飞行器及湍流流场电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪九十年代以来的海湾战争、波斯尼亚战争和阿富汗战争表明:现代战争的对抗首先表现为电子高科技的对抗。本文根据雷达波隐身与反隐身技术应用的实际需要,以计算电磁学和湍流流场数值模拟为基础,对飞行器和湍流流场的电磁特性进行了研究。
     首先,本文利用物理光学—面元法对飞行器高频区的雷达散射截面进行了估算,得到了与相关文献中的实测数据一致的结果,并分析了飞行器复杂外形对其雷达散射截面的影响。编制的计算程序可以用来预估和优化未来的武器系统,减小军事目标对雷达的有效反射截面,降低敌方雷达作用距离,提高我军武器的突防能力和生存率。
     其次,本文利用FDTD计算模型,编制了能用于计算不考虑色散和吸收的湍流流场电磁特性的计算程序,典型算例计算结果与相关文献一致;在此基础上,对利用大涡模拟计算得到的剪切层流场随时间历程的电磁特性进行了计算和分析,得到的结果对深入研究湍流流场电磁特性具有很强的指导意义,为下一步进行飞行器尾涡的电磁特性研究打下了坚实的工作基础。
Since 1990's, several regional conflict such as the Persian Gulf War, the Bosnia War and the Afghanistan War had happened and indicated that advanced electronic warfare is the key point to the modern war. And it is known that radar countermeasures will become more and more important. In order to provide the database for radar countermeasures, we researched the electro-magnetic property of the aero-craft and turbulent flow field based on the numerical of them.
    First, we generated the surface grid of aero-craft using the finite iteration method of the elliptic equation, estimated the aero-craft's Radar cross section (RCS) in high frequency area by the physical optics.Then, analyzed the profile's influence on RCS.With some reasonable result is presented in this paper,the computation program can be used as pre-estimating and optimizing of the future weapon system, reducing their RCS, shorting the operation distance of the enemy's radar fence, improving the penetration and the viability of our weapon.
    Second, to satisfy the research of the electro-magnetic property of non-dispersive and nonabsorbent turbulent flow field, we had set up a model and the computation program based on finite difference time domain (FDTD) method, and the result was perfect to relative studies.Further more, it can be applicated to research the electro-magnetic property of the mixing layer in time sequence computed by Large-Eddy Simulation (LES) method.
引文
[1] 阮颖铮.雷达截面与隐身技术.北京:国防工业出版社,1998
    [2] Tatarski.WAVE PROPAGATION IN A TURBULENT MEDIUM.McGraw-Hill Book Company, Inc., 1961
    [3] 葛德彪、闫玉波.电磁波时域有限差分方法.西安电子科技大学出版社,2002
    [4] 王秉中.计算电磁学.科学出版社,2002
    [5] Knott E F et al.Radar Cross Section.Dedham, MA:Artech House, Inc.,1985
    [6] Harrington R F.Field Computation by Moment Method.New york: MacMillan,1968
    [7] Mittra R.Numerical and Asymptotic Techniques in Electro-magnetics.Springer Verlag,1975
    [8] Yee K S.Numerical solution of initial boundary value problems involving Maxwell equations in i sotropic media. IEEE Tmns .Antennas Propagat.,May 1966, AP-14(3): 302~ 307
    [9] Taylor C D, Lam D H and Shumpert T H.EM pulse scattering in time varying inhomogeneous media.IEEE Trans.Antennas Propagat., Sept. 1969, AP-17(5): 585~589
    [10] Merewether D E.Transient currents induced on a metrallic body of revolution by an EM pulse.IEEE Trans.Electromagn.Compat., May 1971, EMC-13(1): 41~44
    [11] Taflove A and Brodwin M E.Numerical solution of steady-state EM scattering problems using the time-dependent Maxwell's equations.IEEE Trans.Microwave Theory Tech., Aug. 1975, MTT-23:623~630
    [12] Mur G.Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations.IEEE Trans.Electromagn.Compat., 1981, EMC-23(4): 377~382
    [13] Umashankar K R and Taflove A.A novel method of analyzing electromagnetic scattering of complex objects.IEEE Trans.Electromagn.Compat., Nov. 1982,EMC-24(4): 397~405
    [14] Mei K K, Cangellaris A C and Angelakos D J.Conformal time domain finite difference method.Radio Science, 1984, 19(5): 1145~1147
    [15] Kasher J C and Yee K S.Anumerical example of a two dimensional scattering problem using a subgrid.Applied Computational Electromagnetic Society Journal and Newsletter, 1987,2(2): 75~102
    [16] Britt C L.Solution of EM scattering problems using time domain techniques.IEEE Trans.Antennas Propagat., Sept. 1989, AP-37(9): 1181~1192[17] Yee K S, Ingham D and Shlager K.Time-domain extrapolation to the far field based on FDTD calculations.IEEE Trans.Antennas Propagat., Mar. 1991, AP-39(3): 410~413
    [18] Luebbers R J, Kunz K S, Schneider M and Hunsberger F.A finite difference time domain near zone to far zone transformation.IEEE Trans.Antennas Propagat., April 1991, AP-39(4): 429~433
    [19] Berenger J P.Aperfectly matched layer for the absorption of electromagnetic waves.J.Comput.Phys., Oct. 1994, 114(2): 185~200
    [20] Sacks Z S, Kingsland D M, Lee D M, and Lee J F.A perfectly matched anisotropic absorber for use as an absorbing boundary condition.IEEE Trans.Antennas Propagat., Dec. 1995, AP-43(12), 1460~1463
    [21] Gedney S D.An anisotropic perfectly matched absorbing media for the truncation of FDTD lattices.IEEE Trans.Antennas Propagat., Dec. 1996, Ap-44(12): 1630~1639
    [22] 金建铭(美).电磁场有限元方法.西安电子科技大学出版社.1998
    [23] 盛新庆.计算电磁学要论.科学出版社.2003
    [24] Gorden, W.E., 1949, A theory of radar reflections from the lower atmosphere, Proc.Inst.Radio Eng., 37, 41~43
    [25] Swingle, D.W., 1953, Reflections of electromagnetic waves from media of continuous-ly variable reflective index, Pro.Conf.Radio Meteor., art.Ⅳ-2.Austin, Uni.Of Texas
    [26] 马振骅.气象雷达回波原理.科学出版社.1986
    [27] Ruck G T, ed.Radar Cross Section Handbook.Vols. 1 &2, New York: Plenum Press, 1970
    [28] Gorden W B.Far field approximation of the Kirchhoff-Helrnholtz representation of scattering fields.IEEE Trans. 1975 AP-23:864-867
    [29] Mitzner K M.Incremental length diffraction coefficients.Northrop Co.Tech.Rep.,NO.AFAL-TR-73-296, 1974
    [30] Smagorinsky J..General circulation experiments with the primitive equations.Mon.Weather Rev.91, 99-164, 1963
    [31] Deardorff J.W..A numerical study of three-dimensional turbulent channel flow at large Reynolds number.J.F.M.41,1970
    [32] Mansour N.N.et al.Improved methods for large eddy simulations of turbulence.Proc. 1 st Int.Symp.on turbulent shear flows, Penn.State Univ., 1977
    [33] Ragab S A, Sheen S.Large-eddy simulation of a mixing layer.1991, AIAA91-0233
    [34] Ansari A.Strang W Z.Large-eddy simulation of turbulent mixing layers. 1996, AIAA96-0684
    [35] Horiuti, K.On the use of SGS modeling in the simulation of transition in plane channel??flow.J.Phys.Soc.Jpn.55,1986
    [36] Deschamps, V., Dang, K..Evaluation of subgrid-scal models for LES of transitional channel flows.ONERA TP No. 1987-134
    [37] Piomelli, U.et al.On the LES of transitional wallbounded flows.Phys.Fluids A2, 1990
    [38] Huai X.L.et al.LES of transition to turbulence in boundary layers.Theoret.Comput.Fluid Dynamics, Vol.9, 1997
    [39] 童兵.湍流的三维大涡模拟.西南交通大学博士论文,2001
    [40] 林国华.剪切剪切层流动的大涡模拟.中国科学院力学研究所.博士后,2000
    [41] 孟宪海.环控空间喷口射流流场的大涡模拟.北京航空航天大学硕士论文,2001
    [42] 周宜林.可压缩湍流大涡模拟理论模型研究.北京航空航天大学博士后,2003
    [43] 关晖.湍流大涡模拟新方法及其并行计算.中国人民解放军理工大学硕士论文,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700