超-超引射器内部流动过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超-超引射器可以减小引射系统的总体尺寸,同时还具有提高系统性能的潜在优势。然而,目前对超-超引射器内的流动特性以及两股超声速射流在引射管道约束下的相互作用及其混合过程鲜有报导。因而,对超-超引射器进行深入研究具有重要的工程应用价值和学术意义。本文综合运用理论分析、实验手段和数值仿真,对超-超引射器的压力匹配和压力恢复等特性进行了深入研究,并对超-超引射器内混合层的发展特点和能量交换规律等机理问题进行了分析。
     确定引射器中性能损失的来源对于超声速引射器的设计具有重要的指导意义。本文运用热力学中的熵增分析方法,首先对等截面超-超引射器中各种性能损失因素进行了分析,并深入考察了不同工况下各类损失在引射器总体性能损失中所占的比例。随后,结合等截面超-超引射器的一维设计理论,确定了等截面超-超引射器的最优性能点。
     超声速引射器启动过程中的非定常性和极强的非线性效应使得对该过程的研究存在诸多难点,特别地,有关二次流对超声速引射器启动性能影响的研究目前仍无统一的结论。本文对超声速引射器带不同二次来流时的启动压力进行了测定,深入和系统地研究了不同流量的二次流对超声速引射器启动性能的影响,并采用现代气体动力学理论对二次流影响超声速引射器启动性能的机制进行了深入分析。
     对等截面超-超引射器内的典型流场结构进行了深入分析,并定义了相应的三类极限压比状态,同时发展了考虑斜激波修正的极限压比理论分析模型,大大提高了对等截面超-超引射器极限压比的预测精度。对不同构型的等截面超-超引射器的压力匹配和压力恢复性能进行了系统的研究,结果表明,等截面超-超引射器在背压影响下形成的扩压和混合同时进行的流动模式使得最大增压比的实验结果远低于理论预测值;二次流马赫数的增加提高了等截面超-超引射器的压力匹配性能,但同时降低了引射器的压力恢复性能;一次流马赫数的增加使等截面超-超引射器的压力匹配性能略有下降,但一次流马赫数改变时引射器的压力恢复性能变化不大;一、二次流总压比的提高降低了引射器的压力恢复性能;一次流冲击角的存在降低了引射器的压力匹配性能,但同时使得引射器的压力恢复性能有所提高。
     对变截面超-超引射器中超-超引射流场建立的动态过程进行了分析,并对变截面超-超引射器的压力匹配性能和压力恢复性能进行了系统的研究。变截面超-超引射器中型面收缩的混合室所导致的强逆压梯度降低了引射器的压力匹配性能。当混合室收缩角较小时,参数对变截面超-超引射器压力匹配性能的影响与等截面超-超引射器类似,但在较大的混合室收缩角下,变截面超-超引射器的压力匹配规律与等截面超-超引射器存在较大区别。变截面超-超引射器中型面收缩的混合室使得气流在扩压激波前的马赫数大大下降,相应地降低了扩压过程中的总压损失,因而其压力恢复性能明显优于等截面超-超引射器。
     利用NPLS技术和超声速PIV技术对等截面超-超引射器内引射混合层的时空结构以及速度场结构进行了研究。同时,基于速度场结构对引射混合层的湍流结构和增长速度进行了研究。研究结果表明高速流体压力低于低速流体的压力不匹配状态抑制了引射混合层的增长;而在本文实验范围内,对流马赫数越高混合层的发展越快。
     建立了基于欧拉处理方法的时均流管分析模型,采用该模型对超-超引射器内动量和能量传递的规律进行了分析。研究结果表明一、二次流之间的压力不匹配和提高一次流温度均可以提高一次流和二次流之间动量和动能的传递速率;温度对引射器内总能量的传递过程具有决定性的作用;提高一、二次流的总温比对引射效率的改进比提高一、二次流总压比更为有效。
Supersonic-supersonic ejectors have the advantage of reducing the overall systemlength with a potential increasement in performance. However, researches on the flowcharacteristics of supersonic-supersonic ejectors and the interaction and mixing processof the supersonic primary and secondary flows in the confined mixing chamber havebeen rarely conducted. Therefore, the flow field evolution of supersonic-supersonicejectors should be investigated in details. The present research investigates the pressurematching and recovery characteristics of the supersonic-supersonic ejectorsystematically. The development of the mixing layer and the energy exchange betweenthe primary and secondary flows are also analyzed.
     It is vital for ejector design to determine the sources of losses in ejectorperformance. In this thesis, the entropy production method was applied to identify andquantify the sources of performace losses of the constant area supersonic-supersonicejector. The composition of the losses and their proportions were examined. Bycombining this thermodynamic method with the one-dimensional aerodynamic theory,the optimum condition of the constant area supersonic-supersonic ejector was obtainedand validated.
     The starting mechanism of supersonic ejector with a second throat is rathercomplex due to the unsteady and nonlinear effects. Especially, the effect of thesecondary flow on the starting performance of the second-throat supersonic ejector isstill unclear. In the present work, the starting pressure of a second-throat supersonicejector with various secondary flow rate has been measured. Based on the results of thepressure measurements, qualitative analysis has been carried out to clarify the flowbehavior and the physical meaning of the performance diagram.
     Typical flow fields in the former part of the mixing chamber of the constant areasupersonic-supersonic ejector were analyzed. Three limiting conditions have beendefined. A simplified analytical model has been proposed to predict the limitingpressure ratio which agrees well with the experimental data. The pressure matching andpressure recovery performance of the constant area supersonic-supersonic ejector havebeen investigated systematically. The results show that the experimental maximumcompression ratio was much lower that the theoretical value. This discrepancy may becaused by the different flow pattern between the actual flow field and theoreticalassumption. Besides, when increasing the secondary Mach number, the pressurematching performance increases while the pressure recovery performance decreases.The increasing of the primary Mach number will result in slight desent of the pressurematching performance, but almost no change in the pressure recovery performance. Thepressure recovery performance decreases with the increasing of the stagnation pressure ratio of the primary and secondary flows. The striking angle of the primary flow reducesthe pressure matching performace while improving the pressure recovery performace.
     The starting process of the supersonic secondary flow in variable areasupersonic-supersonic ejectors was analyzed. The effect of the second-throat on thepressure matching and pressure recovery performance of the ejector was investigatedsystematically. The experimental results indicate that the second-throat lowers thepressure matching performance of the ejector while improving the pressure recoveryperformance. Numerical calculations reveal that the aerodynamic throat opening area ofthe secondary flow which is restricted by the contraction of the mixing chamber, willresult in a lower pressure matching performance. However, the Mach number ahead ofthe shock train is reduced by the converging mixing chamber of the variable areasupersonic-supersonic ejector. The pressure loss caused by the shock train decreases,consequently. And the pressure recovery performance of the variable areasupersonic-supersonic ejector is improved.
     The development of the mixing layer and velocity fields of the mixing layer werestudied via NPLS and supersonic PIV technique, respectively. Turbulent structures andthe growth rate of the mixing layer were analyzed. Results show that when the staticpressure of the primary flow is lower than that of the secondary flow, the growth rate ofthe mixing layer is smaller than the condition when the static pressures are matched.And in the present work, the growth rate of the mixing layer increases with theincreasing of the convective Mach number.
     An analytical model based on the Euler methodology was proposed to analyze themomentum and energy exchange between the primary and secondary flows. Resultsshow that the unmatched static pressure of the primary and secondary flows, orincreasing the tempreture of the primary flow, will result in an increasing exchange rateof the momentum and kinetic between the primary and secondary flows. Compared toincrease the stagnation pressure ratio of the primary and secondary flow, increasing thetemperature ratio could improve the efficiency of the ejector more effectively.
引文
[1] Ajay P K, John W L, Christopher T, et al. Rocket Based Combined Cycle HypersonicVehicle Design for Orbital Access [R]. AIAA2011-2338.2011.
    [2] Ueda S, Tomioka S, Ono F, et al. Mach6Test of a Scramjet Engine with Multi-StagedFuel Injection [R]. AIAA2006-1027.2006.
    [3] Takahashi M, Sunami T, Tanno H, et al. Performance Characteristics of a Scramjet Engineat Mach10to15Flight Condition [R]. AIAA2005-3350.2005.
    [4] Takakage A, Hideyuki T, Masataka M. The Rationale for a Hypersonic Air-breathingVehicle Technology Maturization [R]. AIAA2008-2579.2008.
    [5] Nicholas W M, Sibtosh P, Roger W, Robert J S. Experimental Studies of the UnsteadyEjector Mode of a Pulse Detonation Rocket-Based Combined Cycle Engine [R]. AIAA2010-6882.2010.
    [6] Ajay P K, John W L, Christopher T, Venkatraman R. A Reusable, Rocket and AirbreathingCombined Cycle Hypersonic Vehicle Design for Access-to-Space [R]. AIAA2010-8905.2010.
    [7] Ming T, Booz A H, Ramon L C. The Quest for Hypersonic Flight with Air-BreathingPropulsion [R]. AIAA2008-2546.2008.
    [8] Morelli E A, Derry S D, Smith M S. Aerodynamic Parameter Estimation for the X-43a(Hyper-X) from Flight Data [C]. AIAA Atmospheric Flight Mechanics Conference andExhibit. San Francisco, California,15-18August,2005.
    [9] Marshall L A, Bahm C, Corpening G P, et al. Overview with Results and Lessons Learnedof the X-43a Mach10Flight [R]. AIAA2005-3336.2005.
    [10]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D].长沙:国防科学技术大学研究生院2007.
    [11] Gaurav Singhal, Mainuddin, Tyagi R K, Dawar A L, Subbarao P M V. Pressure RecoveryStudies on a Supersonic COIL with Central Ejector Configuration [J]. Optics&LaserTechnology,2010,42:1145-1153.
    [12] Gaurav Singhal, Rajesh R, Mainuddin, Tyagi R K, Dawar A L. Two-stage Ejector BasedPressure Recovery System for Small Scale SCOIL [C].36thAIAA Plasmadynamics andLaser Conference. Toronto, Ontrrio Canada,6-9June,2005.
    [13] Etele J, Sisilian J P, Parent B. Variable Area Ejectors for Increasing the CompressionFactor of an RBCC Engine [C].40thAIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit. Fort Lauderdale, Florida,11-14July,2004.
    [14] Foelsche R O, Tsai C Y, Bakos R J. Experiments on a RBCC Ejector Scramjet withIntegrated, Staged Secondary-Fule Injection [R]. AIAA99-2242,1999.
    [15] Nelson K W. Experimental Investigation of an Ejector Scramjet RBCC at Mach4.0and6.5Simulated Flight Conditions [D]. Huntsville, Alabama: The University of Alabama inHuntsville2002.
    [16] Escher W J D. The Seven Operating Modes of the Supercharged Ejector Scramjet (SESJ)Combined-Cycle Engine [R]. AIAA2001-3240,1999.
    [17] Boudreau A H. Hypersonic Air-Breathing Propulsion Efforts in the Air Force ResearchLaboratory [R]. AIAA2005-3255.2005.
    [18] Rogers R C, Capriotti D P, Guy R W. Experimental Supersonic Combustion Research atNASA Langley [R]. AIAA98-2506.1998.
    [19] AAAC Research Facilities [R]. FY2002-2003.
    [20]李纲.固冲发动机高空模拟引射器设计与试验研究[J].南京理工大学学报(自然科学版),2008,32(2):181-184(LI Gang. Design and Experiment on High AltitudeSimulation Ejector of Ramjet Engine [J]. Journal of Nanjing University of Science andTechnology (Natural Science),2008,32(2):181-184).
    [21] Canteins G, Franzetti F, Zoclonska E, et al. Experimental and Numerical Investigations onPde Performance Augmentation by Means of an Ejector [J]. Shock Waves,2006,15(2):103-112.
    [22] Tacina K M, Fernandez R, Moody S M. Thrust Augmentation in an Unsteady SupersonicEjector [R]. AIAA2004-0866.2004.
    [23] Whitley N, Krothapalli A, VanDommelen L. A Determinate Model of Thrust-AugmentingEjectors [J]. Theoretical and Computational Fluid Dynamics,1996,8(1):37.
    [24] Hu H, Kobayashi T, Saga T, et al. Research on the Rectangular Lobed ExhaustEjector/Mixer Systems [J]. Transactions of the Japan Society for Aeronautical and SpaceSciences,1999,41(134):187-194.
    [25] DalBello T, C. J. Steffen J. Parametric Study of a Mixer/Ejector Nozzle with MixingEnhancement Devices [R]. AIAA2002-0667.2002.
    [26] Boreysho A S. High-Power Mobile Chemical Laser [J]. Quantum Electronics,2005,35(5):393-406.
    [27] Connaughton J W. Application of a Hydrazine Gas Generator to Vacuum Ejector Pumpingof a Chemical Laser [R]. AIAA1977-892.1977.
    [28]徐万武.高性能、大压缩比化学激光器压力恢复系统研究[D].长沙:国防科学技术大学(工学博士),2003.
    [29] Al-Najem, N M, Darwish M A, Youssef F A. Thermovapor Compression Desalters:Energy and Availability-Analysis of Singleand Multi-Effect Systems [J]. Desalination,1997,110(3):223–238.
    [30] Sozen A, Ozalp M, Arcaklioglu E. Calculation for the Thermodynamic Properties of anAlternative Refrigerant (R508b) Using Artificial Neural Network [J]. Applied ThermalEngineering,2007,27(2-3):551-559.
    [31] Deng J-q, Jiang P-x, Lu T, et al. Particular Characteristics of Transcritical Co2Refrigeration Cycle with an Ejector [J]. Applied Thermal Engineering,2007,27(2-3):381-388.
    [32] Zhang B, Shen S Q. A Theoretical Study on a Novel Bi-Ejector Refrigeration Cycle [J].Applied Thermal Engineering,2006,26(5-6):622-626.
    [33] Yu J L, Chen H, Ren Y F, et al. A New Ejector Refrigeration System with an AdditionalJet Pump [J]. Applied Thermal Engineering,2006,26(2-3):312-319.
    [34] Matthew N Y, Stephen I. An Experimental Investigation of Cold Air-to-Air Ejector [R].AIAA2005-4281.2005.
    [35]张鲲鹏,薛飞,潘卫明,等.高压气体引射器的试验研究和仿真[J].热科学与技术,2004,3(2):133-138.(ZHANG K P, XUE F, PAN W M, et al. Experimental investigationand numerical simulation of high-pressure gas ejector. Journal of Thermal Science andTechnology,2004,3(2):133-138).
    [36]李德海,肖海鹰.环状引射器的工作性能优势分析[J].航空发动机,2006,32(3).
    [37] Stephens S E, Bates L B. Effect of Geometric Parameters on the Performance of SecondThroat Annular Steam Ejectors [R]. ADA238645.1991.
    [38]邹建军,周进,徐万武,王振国.超音速环形引射器空气引射启动特性试验[J].国防科技大学学报,2008,30(1):1-4(ZOU Jian-jun, ZHOU Jin, XU Wan-wu, WANGZhen-guo. Experimental Investigation on the Start Performances of the SupersonicAnnular Air Ejector [J]. Journal of National University of Defense Technology,2008,30(1):1-4).
    [39] Hale J W. Influence of Pertinent Parameters on Ejector-Diffuser Performance with andwithout Ejected Mass [R]. AD602770.1964.
    [40]廖达雄,任泽斌,余永生,等.等压混合引射器设计与实验研究[J].强激光与粒子束,2006,18(5):728-732.(LIAO D X, REN Z B, YU Y S, etc. Design and experiment ofconstant2pressure mixing ejector [J]. High Power Laser and Particle Beams,2006,18(5):728-732).
    [41]凌其扬,廖达雄.风洞引射器试验研究[J].气动实验与测量控制,1994,8(2):10-18.(Ling Q Y, Liao D X. Experimental Investigation on Wind Tunnel Ejector.Aerodynamical Experiment and Instrument Control,1994,8(2):10-18).
    [42]缪亚芹,王锁芳,吴恒刚.多喷管引射器试验研究与数值模拟[J].南京师范大学学报(工程技术版),2006,6(2):67-71.
    [43]刘化勇,邓小刚,陈坚强,毛枚良.三维多喷管超声速引射器流场数值模拟方法研究[C].中国第一届近代空气动力学和气动热力学会议,2006, CARS-200600106.
    [44]吕辉强.二维超声速空气引射器理论与实验研究[D].国防科学技术大学(工学硕士),2008.
    [45]张飞,王志浩,张秀玲.高空模拟试车台等截面式环型蒸汽引射器零二次流流场数值模拟[J].桂林航天工业高等专科学校学报,2008,2:1-4.
    [46]吴继平.高增压比多喷管超声速引射器设计理论、方法与实验研究[D].国防科学技术大学(工学博士),2007.
    [47] Dutton J C, Addy A L. One-Dimensional Analysis of Supersonic-SupersonicEjector-Diffuser Systems for Chemical Laser Applications [R]. Dept. of Mechanical andIndustrial Engineering, Univ. of Illlinois at Urbana-Champaign, Rept. UILU-ENG-78-4015,1978.
    [48] Guile R N, et al. Supersonic/Supersonic Fluid Ejector. United States Patent4379679,1983.
    [49] SUN D W, Eames I W. Recent Developments in the Design Theories and Applications ofEjectors-A Review [J]. Journal of the Institute of Energy,1995,68:65-79.
    [50] Keenan J H, Neumann E P. A Simple Air Ejector [J]. Journal of AppliedMechanics-Transactions of the Asme,1942,64: A75-A81.
    [51] Keenan J H, Neumann E P, LustwerK F. An Investigation of Ejector Design by Analysisand Experment [J]. Journal of Applied Mechanics,1950,17(3):299-309.
    [52]索科洛夫,津格尔.喷射器[M].黄秋云译.北京:科学出版社,1977.
    [53] Nagaraja K S. Some Ejector Characteristics [R]. AIAA1981-1679.1981.
    [54] Munday J T, Bagster D F. New Ejector Theory Applied to Steam Jet Refrigeration [J].Industrial&Engineering Chemistry Process Design And Development,1977,16(4):442.
    [55] Huang B J, Jiang C B, Hu F L. Ejector Performance-Characteristics and Design Analysisof Jet Refrigeration System [J]. Journal Of Engineering For Gas Turbines AndPower-Transactions Of The Asme,1985,107(3):792.
    [56] Huang B J, Chang J M. Empirical Correlation for Ejector Designs [J]. International Journalof Refrigeration,1999,22:379-388.
    [57] Fabri J, Siestrunck R. Supersonic Air Ejectors [J]. Advances in Applied Mechanics,1958,5:1-34.
    [58] Addy A L, Dutton J C, Mikkelsen C D. Supersonic Ejector-Diffuser Theory andExperiments [R]. UILU-ENG-82-4001.1981.
    [59] Dutton J C, Mikkelsen C D, Addy A L. A Theoretical and Experimental Investigation ofthe Constant Area, Supersonic-Supersonic Ejector [C]. AIAA, Aerospace SciencesMeeting.1981
    [60] Huang B J, Chang J M, Wang C P, et al. A1-D Analysis of Ejector Performance [J].International Journal of Refrigeration-Revue Internationale Du Froid,1999,22(5):354.
    [61] Chou S K, Yang P R, Yap C. Maximum Mass Flow Ratio Due to Secondary Flow Chokingin an Ejector Refrigeration System [J]. International Journal Of Refrigeration-RevueInternationale Du Froid,2001,24(6):486.
    [62] Lund S, Soe L. District Heating Assisted Jet-pump Cycle Refrigeration Plant for ProcessCooling and Air Conditioning [C], Natural Working Fluids, Proceedings of a Joint Meetingof the I.I.R, Oslo,1998.
    [63] Worall M. An Investigation of a Jet-pump Thermal (ice) Storage System Powered byLow-grade Heat [D]. Ph.D. Thesis, University of Nottingham,2001.
    [64] Eames I W. The Constant Momentum-gradient Method for Jet-pump Designs [R]. AResearch Report, School of Built Environment, University of Nottingham,2000.
    [65] Eames I W. A New Prescription for the Design of Supersonic Jet-pumps: the ConstantRate of Momentum Change Method [J]. Applied Thermal Engineering,2002,22:121-131.
    [66] Singhal G, Dawar AL, Subbarao P M V. Application of profiled ejector in chemical lasers[J]. Applied Thermal Engineering,2008,28:1333–1341.
    [67] Coff J A, Coogan C H. Some two dimensional Aspect of the Ejector Problem [J]. ASMEJournal of Applied Mechanics,1942,9(4):A151-A154.
    [68] Hill P G. Turbulent Jets in Ducted Stream [J]. Journal Of Fluid Mechanics,1965,22:161-186.
    [69] Mikhail S. Mixing of Coaxial Streams inside a Closed Conduct [J]. Journal of MechanicalEngineering Science,1960,2(1):59-68.
    [70] Chow W L, Addy A L. Interaction between Primary and Secondary Streams of SupersonicEjector Systems and Their Performance Characteristics [J]. AIAA Journal,1964,2(4):686-695.
    [71] Chow W L, Yeh P S. Characteristics of Supersonic Ejector Systems with Non-ConstantArea Shroud [J]. AIAA Journal,1965,3(3):526-527.
    [72] Kurtz E F. Theoretical-Model for Predicting Steam-Ejector Performance [J]. Journal OfEngineering For Industry-Transactions of The ASME,1976,98(2):645-651.
    [73] Hedges K R, Hill P G. Compressible Flow Ejectors, Part I, Development of aFinite-Difference Flow Model [J]. Journal of Fluid Engineering, Transactions of theASME,1974:282-288.
    [74] Hedges K R, Hill P G. Compressible Flow Ejectors, Part II, Flow Field Measurements andAnalysis [J]. Journal of Fluid Engineering, Transactions of the ASME,1974:282-288.
    [75] Gilbert G B, Hill P G. Analysis and Testing of Two-Dimensional Slot Nozzle Ejectors withVariable Area Mixing Sections [C]. Proc2nd Symp on Jet Pumps and Ejectors and GasLift Techniques. BHRA Fluid Engineering. Cranfield, bedford UK, D3:45-64.1975
    [76] Nilavalagan S, Ravindran M, Radhakrishna H C. Analysis of Mixing Characteristics ofFlow in a Jet Pump Using a Finite Difference Method [J]. Chemical Engineering Journal,1988,39:97-109.
    [77] Neve R S. Computational Fluid Dynamics Analysis of Diffuser Performance inGas-Powered Jet Pumps [J]. International Journal of Heat and Fluid Flow,1993,14(4):401-407.
    [78] Chen F L, Liu C F, Yang J Y. Supersonic-Flow in the Second-Throat Ejector-DiffuserSystem [J]. Journal of Spacecraft and Rockets,1994,31(1):123-129.
    [79] Kim H, Lee Y, Setoguchi T, et al. Numerical Simulation of the Supersonic Flows in theSecond Throat Ejector-Diffuser Systems [J]. Journal of Thermal Science,1999,8(4):214-222.
    [80] Kim H D, Setoguchi T, Yu S, et al. Navier-Stokes Computations of the SupersonicEjector-Diffuser System with a Second Throat [J]. Journal of Thermal Science,1999,8(2):79-88.
    [81] Matsuo K, Sasaguchi K, Tasaki K, et al. Investigation of Supersonic Air Ejectors (Part1.Performance in the Case of Zero-Secondary Flow)[J]. Bulletin of the JSME,1981,24(198):2090-2097.
    [82] Matsuo K, Sasaguchi K, Kiyotoki Y, et al. Investigation of Supersonic Air Ejectors (Part2:Effects of Throat-Area-Ratio on Ejector Performance)[J]. Bulletin Of The Jsme-JapanSociety Of Mechanical Engineers,1982,25(210):1898.
    [83] Somsak W.Optimization of a High-Efficiency Jet Ejector by Computational FluidDynamics Software. Master Thesis.Texas A&M University,2005.
    [84]徐海涛.蒸汽喷射器的理论及数值研究[D].南京工业大学(工学硕士),2003.
    [85]徐万武,谭建国,王振国.高空模拟试车台超声速引射器数值研究[J].固体火箭技术,2003,26(2):71-74.
    [86]徐万武,王振国.环型超声速空气引射器零二次流流场数值研究[J].推进技术,2003,24(1):36-39.
    [87]刘友宏,李立国.直排波瓣喷管引射器流场计算k-e模型的选择[J].空气动力学学报,2002,20(3):343-350.
    [88] Bartosiewicz Y, Aidoun Z, Desevaux P, Mercadier Y. Numerical and ExperimentalInvestigations on Supersonic Ejectors [J]. International Journal of Heat and Fluid Flow,2005,26:56-70.
    [89] Desevaux P, Aeschbacher O. Numerical and Experimental Flow Visualizations of theMixing Process inside an Induced Air Ejector [J]. International Journal Of Turbo&Jet-Engines,2002,19(1-2):71.
    [90] Bartosiewicz Y, Aidoun Z, Mercadier Y. Numerical Assessment of Ejector Operation forRefrigeration Applications Based on CFD [J]. Applied Thermal Engineering,2006,26(5-6):604-612.
    [91]刘化勇.超声速引射器的数值模拟方法及其引射特性研究[D].中国空气动力研究与发展中心(工学博士),2009.
    [92] Nahdi E, Champoussin J C, Hostache G, et al. Optimal Geometric Parameters of a CoolingEjector-Compressor [J]. International Journal Of Refrigeration-Revue Internationale DuFroid,1993,16(1):67.
    [93]徐万武,邹建军,王振国,等.超声速环型引射器启动特性试验研究[J].火箭推进,2005,31(6):7-11.
    [94] Chunnanond K, Aphornratana S. An Experimental Investigation of a Steam EjectorRefrigerator: The Analysis of the Pressure Profile Along the Ejector [J]. Applied ThermalEngineering,2004,24(2-3):311-322.
    [95]廖达雄.引射器性能优化和增强混合方法研究[D].西北工业大学(工学硕士),2003.
    [96]廖达雄,陈吉明,余永生.引射器增强混合喷嘴性能实验研究.实验流体力学.2007,21(3):24-29.
    [97] Kim S, Kwon S. Experimental Determination of Geometric Parameters for an AnnularInjection Type Supersonic Ejector [J]. Journal Of Fluids Engineering-Transactions Of TheASME,2006,128:1164-1171.
    [98] Kim S, Kwon S. Experimental Investigation of an Annular Injection Supersonic Ejector [J].AIAA Journal,2006,44(8):1905-1908.
    [99] German R C, and Bauer R C. Effects of Diffuser Length on the Performance of EjectorsWithout Induced Flow [R],AEDC-TN-61-89,1961.
    [100] Bauer R C, and German R C, Some Reynolds Number Effects On The Performance ofEjectors Without Induced Flow [R], AEDC-TN-61-87,1961.
    [101] Bauer R C, and German R C, The Effect of Second Throat Geometry on the Performanceof Ejectors Without Induced Flow [R], AEDC-TN-61-133,1961.
    [102] James W H,Comparison of Diffuser-Ejector Performance With Five Different DrivingFluids [R], AEDC-TDR-63-207,1963
    [103] Panesci J H,German R C. An Analysis of Second-Throat Diffuser Performance forZero-Secondary-Flow Ejector Systems [R], AEDC-TDR-63-249,1963
    [104] James W H. Influence of Pertinent Parameters on Ejector-Diffuser Performance With andWithout Ejected Mass [R]. AEDC-TDR-64-134,1964.
    [105] Aoki S, Lee J S, Masuya G. Experimental Investigation of an Ejector-Jet [C].41stAerospace Sciences Meeting and Exhibit.2003, Reno, Nevada.
    [106] Desevaux P, Prenel J P, Hostache G. An Optical Analysis of an Induced Flow EjectorUsing Light Polarization Propeties [J]. Experiments in Fluids.199416:165-170.
    [107] Desevaux P, Hostache G, Jacquet P. Static Pressure Measurement Along the Centerline ofan Induced Flow Ejector [J]. Experiments In Fluids,1994,16(3-4):289-291.
    [108] Desevaux P. A Method for Visualizing the Mixing Zone between Two Co-Axial Flows inan Ejector [J]. Optics and Lasers in Engineering,2001,35(5):317-323.
    [109] Desevaux P, Mellal A, de Sousa A. Visualization of Secondary Flow Choking Phenomenain a Supersonic Air Ejector [J]. Journal Of Visualization,2004,7(3):249.
    [110] Dvorak V, Safarik P. Transonic Instability in Entrance Part of Mixing Chamber ofHigh-Speed Ejector [J]. Journal of Thermal Science,2005,14(3):258-271.
    [111] Dvorak V, Safarik P. Supersonic Flow Structure in the Entrance Part of a Mixing Chamberof2D Model Ejector [J]. Journal of Thermal Science,2003,12(4):344-349.
    [112] Dvorak V, Safarik P. Interaction of Supersonic Flows in an Ejector [C]. XXIICTAM,2004,Warsaw, Poland.
    [113] Olden G W, Lineberry D M, Linn C A B. Low-Cost Flow Visualization for a SupersonicEjector.41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit.2005,Tucson, Arizona.
    [114]赵玉新.超声速混合层时空结构的实验研究[D].国防科技大学(工学博士),2008.
    [115]易仕和,赵玉新,何霖,程忠宇,田立丰. NPLS技术及其在超声速湍流流动显示中的应用[C].力学50周年大会,北京,2007.
    [116] Adrian R J. Twenty Years of Particle Image Velocimetry [J]. Experiments in Fluids.2005,39:159-169.
    [117]赵玉新,易仕和,何霖,程忠宇,田立丰.超声速湍流混合层中小激波结构的实验研究[J].国防科技大学学报,2007,29(1):12-15.
    [118]赵玉新,易仕和,何霖,程忠宇,田立丰.激波与湍流相互作用的实验研究[J].科学通报,2007,52(2):140-143.
    [119]邱翔,黄永祥,卢志明,刘宇陆.稳定分层湍流的PIV实验研究[J].实验流体力学.2008,22(6):1-9.
    [120]易仕和,赵玉新,何霖,程忠宇,田立丰.超声速混合层实验图像的分形分析[C].第十二届全国激波与激波管学术会议,洛阳,2006.
    [121]易仕和,赵玉新,何霖,程忠宇,田立丰.基于NPLS实验的超声速混合层增长速度定量测量.第十二届全国激波与激波管学术会议,洛阳,2006.
    [122] Spiegel J M, Hofstetter R V, Kuehn D M. Applications of Auxiliary Air Injectors toSupersonic Wind Tunnels. NACA RM A53101,1953.
    [123] Hunczak H R, Rousso M D. Starting and Operating Limits of Two Supersonic WindTunnels Utilizing Auxiliary Air Injection. NACA TN3262,1954.
    [124] Hasel L E, Sinclair A R. A Preliminary Investigation of Methods for Improving thePressure-Recovery Characteristics of Variable-Geometry Supersonic-Subsonic DiffuserSystems. NACA RM L57H02,1957.
    [125] Stokes G M. Description of a2-Foot Hypersonic Facility at the Langley Research Center.NASA TN D-939,1961.
    [126] Zimet E. Steady State and Transient Operation of an Ejector for a Chemical Laser ColdFlow Mixing Experiment. Naval Surface Weapon Center/WOL/TR76-142,1976.
    [127] Batt R G, Behrens H W. Chemical Laser Advanced Diffuser Ejector (CLADE) ProgramAlternate V-Far Advanced Technology Concepts. TRW Systems Group, Redondo Beach,Calif., DRCPM-HEL-VR-79-1,1978.
    [128] Mikkelsen C D, Sandberg M R, Addy A L. Theoretical and Experimental Analysis of theConstant-Area, Supersonic-Supersonic Ejector. Dept. of Mechanical and IndustrialEngineering, Univ. of Illlinois at Urbana-Champaign, Rept. UILU-ENG-76-4003,1976.
    [129] Dutton J C, Mikkelsen C D, Addy A L. A Theoretical and Experimental Investigation ofthe Constant Area, Supersonic-Supersonic Ejector [C]. AIAA, Aerospace SciencesMeeting.1981
    [130]陈钦,陈吉明,蔡光明,任泽斌.超-超引射器多目标优化设计[J].强激光与粒子束,2012, No.24(5):1043-1046.
    [131] Joe D J. Improved Methods of Characterizing Ejector Pumping Performance [R]. AIAA,Paper89-0008,1989.
    [132]李立国,张靖周.航空用引射混合器[M].国防工业出版社,2007.
    [133] Birch S F, Eggers J M. A Critical Review of the Experimental Data for Developed FreeTurbulent Shear Layers[R]. NASA Technical Report,1972, SP-321:11-40.
    [134] Bagdanoff G L. Compressibility Effects in Turbulent Shear Layers[J]. AIAA Journal,1983,21:926-927.
    [135] Papamoschou D, Roshko A. The Compressible Turbulent Shear Layer: An ExperimentalStudy [J]. J. Fluids Mech.,1988,197:453-477.
    [136] Papamoschou D. Structure of the Compressible Turbulent Shear Layer [J]. AIAA Journal,1991,29:680-681.
    [137] Rossmann T. An Experimental Investigation of High Compressibility Mixing Layers [D].Ph. D. Thesis, Stanford University,2001.
    [138] Elliott G S, Samimy M. Compressibility Effects in Free Shear Layers [J]. Phys. Fluids,1990, A2:1231–1240.
    [139] Gruber M R, Dutton J C. Three-Dimensional Velocity Field in a Compressible MixingLayer [J]. AIAA Journal,1993, Vol.31:2061-2067.
    [140] Chang C T, Marek C J, Wey C, Jones R A, Smith M J. Turbulence Measurement in aReacting and Non-Reacting Shear Layer at High Subsonic Mach Number [C],9thSymposium of Turbulent Shear Flows,1993, Kyoto, Japan.
    [141] Urban W D, Mungal M G. Planar Velocity Measurements in Compressible Mixing Layers[J]. J. Fluid Mech.,2001, Vol.431:189-222.
    [142] Hall J L, Dimotakis P E, Rosemann H. An Experiments in Non-Reacting CompressibleShear Layers [R].1991, AIAA Paper91-0629.
    [143] Hall J L, Dimotakis P E, Rosemann H. Some Measurements of Molecular Mixing inCompressible Turbulent Shear Layers [R].1991, AIAA Paper91-1719.
    [144] Dimotakis P E. Turbulent Mixing [J]. Annu. Rev. Fluid Mech.,2005,37:329-356.
    [145] Clemens N T, Paul P H. Scalar Measurements in Compressible Axisymmetric MixingLayers [J]. Phys. Fluids,1995,5:1071-1081.
    [146] Island T C, Patrie B J, Mungal M G, Hanson R K. Instantaneous Three-Dimensional FlowVisualization of a Supersonic Mixing Layers [J]. Exp. Fluids,1996,20:249-256.
    [147] Michalke A. On Spatially Growing Disturbance in an Inviscid Shear Layer [J]. J. FluidMech.,1965,23:71-404.
    [148] Monkewitz P A, Heurre P. Influence of the Velocity Ratio on the Spatial Instability ofMixing Layers [J]. Phy. Fluids,1982,25:1137-1143.
    [149] Corcos G M, Sherman F S. Vorticity Concentration and the Dynamics of Unstable FreeShear Layers [J]. J. Fluid Mech.,1976,73:241-246.
    [150] Brown G L, Roshko A. On Density Effects and Large Structure in Turbulent MixingLayers [J]. J. Fluid Mech.,1974,64:775-816.
    [151] Fourgette D C, Dibble R W, Mungal M G. Time Evolution of the Shear Layer of aSupersonic Axisymmetric Jet [J]. AIAA Journal,1991,29:1123-1130.
    [152] Samimy M, Elliott G S. Effects of Compressibility on the Characteristics of Free ShearFlows [J]. AIAA Journal,1990,28:439-445.
    [153] Ahmed M R, Sharma S D. Effect of Velocity Ratio on the Turbulent Mixing of Confined,Co-Axial Jets [J]. Experimental Thermal and Fluid Science,2000,22:19-33.
    [154] Hu F Q. Confined Supersonic Mixing Layers: A Computational Investigation of Instabilityand Mixing Enhancement [D]. Florida State University,1990.
    [155] Hudson D A. Numerical Simulation of a Confined Supersonic Shear Layer [D]. ThePennsylvania State University,1996.
    [156] Kumar A, Bushell M, Hussaini M Y. Mixing Augmentation Technique for HypervelocityScramjets [J]. Journal of Propulsion and Power,1989,5:514-522.
    [157] Shau Y R, Dolling D S. Experimental Study of Spreading Rate Enhancement of HighMach Number Turbulent Shear Layers [C]. AIAA89-2458,1989.
    [158] Hall J L. An Experimental Investigation of Structure, Mixing, and Combustion inCompressible Turbulent Shear Layers [D]. Ph.D. Thesis, California Institute ofTechnology,1991.
    [159] Clemens N T, Mungal M G. Effects of Sidewall Disturbance on the Supersonic MixingLayer [J]. Journal of Propulsion and Power,1992,8:249-251.
    [160]张洪泉.混合层中的流向涡与Rayleigh离心不稳定[J].力学学报,1997,3.
    [161]曹伟,周恒.二维超音速混合层中小激波的存在及其对流场结构的影响[J].中国科学A辑,2001,31(5):439-444.
    [162]曹伟,周恒.二维超音速混合层增强混合研究[J].中国科学A辑,2002,32(2):150-157.
    [163]刘君.二维可压缩自由剪切层的理论分析[J].空气动力学报,2005,23(3):322-325.
    [164]熊红亮.可压缩自由剪切层纹影试验研究[J].流体力学实验与测量.2003,17(2):74-77,83.
    [165] Dufflocq M, Benjamin M A, Roan V P, Lear W E. Initial Development of theAxisymmetric Ejector Shear Layer [R]. AIAA-92-3267,1992.
    [166] Benjamin M A, Dufflocq M, Roan V P. Initial Development of the Two-DimensionalEjector Shear Layer: Experimental Results [R]. AIAA-93-2440,1993.
    [167] Dufflocq M, Benjamin M A, Roan V P. Comparison of the Initial Development of ShearLayers in Two-Dimensional and Axisymmetric Ejector Configurations [R]. AIAA-93-2441,1993.
    [168] Ross C B, Krothapalli A, Lourenco L. An on-line PIV Study of a Rectangular SupersonicJet Ejector Flow-Field [R]. AIAA-94-3086,1994.
    [169] Jones W L, Price H S, Lorenzo C F. Experimental Study of Zero-Flow Ejectors UsingGaseous Nitrogen [R]. NASA-TN-D-203.1960.
    [170] WANG J J, CHEN F. On the Start Condition of a Second-Throat Ejector-Diffuser [J].Aeronautical Journal,1996,10:321-326.
    [171] Kim S, Kwon S. Starting Pressure and Hysteresis Behavior of an Annular InjectionSupersonic Ejector [J]. AIAA Journal,2008,46(5):1039-1044.
    [172] Park G, Kim S, Kwon S. A Starting Procedure of Supersonic Ejector to Minimize PrimaryPressure Load [J]. Journal of Propulsion and Power,2008,24(3):631-634.
    [173] Bejan A. Entropy Generation though Heat and Fluid Flow [M], New York: John Wiley andSons,1982.
    [174] Bejan A. The Thermodynamic Design of Heat and Mass Transfer Processes and Devices[J]. International Journal of Heat and Fluid Flow,1987,8:258-276.
    [175] Arbel A, Shklyar A, Hershgal D, et al. Ejector Irreversibility Characteristics [J]. Journal ofFluids Engineering-Transactions of the ASME,2003,125:121-129.
    [176]陈健,吴继平,吕辉强,王振国.二维超声速空气引射器的启动特性试验研究[J].国防科技大学学报,2010,32(5):5-9.
    [177] Zou J J, Zhou J, Lu H Q, Hu Y. Experimental Investigation on Starting Process ofSupersonic Single-stage Air Ejector [J], Journal of Thermal Science,2012,21(4):348-353.
    [178] Park B H, Li J H, Yoon W. Fluid Dynamics in Starting and Terminating Transients ofZero-secondary Flow Ejector [J]. International Journal of Heat and Fluid Flow,2008,29(1):327-339.
    [179] Kumaran R M, Vivekanand P K, Sundararajan T, et al. Optimization of Second ThroatEjectors for High-Altitude Test Facility [J], Journal of Propulsion and Power,2009,25(3):697-705.
    [180] Kumaran R M, Sundararajan T, Manohar D R. Performance Evalution of Second-ThroatDiffuser for High-Altitude Test Facility [J], Journal of Propulsion and Power,2010,26(2):248-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700