994, A187: 23~25
    [44] Mughrabi H, Herz K, Stark X, Cyclic deformation and fatigue behavior of alpha-iron mono and polycrystals, International Journal of Fatigue, 1981, 17(2): 193~220
    [45] Meininger J M, Gibelling J C, Low-cycle fatigue of niobium-1 pct zirconium
    [46] Miller K J, O’Donnell W J. The Fatigue limit and its elimination, Fatigue Fract. Engng. Mater. Struct.1999, 22: 545~557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700