结构钢超高周疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统疲劳设计理念认为,载荷循环周次在10~7以上的结构构件具有无限疲劳寿命,通常以10~7循环周次所对应的疲劳试验数据做为强度设计依据。但是随着机械设备向高速大型化发展,许多机械和工程结构,如高速铁路的机车车辆结构及零部件,核电站散热器管道,发动机零部件等在承受10~7~10~(10)周次的应力循环载荷后的超高周阶段,仍然发生疲劳破坏。传统的疲劳设计规范和寿命预测方法已经不能满足超高周区域机械设备的使用要求,所以有必要对常用的结构钢种进行超高周疲劳试验,得到超高周疲劳数据,对现有设施以及以后待建项目的疲劳强度设计、安全评估及寿命预测都有非常重要的工程意义。
     本文以16Mn结构钢,304不锈钢,42CrMo钢为研究对象,用超高周疲劳试验方法,进行了10~4-10~(10)寿命范围内的超高周疲劳行为的研究。通过超高周疲劳试验得到三种材料在试验下的S-N曲线,分析了S~N曲线的特征,用扫描电子显微分析方法(Scanning Electron Microscopy)研究了三种结构钢的疲劳断裂行为和疲劳断裂机理,分析了裂纹萌生和裂纹扩展机制。研究发现,三种结构钢S-N曲线均具有阶梯型下降特征,不存在传统意义上的疲劳极限,16Mn结构钢在10~7循环周次以下高周疲劳阶段和10~7循环周次以上超高周疲劳阶段,疲劳裂纹源均在试样表面萌生。而304不锈钢,42CrMo钢在10~7循环周次以下高周疲劳阶段,疲劳裂纹从试样表面萌生,10~7循环周次以上超高周疲劳阶段疲劳裂纹多在试样次表面缺陷处萌生。16Mn结构钢和42CrMo钢疲劳裂纹的扩展机制对高周和超高周疲劳而言没有本质的区别。而304不锈钢第一扩展区形貌与传统定义的第一扩展形貌有着明显的不同,进而定义了304不锈钢超高周疲劳的第一扩展区。
     研究了加载频率对16Mn结构钢的疲劳性能的影响,发现16Mn结构钢内部组织结构存在塑性很差的渗碳体是导致超高周疲劳性能降低的主要原因。
     通过扫描电子显微分析方法(Scanning Electron Microscopy)和X衍射分析(X-ray diffractometer)发现在304不锈钢的超高周试验中存在裂尖应变诱发马氏体相变,分析了产生相变的原因。
     推导了304不锈钢管道流固耦合方程,并对管道使用寿命进行了预测。为管道疲劳设计提供一种可行的方法。
     通过比较分析40Cr钢,42CrMo4钢的超高周疲劳S~N曲线,发现合金元素Mo提高了材料超高周疲劳性能。并结合Mo在合金化中的作用,分析提高材料超高周疲劳性能的微观机理。
     从微观角度分析本文三种结构钢没有出现典型内部萌生机制的原因。
Conventional fatigue design point considers that structure components have boundless fatigue life-span above 10~7 loading circulation cycle, corresponding design of fatigue strength based on the fatigue datum of 10~7 cycles. But with the high-speed and large-scale development of modern mechanism in recent years,mang mechanism and engineering structure such as rolling stock structure and Component and part in high speed railway , nuclear power station radiator pipeline ,and engine component and part and so on can take place fatigue failure in ultra-long life regime exceeding 10~7-10~(10) cycles. So conventional fatigue design standard and life prediction method already don't meet the activity acquire of mechanism equipment in ultra-long life regime. So it is necessary that testing some structural steel in common use by using ultrasonic fatigue test , and gain the data of ultrasonic fatigue test. It has very important project meaning for fatigue strength designing and safety appraise and life-span forecast.
     Fatigue behavior in ultra-long life regime (about 10~4-10~(10) cycles) of 16 Mn structural steel , 304 stainless steel , 42 CrMo steel is studied by using ultrasonic fatigue test. Gaining three fatigue S-N curves of the three Materials in testing by ultrasonic fatigue test, and analyse the characteristics of three fatigue S-N curves. The fracture surfaces are analyzed using the scanning electron microscopy (SEM) and study the fatigue behavior and fracture mechanism of the three structure steels . analyzing crack initiation mechanism and crack propagation mechanism. The result of the experiment indicated The curves of the three structure steels are the stepwise shape, and no exit tradition significance fatigue limit. All of the fatigue crack initiated from the surface of specimen in 16 Mn structural steel , but fatigue crack initiated from the surface of specimen below 10~7 circulation cycle and fatigue crack initiated from the flaws of second surface above 10~7 circulation cycle in 304 stainless steel and 42 CrMo steel. The crack propagation mechanism is consistent from high-cycle fatigue regimes to ultra-long life regime in 16 Mn structural steel and 42 CrMo steel . The first propagation regime shape is obvious diversity to tradition definition of shape in 304 stainless steel,Then definiting the first propagation regime of it .
     Comparison of ultrasonic fatigue properties with conventional fatigue properties of 16 Mn structural steel showed that the ultrasonic loading frequency effect on fatigue property of 16 Mn structural steel,. discovering there is existing a very bad plasticity of cementite in framework of organization in the insides of 16 Mn structural steel is to lead to the main cause reducing ultrasonic fatigue property .
     Using the scanning electron microscopy (SEM) and X-ray diffractometer discover the austenite-martensite transformation occurs in crack pointed end of 304 stainless steel during the ultrasonic fatigue test and analyse cause of austenite-martensite transformation .
     The equation of the solid-liquid coupling vibration of pipe conveying fluid is deduced , and life time has carried out a forecast on the pipeline .Provides one kind of feasible method to the pipeline fatigue design.
     By analysing 40 Cr steel comparatively, 42 CrMo4 steel's ultrasonic fatigue test S-N curves, discover alloying element Mo having raised material surpassing the ultrasonic fatigue property . Effect in being deltamax-rization combining with Mo and, analyses the microcosmic mechanism raising material ultrasonic fatigue property.
     Microscopic analysis of this from the perspective of three structural steel not typical for internal initiation mechanism
引文
[1] Roth L D. Ultrasonic fatigue testing [J]. Metal Handbook, ninth edition, volume 8, Mechanical testing, ASM, Ohio USA, 1985, 240~25.
    [2] Naito T, Ueda H, Kikuchi M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface[J]. Metallurgical transactions, 1984, 15A: 1431~1436.
    [3] Kanazawa K, Nishijima S. Fatigue fracture of low alloy steel at ultra-long cycle regime under elevated temperature conditions[J]. Journal Sco Mater Sci, 1997, 46(12): 1396~1401.
    [4] Bathias C, Ni JG, Wu TY et al. Fatigue threshold of alloy at high frequency[J]. ICM6, 1991, 4: 463~468.
    [5] Bathias C. There is no Infinite Fatigue Life in Metallic Materials. Fatigue Fract Engng Mater Struct, 1999, 22: 559~565.
    [6] Suresh s.材料的疲劳(第二版)[M].王中光译.北京:国防工业出版社,1999:158-162.
    [7] 倪金刚,Bathias C.超声振动载荷下合金的疲劳寿命性能研究[J].航空学报,1994,15(11):1386~1389.
    [8] 倪金刚.超声疲劳试验技术的应用[J].航空动力学报,1995,10(3):245~248
    [9] Mason W P. Piezoelectric crystals and their application in ultrasonic[J]. New York, Van Nostrand, 1950: 161.
    [10] Neppiras E A, Techniques and equipment for fatigue testing at very high frequencies[M], Proc. ASTM 59, ASTM, Philadelphia, 1959: 691-710.
    [11] Mitsche R, Stanzl S and Burkert D G.. Hochfrequenzkinematographie in der metallforschung[M], Wissenschaftlicher film, 1970, 14: 3~10.
    [12] Shiozawa K, Lu L, Ishihara S. S-N curve Characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Engng Mater Struct. 2001, 24: 781~790.
    [13] Lu L, Shiozawa K, Ishihara S. Characteristic of S-N curve and subsurface crack initiation behavior of high strength bearing steel in gigacycle fatigue. Mat. Sic. Res. Int. STP-1. 2001: 35~40.
    [14] Shiozawa K, L Lu. Very high-cycle fatigue behavior of shot-peened high-carbon-chromium bearing steel[J]. Fatigue Fract Engng Mater Struc. 2002, 28-8/9: 813~822.
    [15] Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fract Eng Mater Struct. 1999, 22: 581~590.
    [16] Murakami Y, Nomoto T, Ueda T, et al. On the mechanical of fatigue failure in the superlong life regime (Nf>107 cycles). Patr Ⅰ: Influence of hydrogen trapped by inclusions[J]. Fatigue Fract. Eng. Mater. Struct. 2000, 23: 893~902.
    [17] Murakami Y, Nomoto T, Ueda T, et al. On the mechanical of fatigue failure in the superlong life regime (Nf>107 cycles). Patr Ⅱ: A fractographic investigation[J]. Fatigue Fract Eng Mater Struct. 2000, 23: 903~910.
    [18] 王弘,高庆.40Cr钢超高周疲劳性能及疲劳断口分析[J].中国铁道科学,2003,24(6):93~98.
    [19] 薛红前,陶华,王弘.超声振动载荷下LY12合金的超高周疲劳性能研究[J].西北工业大学学报,2004,22(1):108~111.
    [20] 薛红前,陶华,王弘.LY10的超声疲劳性能研究[J].机械科学与技术,2004,23(42):471~473.
    [21] Stanzl-Tschegg S E, Mary H. Fatigue and fracture crack growth of aluminum alloys at very high numbers of cycles[J]. International journal of fatigue, 2001, 23: S231~S237.
    [22] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high-strength low-alloy steel at 100Hz, 600Hz, and 20KHz[J]. Scripta materilia. 2002, 46: 157~162.
    [23] 薛红前,陶华.一种球墨铸铁的超高周疲劳行为研究[J].航空学报,2004,25(1):93~96.
    [24] Wang Q Y, Bathias C, Rathery S, et al. Fatigue of a spheroidal graphite cast iron in the very high cycle range[J]. Science et Génie des Matériaux, Rev de Métallurgie, 1999, 96: 221~226.
    [25] Wang Q Y, Berard J Y, Bathias C. High-Cycle Fatigue Crack Initiation and Propagation Behavior of High-Strength Spring Steel Wires. Fatigue Fract Engng Mater Struct, 1999, 22: 673~677.
    [26] 王清远.超高强度钢十亿周疲劳性能研究[J].机械强度,2002,24(1): 81~83.
    [27] 闫桂玲,王弘,高庆.超声频率加载下50#车轴钢超长寿命疲劳性能研究[J].中国铁道科学,2004,25(2):78~81.
    [28] Wang Q Y, Berard J Y, Bathias C, et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 667~672.
    [29] Murakami Y, Nomototo T, Ueda. On the mechanism of fatigue failure in the superlong life regime (Nf>107cycle). Part Ⅰ: Influence of hydrogen trapped by inclusions[J]. Fatigue Frac Engng Mater Struct. 2000, 23 (11): 893~902
    [30] Furuya Y, Matsuoka S. Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 200 MPa-class low-alloy steels. Metallurgical and Materials Transaction A: Physical Metallurgy and Material Science, 2002, 33(11): 3421~3431.
    [31] Furuya Y, Abe T, Matsuoka S. 1010-cycle fatigue properties of 1800MPa-class JIS-SUP7 spring steel. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26: 641~645.
    [32] Furuya Y, Matsuoka S, Abe T. A novel inclusion inspection method employing 20 kHz fatigue testing. Metallurgical and Materials Transaction A: Physical Matellurgy and Material Science, 2003, 34(11): 2517~2526.
    [33] Abe T, Furuya Y, Matsuoka S. Gigacycle fatigue properties of 1800 MPa class spring steels. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27(2): 159~167.
    [34] Furuya Y, Matsuoka S. Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure. Metallurgical and Materials Transaction A: Physical Metallurgy and Materials Science, 2004, 35(6): 1715~1723.
    [35] Borbely A, Mughrabi H, Eisenmeier G et al. A finite element modeling study of strain localization in the vicinity of near-face cavites as a cause of subsurface fatigue crack initiation[J]. International Journal of Fracture, 2002.115(3): 227~232.
    [36] Mughrabi H. On "multi-stage"fatigue life diagram and the relevant life-controlling mechanism in ultrahigh-cycle fatigue. Fatigue and Fracture of Engineering Materials and Structures. 2002, 25(8-9):755~764.
    [37] Forsyth, P. J. E. A two stage process of fatigue crack growth[M]. In Crack Propagation: Proceedings of Canfield Symposium, London: Her Majesty's Stationery Office. 1962, 76-94.
    [38] Laird, C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation[M]. In Fatigue Crack Propagation, Special Technical Publication 415, Philadelphia: The American Society for Testing and Materials. 1967, 131-168.
    [39] Mughrabi H. On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 545~557.
    [40] 王弘.40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨[A].西南交通大学博士论文集[C].成都:西南交通大学,2004:50~102.
    [41] 束德林.工程材料力学性能[M].北京:机械工业出版社,2003:112~138.
    [42] C Leyens, M Peters. Titanium and Titanium Alloys. Wiley-VCH Verlag GmbH & Co.2003: Chapter Ⅴ, Chapter Ⅰ.
    [43] 扈延光.热处理制度对42CrMo缺口疲劳性能的影响[J].物理测试,1996
    [44] 允志新.循环淬火细化对42CrMo钢组织及疲劳性能的影响[J].钢铁,2002,37(10)
    [45] 王泾文.预冷扎对1Cr18Ni9Ti奥氏体不锈钢力学性能的影响[J].热处理,2004,2
    [46] Roth L D, Willertz, Leax T R. On the fatigue of copper up to ultrasonic frequencies [A], in: Ultrasonic Fatigue, Proceeding of the First International Conference on Fatigue and Corrosion Fatigue up to Ultrasonic frequencies [C]. PA: The Metallurgical Society of AIME, 1982: 265~282.
    [47] Kuzmenko A. Fatigue of structural materials at high-frequency cyclic loading[J]. Advances in Fracture Research, 1984, 3: 1791-1798.
    [48] Sirian C R, et al. Method of measuring elastic strain distribution for high frequency fatigue testing. Proc Int Conf Ultrasonics, Champion P A USA. 1982, 10: 87~102.
    [49] Sirian C R, et al. Method of measuring elastic strain distribution for high frequency fatigue testing. Proc lnt Conf Ultrasonics, Champion P A USA.1982, 10: 87~102.
    [50] Essmann U. Irreversibility of curie slip in persistent slip bands of fatigued pure fee metals. Phil. Mag. A, 1982, 45(1): 171~190.
    [51] 姜伟之,赵时熙,王春生,张峥.工程材料的力学性能.北京航空航天大学出版社,2000:34,97,114,140.
    [52] Tanaka, K. Fatigue crack propagation behavior derived from S-N data in very high cycle regime[M]. Proceeding of the International Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2-4, July, 2001.61
    [53] 席守谋.渗碳和碳氮共渗对16Mn疲劳性能的影响[J].机械科学与技术,1996,15(2)
    [54] 丁剑.应力控制下的奥氏体不锈钢的低周疲劳性能[J].金属学报,2002,12(38):1261~1265
    [55] 罗双双,王弘,戴振羽等.超声疲劳试验机控制系统的开发[J].实验室研究与探索,2005,24(1):23~25.
    [56] 闫桂玲.非对称超高周疲劳实验研究.西南交通大学硕士论文集.成都:西南交通大学,2004.
    [57] 王弘,高庆.超声疲劳扭转试样谐振长度的解析法计算[J].西南交通大学学报,2001,36(6):595~598.
    [58] 顾煜炯,杨昆,周兆英等.超声振动系统设计及性能分析的解析方法[J].华北电力大学学报,1998,25(2):53~59.
    [59] 机械工程材料性能数据手册[M],机械工业出版社,1995
    [60] 程林 换热器内流体诱发振动[M].科学出版社,1995
    [61] 何树廷.反应堆结构力学运用中的几个问题[J].核动力工程,2001
    [62] 徐耀祖.马氏体相变与马氏体[M].科学出版社,1980
    [63] 郑伟刚,罗延科,银华.奥氏体(γ)系不锈钢的塑性加工特性研究[J].锻压技术, Forging & Stamping Technology,2005,1
    [64] 初雪非.两端简支输液管流固耦合振动分析[J],中国机械工程,2006,17(3)
    [65] 徐楠.42CrMo钢疲劳可靠性分析与裂纹萌生微观机理研究[A].山东大学博士论文集[C].济南.山东大学,2002:7~11.
    [66] 张继明.零夹杂42CrMo高强钢的超长寿命疲劳性能[J],金属学报,2005,41(2):145~159
    [67] 崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.136-138.
    [68] 周承恩.GCr15钢超高周疲劳行为的实验研究[J],机械强度,2004,26(S):157~160
    [69] Kazuaki SHIOZAWA, Yuuichi MORII. A tudy of Subsurface Crack Initiation and Propagation Mechanism of High-strength Steel by Fracture Surface Topographic Analysis, 930-8555.
    [70] 李怀明,杨让.回火索氏体钢轨钢循环应变行为与位错结构关系的研究[J].钢铁研究学报,1995.7:47-52.
    [71] Manes, L. et al. Gigacyclic fatigue in engineering steels[M]. Proceeding of theInternational Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2-4, July, 2001.173.
    [72] Keisuke TANAKA [J]. Fatigue Crack Propagation Behavior Derived from S-N Data in Very High Cycle Regime. Nagoya Unversity, Japan.61, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700