高速流动精细数值模拟、实验研究及其在气动光学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速/高超声速条件下的复杂流动一直是流体力学理论研究和工程应用中的重点和难点问题,涉及激波、流动转捩、高雷诺数流、非定常流、湍流旋涡分离流等流动现象。本文针对超声速/高超声速流动中出现的这些复杂流动现象,以及由这些复杂流动引起的包括气动光学效应等在内的复杂物理现象,开展了精细数值模拟和实验研究。
     针对超声速/高超声速复杂流动精细求解中存在的精度和效率问题,提出了基于Menter SST两方程湍流模型的LES/RANS混合数值模拟方法,建立了相应算法模型,并对其进行了可压缩效应修正,编制了程序。为提高程序计算效率,采用了大规模并行计算技术,搭建了基于PC集群的并行计算平台,并实现了程序的并行化。
     基于Lax激波管、运动激波/密度波干扰、强激波双马赫反射和激波/涡干扰等问题考察了LES/RANS混合数值模拟方法的格式精度,确定采用5阶WENO空间格式、3阶TVD Runge-Kutta时间格式作为LES/RANS数值模拟的基本格式,研究了超声速/高超声速的激波/边界层干扰复杂流动现象。研究结果表明,该方法满足精细求解超声速/高超声速复杂流场要求。
     通过实验和数值模拟对高超声速来流情况下进气道开启过程的起动特性进行了研究,重点分析了进气道内流激波/边界层干扰对起动特性的影响,得到了非常有价值的结果。实验中,自主设计了高超声速直联式风洞模拟自由来流马赫数5.3,通过测量进气道上壁面压力分布,研究了进气道开启过程的起动特性;在实验基础上,利用本文建立的数值方法,对进气道开启过程中的典型状态进行了数值模拟,分析了进气道开启过程中的复杂激波/边界层干扰现象,讨论了进气道起动特性受到边界层分离影响的规律。
     针对超声速/高超声速复杂流场引起的气动光学效应,阐明了光学传输与流场属性的内在联系,给出了高速飞行器“近场”如湍流边界层、剪切层以及激波等引起的光学传输效应的表征形式与计算方法,分析了求解气动光学时对流场计算精度的判定准则,并做了讨论和推广。
     基于超声速/高超声速流场网格和流场数据,提出了步长自适应光线追迹的思想和方法,该方法根据当地折射率梯度和网格几何尺寸自动调节追迹步长,较好地解决了光场中存在大折射率梯度(对应流场中大密度梯度)时光线追迹的精度和效率问题。
     综合运用LES/RANS数值方法、大规模并行计算技术,数值模拟了Settles凹腔超声速三维流动,得到了剪切层区和再附区的速度型分布和质量流脉动,与实验结果符合较好。在计算所得流场的基础上,采用步长自适应光线追迹方法,研究了凹腔剪切层区域引起的光学传输效应,结果表明凹腔流场剪切层将导致严重的波面畸变,明显降低光强Strehl比。同时还计算了长深比L/D=5开式凹腔的三维非定常流动,对凹腔的自激振荡特性和非定常流动引起的气动噪声进行了研究,分析了凹腔自激振荡模式,相关结果与文献结果符合较好。
As a key problem in fluid dynamics research and technology application, the complex supersonic/hypersonic flow involves shock waves, flow transition, high Reynolds number flow, unsteady flow, and turbulent vortex separation. Caused by the supersonic/hypersonic flow, there exist complex physical phenomena such as aero-optical effects. In this dissertation these flow phenomena and physical phenomena were studied based on detailed numerical simulation and experimental method.
     The LES/RANS hybrid algorithm was proposed, considering the compressibility effects, to solve the problem of fine simulation of supersonic/hypersonic flow. In order to enhance the simulation efficiency a large-scale parallel simulation strategy was carried out, a PC cluster based parallel computing platform was set up, and a parallel program was achieved.
     Some classic examples, such as Lax shock wave tube problem, moving shock/density wave interference, double Mach reflection and shock/vortex interference, were carried out for investigating numerical methods. And supersonic/hypersonic shock/boundary layer interaction problem was in-depth validated and studied. At last, the 5th order WENO space scheme and 3rd order TVD Runge-Kutta temporal scheme are used in LES/RANS hybrid method to solve the problem of supersonic/hypersonic fine flow simulation. The results showed that the method meets the requirements of sophisticated simulation of supersonic/hypersonic flow.
     Experimental research and numerical simulation were used to study hypersonic inlet’s flow structure and starting characteristics in the process of inlet lip opening, and got some very valuable results. During experiment, a directly connected wind tunnel was independently designed to simulate a free stream Mach at 5.3, based on which the dynamic process of inlet opening was studied; by measuring the wall pressure distribution on the inlet, the inlet flow characteristics during the process of inlet opening were studied. Based on experiment, the numerical simulation method was used to simulate some typical states in the process of inlet opening. The complex shock/boundary layer interaction phenomenon was analyzed, and the starting characteristics of the inlet with boundary layer separation were also discussed.
     Focus on the aero-optical effect derive from high speed flow field, the intrinsic link between optical transmission and flow field property was analyzed; the forms of expression and simulation method were built to analyze the optical transmission effect caused by "near field", such as turbulent boundary layer, shear layer and shock wave; then a criterion of solution is proposed and discussed particularly.
     The ray tracing method used in the study of aero-optical effects was developed. The method was based on grids and flow field data, using Runge-Kutta ray tracing method as the basic way. Based on flow field grid and data, a self-adaptive ray tracing algorithm was proposed, where the tracing step distance is self-adaptive according to local refraction index gradient and grid geometry scale. It can well solve the light field in the presence of large refractive index gradient (corresponding to large density gradient).
     Using large scale parallel computing, Settles cavity’s supersonic three-dimensional flow was simulated. The velocity distribution and pulse mass flow rate of shear layer and re-attached region has been calculated, and results tallied with experimental data. Based on the calculated flow field, the optical transmission effects caused by cavity shear layer were researched. The results showed that, cavity flow leaded to severe wave front distortion and significantly reduced light intensity Strehl ratio. Another typical open cavity with the length-depth ratio L/D=5 was also studied. Its three-dimensional unsteady flow and self-oscillation characteristics were researched, as well as aerodynamic noise, self-oscillation mode. The results tallied with the data from relevant publications.
引文
[1] L. Cattafesta, D. Williams, C. Rowley, et al. Review of Active Control of Flow-Induced Cavity Resonance[R].AIAA Paper 2003-3567. 2003.
    [2] Rodney Clark, Michele Banish, Jay Hammer. Fundamentals of Aero-Optics Phenomena (Invited)[R].AIAA Paper 94-2545. 1994.
    [3]殷兴良.气动光学原理[M].北京:中国宇航出版社,2003.
    [4] Eric J. Jumper, Edward J. Fitzgerald. Recent advances in aero-optics[J]. Progress in Aerospaces, 2001, 37:299~339.
    [5] James Trolinger, David Weber, William Rose. An Aero-optical Test and Diagnostics Simulation Technique[R].AIAA Paper 2002-0825. 2002.
    [6]韩志平.高超声速飞行器红外成像制导光学传输效应数值仿真研究[D].北京:中国航天科工集团第二研究院,2003.
    [7] P.E. Cassady, S. F. Birch. Aero-optical analysis of compressible flow over an open cavity[J]. AIAA Journal, 1989, 27 (6):758~762.
    [8] Harten A. High resolution schemes for hypersonic conservation laws,[J]. Journal of Computational Physics, 1983, 49:357~393.
    [9] Sweby P. K. High resolution schemes using flux limiters for hypersonic conservation laws[J]. SIAM J. Num. Anal, 1984, 21:995~1011.
    [10] Chakravarthy S. R., Osher S. A new class of high accuracy TVD schemes for hypersonic conservation laws[R].AIAA Paper 85-0363. 1985.
    [11] R. C. Swanson, Eli Turkel. On central-difference and upwind schemes[J]. Journal of Computational Physics, 1992, 101:292~306.
    [12] Yee H. C. Construction of explicit and implicit symmetric TVD schemes and their applications[J]. Journal of Computational Physics, 1987, 68:151~179.
    [13] H. C. Yee, G. H. Klopfer, J. L. Montagne. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J]. Journal of Computational Physics, 1990, 88:31~61.
    [14] G. Billet, O. Louedin. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows[J]. Journal of Computational Physics, 2001, 170:161~183.
    [15]张涵信.差分计算中激波上、下游出现波动的探讨[J].空气动力学学报, 1984, 1:12~19.
    [16]张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报, 1988, 6:143~165.
    [17] A. Harten, S. Osher. Uniformly High Order Essentially Non-oscillatory Schemes I[J]. SIAM J. Num. Anal., 1987, 24:279~309.
    [18] A. Harten, B. Engquist, S. Osher. Uniformly High Order Essentially Non-oscillatory Schemes III[J]. Journal of Computational Physics, 1987, 71:231~303.
    [19] Xu Dong Liu, Stanley Osher, Tony Chan. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115:200~212.
    [20] Jiang Guang-Shan, Shu Chi-Wang. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126:202~228.
    [21] Chiwang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservationlaws[R].NASA/CR-97-206253 ICASE Report No.9765. 1997.
    [22] Grasso F, Pirozzoli S. Shock Wave-Thermal Inhomogeneity Interaction: Analysis and Numerical Simulations of Sound Generation[J]. Phys. Fluids, 2000, 12:205~219.
    [23] Pirozzoli S, Grasso F, A. D A. Interaction of a Shock Wave with Two Counter-Rotating Vortices: Shock Dynamics and Sound Production. [J]. Phys. Fluids, 2001, 13:3460~3481.
    [24] Rault A, Chiavassa G, Donat R. Shock-Vortex Interactions at High Mach Numbers[J]. J. Sci. Comput., 2003, 19:347~371.
    [25] Jiang G-S, Shu C-W. A High Order Weno Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 150:561~594.
    [26] Grasso F, Pirozzoli S. Simulations and Analusis of the Coupling Process of Compressible Vortex Pairs: Free Evolution and Shock Induced Coupling[J]. Phys. Fluids, 2001, 13:1343~1366.
    [27] Yang Y, Yang S, Chen Y, et al. Implicit Weighted Eno Schemes for the Three-Dimentional Incompressible Navier-Stokes Equations.[J]. Journal of Computational Physics, 1998, 146:464~487.
    [28] Suresh A., Huynk H. T. Accurate monotonicity preserving scheme with Runge-Kutta time-stepping,[J]. Journal of Computational Physics, 1997, 136:83~99.
    [29] Dinshaw S. Balsara, Chiwang Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160:405~452.
    [30] Jing Shi, Changqing Hu, Chiwang Shu. A technique of treating negative weights in WENO schemes[J]. Journal of Computational Physics, 2002, 175:108~124.
    [31] Doron Levy, Gabriella Puppo, Giovanni Russo. A fourth order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws[J]. SIAM J.Comput., 2002, 24:480~506.
    [32] San-yih Lin, Jeu-jim Hu. Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics[J]. AIAA Journal, 2001, 39 (3):371~379.
    [33] N.K. Yamaleev, M.H. Carpenter. Third-order energy stable WENO scheme[J]. Journal of Computational Physics, 2009, 228:3025~3047.
    [34] N.K. Yamaleev, M.H. Carpenter. A systematic methodology for constructing high-order energy stable WENO schemes[J]. Journal of Computational Physics, 2009, 228:4248~4272.
    [35]沈孟育,李东海,刘秋生.用解析离散法构造WENO-FCT格式[J].空气动力学学报, 1998, 16:56~62.
    [36]刘伟,赵海洋,谢昱飞.三阶WNND格式的构造及在复杂流动中的应用[J].应用数学和力学, 2005, 26 (1):32~39.
    [37] S.Serna, A.Marquina. Power Eno Methods: A Fifth-Order Accurate Weighted Power Eno Method[J]. Journal of Computational Physics, 2004, 194:632~658.
    [38]张涵信,沈孟育.计算流体力学-差分方法的原理和应用[M].北京:国防工业出版社,2003.
    [39] Han-xin Z, Qin L. On Problems to Develop Physical Analysis in Cfd[J]. Journal of CFD, 2002, 10 (4):466~476.
    [40]宗文刚.高阶紧致格式及其在复杂流场求解中的应用[D].绵阳:中国空气动力研究与发展中心,2000.
    [41] Xiaogang, D, Mao Meiliang. Weighted compact high-order nonlinear schemes for the Euler equations[R].AIAA paper 97-1941. 1997.
    [42] Xiaogang , D, Zhang Hanxin. Developing high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:22~44.
    [43]邓小刚.高阶精度耗散加权紧致非线性格式[J].中国科学(A辑), 2001, 31:1104~1117.
    [44] Xiaogang Deng, Meiliang Mao, Jingchang Liu. High-order dissipative weighted compact nonlinear schemes for Euler and Navier-Stokes equations[R].AIAA Paper 2001-2626. 2001.
    [45] J. Wanga, L.-P. Wang, Z. Xiao, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229:5257~5279.
    [46] Delery J, Panaras A. Shock-wave/boundary layer interactions in high Mach number flows[R].AGARD AR-319. 1996.
    [47] Knight D, Degrez G. Shock-wave/boundary layer interactions in high Mach number flows-a critical survey of current CFD prediction capabilites[R].AGARD AR-319. 1997.
    [48] Zheltovodov AA. Some advances in research of shock wave turbulent boundary layer interactions[R].AIAA Paper 2006-0496. 2006.
    [49] Edwards J. R. Numerical simulations of shock/boundary layer interactions using timedependent modeling techniques: A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44:447~465.
    [50] M. J. Lighthitt. On sound generated aerodynamically.Part 1.General theory[J]. Proceedings of the Royal Society(A), 1952, 211:564~587.
    [51] J.E.Ffowcs Williams, L.H.Hawkings. Aerodynamic Sound Generation by Turbulent Flow in the Vicinity of a Scattering Half Plane[J]. Journal of Fluid Mechanics, 1970, 40:657~670.
    [52] P.S. Tide, V. Babu. Numerical predictions of noise due to subsonic jets from nozzles with and without chevrons[J]. Applied Acoustics, 2009, 70:321~332.
    [53] C. M. Jang, M.Furukawa, M.Inoue. Frequency Characteristics of Fluctuating Pressure on Rotor Blade in a Propeller Fan[J]. JSME International Jourmal, Series B, 2003, 46 (1):163~172.
    [54] Matthias Ihme, Heinz Pitsch, Daniel Bodony. Radiation of noise in turbulent non-premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32:1545~1553.
    [55] T. FUKANO, Y. KODAMA, Y. SENDOO. Noise generated by low pressure axial flow fans,I: Modelling of the turbulent noise[J]. Journal of Sold and Vibration, 1977, 50 (1):63~74.
    [56] T. FUKANO, Y. KODAMA, Y. SENDOO. Noise generated by low pressure axial flow fans,II:Effects of number of blades,chord length and camber of blade[J]. Journal of Sold and Vibration, 1977, 50 (1):75~88.
    [57] E. Farassat. A new aerodynamic integral equation based on all acoustic formulation in time domain[J]. AIAA Journal, 1984, 22:1337~1340.
    [58] W.Z.Shen, J.N.Sorensen. Aeroacoustic modeling of low speed flows[J]. Theoretal and Computational Fluid Dynamics, 1999, 13:271~289.
    [59] W.Z.Shen, J.N.Sorensen. Aeroacoustic modeling of turbulent airfoil flows[J]. AIAA Journal, 2001, 39 (6):1057~1064.
    [60]张荣欣,秦国良.用切比雪夫谱元方法求解均匀流场中的声传播问题[J].西安交通大学学报, 2009, 43 (7):120~124.
    [61] C. K. Tam, J. C.Webb. Dispersion relation preserving schemes for computational aeroacousfics[J]. Journal of Computational Physics, 1993, 107:262~281.
    [62] C.K. Tam. Computational aeroacoustics:issues and methods[J]. AIAA Journal, 1995, 33 (10):1788~1796.
    [63]马亮.应用于计算气动声学的低色散有限体积格式[J].三峡大学学报(自然科学版), 2001, 23 (1):82~85.
    [64]赵玉新.超声速混合层时空结构的实验研究[D].长沙:国防科学技术大学,2008.
    [65] P.E. Dimotakis, H.J. Catrakis, D.C. Fourguette. Flow structure and optical beam propagation in high-Reynolds number gas-phase shear layer and jets[J]. Journal of Fluid Mechanics, 2001, 433:105~134.
    [66] M.R. Baxter, C.R. Truman, B.S. Masson. Predicting the optical quality of supersonic shear layers[R].AIAA Paper 88-2771. 1988.
    [67] R. Smith, C. Truman. Prediction of optical phase degradation using a turbulent transport equation for the variance of index-ofrefraction fluctuations[R].AIAA Paper 90-0250. 1990.
    [68]殷兴良.现代光学新分支学科——气动光学[J].中国工程科学, 2005, 7 (12):1~6.
    [69]殷兴良.高速飞行器气动光学传输效应的工程计算方法[J].中国工程科学, 2006, 8 (11):74~79.
    [70]李艳芳,韩志平,殷兴良.气动光学效应校正中湍流流场控制方法[J].现代防御技术, 2005, 33 (1):32~35.
    [71]刘纯胜,张天序,殷兴良.高速湍流流场气动光学传输效应研究[J].红外与激光工程, 2005, 34 (6):681~686.
    [72]韩志平,殷兴良.湍流对超音速导弹光学图像的影响数值仿真[J].系统工程与电子技术, 2002, 24 (11):78~83.
    [73]陈勇,柳建,李树民,金钢.光在超声速湍流边界层中的传输[J].计算物理, 2006, 23 (2):204~208.
    [74]陈勇,金钢.运动涡旋脉冲引起的光学畸变[J].强激光与粒子束, 2006, 18 (11):1796~1800.
    [75]陈勇.气动光学效应的数值模拟方法研究[D].绵阳:中国空气动力研究与发展中心,2006.
    [76]柳建,李树民,金钢,刘顺发,张翔.飞行器外流场对光传输的影响[J].光子学报, 2006, 35 (4):599~602.
    [77]杨文霞,蔡超,丁明跃, et al.超音速/高超音速飞行器湍流流场气动光学效应分析[J].光电工程, 2009, 36 (1):88~92.
    [78]杨文霞,蔡超,丁明跃, et al.超音速湍流脉动流场气动光学效应分析[J].光子学报, 2009, 38 (8):2117~2121.
    [79]史可天,马汉东.可压缩混合层气动光学效应研究[J].计算物理, 2010, 27 (1):66~72.
    [80]范志刚,裴扬威,张亚萍,张骏,何艳磊.气动光学环境下窗口光传输的分析方法[J].宇航学报, 2007, 28 (4):1016~1019.
    [81]范志刚,肖昊苏,高豫强.气动热环境下高速飞行器光学头罩特性分析[J].应用光学, 2009, 30 (3):361~365.
    [82]张亚萍,范志刚,刘金强.红外末制导中的气动光学效应分析[J].激光与红外, 2006, 36 (6):487~490.
    [83]费锦东.高速导弹红外成像末制导系统技术研究[D].哈尔滨:哈尔滨工业大学,2002.
    [84]陈澄,费锦东.侧窗头罩高速层流流场光学传输效应数值模拟[J].红外与激光工程, 2005, 34 (5):548~552.
    [85]刘纯胜,李培田,费锦东.高速导弹光学头罩侧窗口制冷效果分析[J].红外与激光工程, 2000, 29 (3):67~72.
    [86]易仕和.超声速自由漩涡气动窗口及其光学质量的研究[D].长沙:国防科学技术大学,2003.
    [87]易仕和,侯中喜,李立春.超声速自由旋涡气动窗口的气动特性计算与分析[J].流体力学实验与测量, 2002, 16 (4):18~21.
    [88] C. R. Truman. The Influence of Turbulent Structure on Optical Phase Distortion through Turbulence Shear Flows[R].AIAA Paper 90-0250. 1990.
    [89] C. R. Truman, M. J. Lee. Effects of Organized Turbulence Structures on the Phase Distortion in a Coherent Optical Beam Propagating Through a Turbulent Shear Flow[J]. Physics of Fluids A, 1990, 2:851~857.
    [90] E.Tromeur, EGarnier, S P.agaut, et al. Large Eddy Simulations of Aero-Optical Effects in a Turbulent Boundary Layer[J]. Journal of Turbulence, 2003, 4 (5)
    [91] Sinha N, Arunajatesan S, Seiner J M, et al. Large-Eddy Simulation of Aero-Optic Flow Fields and Control Application[R].AIAA Paper 2004-2448. 2004.
    [92] R E Childs. Prediction and Control of Trubulent Aero-Optical Distortion Using Large Eddy Simulation[R].AIAA Paper 93-2670. 1993.
    [93] Ali. Mani, Meng Wang, Parviz Moin. Computational Study of Aero-Optical Distortion by Turbulent Wake[R].AIAA Paper 2005-4655. 2005.
    [94] M. I. Jones, E. E. Bender. CFD-based computer simulation of optical turbulence through aircraft flowfields and wakes[R].AIAA Paper 2001-2798. 2001.
    [95] Jones M. I., Bender E. E. CFD-Based Computer Simulation of Optical Turbulence through Aircraft Flowfields and Wakes[R].AIAA Paper 2001-2798. 2001.
    [96] E. Tromeur, E. Garnier, S. Pagaut, et al. Large Eddy Simulations of Aero-Optical Effects in a Turbulent Boundary Layer[J]. Journal of Turbulence, 2003, 4 (5)
    [97] Yan Tan. CFD-Based Aero-Optical Analysis of Flow Fields Over Two-Dimensional Cavities with Active Flow Control[D]. St. Louis, Missouri:WASHINGTON UNIVERSITY,2005.
    [98] Ugo Piomelli. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences, 2008, 44:437~446.
    [99] Deardorff JW. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41:453~80.
    [100] Schumann U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics, 1975, 18:376~404.
    [101] Wang M, Moin P. Computation of trailing-edge flow and noise using largeeddysimulation[J]. AIAA Journal, 2000, 38:2201~2209.
    [102] Wang M, Moin P. Dynamic wall modeling for large-eddy simulation of complex turbulent flows[J]. Phys Fluids, 2002, 14:2043~2051.
    [103] Spalart P R. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]. 1st Air Force Office of Scientific Research International Conf on DNS/LES. 1997.
    [104] F R Menter. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32 (8):1598~1605.
    [105] Piomelli U, Balaras E, Pasinato H, et al. The inner-outer layer interface in large-eddy simulations with wall-layer models[J]. Int J Heat Fluid Flow, 2003, 24:538~550.
    [106] Spalart PR. A one-equation turbulence model for aerodynamic flows.[J]. La. Rech Ae`rosp., 1994, 1:5~21.
    [107] Spalart PR. Young person's guide to detached eddy simulation grids[R].Technical Report NASA/CR-2001-211032. 2001.
    [108] Mellen CP, Fro hlich J, Rodi W. Lessons from the European LESFOIL project on LES of flow around an airfoil[R].AIAA Paper 2001-0111. 2001.
    [109] Fan T C, Tian M, Edwards J R, et al. Validation of a hybrid Reynolds-averaged /Large eddy simulation method for simulating cavity flameholder configurations[R].AIAA Paper 2001-2929. 2001.
    [110] Xiao X, Edwards J R, Hassan H A, et al. Inflow Boundary Conditions for Hybrid Large Eddy/Reynolds Averaged Navier-Stokes Simulations[J]. AIAA Journal, 2003, 41 (8):1481~1489.
    [111] Fan T C, Xiao X D, Edwards J R, et al. Hybrid LES / RANS Simulation of a Shock Wave/Boundary Layer Interaction[R].AIAA paper 2002-0431. 2002.
    [112] R A Baurle, C JTam, J R Edwards, et al. Hybrid Simulation Approach for Cavity Flows: Blending,Algorithm, and Boundary Treatment Issues[J]. AIAA Journal, 2003, 41 (8):1463~1484.
    [113] Nichols R H, Nelson C C. Application of hybrid RANS/LES turbulence model[R].AIAA paper 2003-0083. 2003.
    [114]肖志祥,陈海昕,李启兵, et al.采用RANS/LES混合方法研究分离流动[J].空气动力学学报, 2006, 24 (2):218~222.
    [115]肖志祥,符松.用RANS/LES混合方法研究超声速底部流动[J].计算物理, 2009, 26 (2):221~230.
    [116] Sun Mingbo, Wang Zhenguo, Liang Jianhan, et al. Flame Characteristics in a Supersonic Combustor with Hydrogen Injection Upstream of a Cavity flameholder[J]. Journal of Propulsion Power, 2008, 24 (4):688~696.
    [117] Sun Mingbo, Liang Jianhan, Wang Zhenguo. Numerical study on self-sustained oscillation characteristics of cavity flameholders in a supersonic flow[J]. Proc. IMechE, Part G: Journal of Aerospace Engineering, 2008, 222:95~102.
    [118] Sun Mingbo, Geng Hui, Liang Jianhan, et al. Mixing Characteristics in a Supersonic Combustor with Gaseous Fuel Injection Upstream of a Cavity flameholder[J]. Flow Turbulence and Combustion, 2009, 82:271~286.
    [119]孙明波,梁剑寒,王振国.超声速燃烧火焰稳定凹腔质量交换特性的数值研究[J].力学学报, 2007, 39 (2):188~194.
    [120]孙明波,梁剑寒,王振国.超声速来流横向狭缝喷流标量输运的混合RANS/LES模拟[J].力学季刊, 2007, 28 (3):395~399.
    [121]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].长沙:国防科学技术大学,2008.
    [122]袁先旭,邓小兵,谢昱飞, et al.超声速湍流流场RANS/LES混合计算方法研究[J].空气动力学学报, 2009, 27 (6):723~728.
    [123] Smagorinsky J. General circulation experiments with the primitive equations. I. the Basic Experiment[J]. Monthly Weather Review, 1963, 3 (7):1760~1765.
    [124] Bardina J. Improved subgrid model for large eddy simulation[R].AIAA Paper 80-1357. 1980.
    [125] Germano M., Piomelli U., Moin P., et al. A dynamic subgrid-scale eddy viscosity model[J]. Phys. Fluids A, 1991, 3 (7):1760~1765.
    [126] Stone C, Menon S. Simulation of fuel-air mixing and combustion in a trapped vortex combustor[R].AIAA Paper 2000-0478. 2000.
    [127] Kim W. W., Lienau J. J. Towards Modeling Lean Blow Out in Gas Turbine Flameholder[J]. Journal of Engineering for Gas Turbine and Power, 2006, 128:40~45.
    [128] Tramecourt N., Masquelet M. and Menon S. Large-eddy simulation of unsteady wall heat transfer in a high pressure combustion chamber[R].AIAA Paper 2005-4124. 2005.
    [129] Yoshizawa A, Horiuti K. Statistically derived subgrid scale kinetic energy model for Large-eddy simualtion of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54:2834~2839.
    [130] V Chakravarthy, S Menon. Large eddy simulations of turbulent premixed flames in the flamelet regime[J]. Combustion Science and Technology, 2001, 162:175~222.
    [131] Won S H, Jeung I S, Choi J Y. DES Study of Transverse Jet Injection into Supersonic Cross Flows[R].AIAA paper 2006-1227. 2006.
    [132] Coleman G N, Kim J, Moser R D. A numerical study of turbulent supersonic isothermal-wall channel flow[J]. J Fluid Mech, 1995, 305:159~183.
    [133] Morkovin M V. Effects of compressibility on turbulent flows. In:Favre A, ed. Mécanique de la Turbulence[M]. Paris:CNRS,1962.
    [134] Guarini S E, Moser R D, Shariff K. Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5[J]. J Fluid Mech, 2000, 414:1~33.
    [135] Maeder T, Adams N A, Kleiser L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach[J]. J Fluid Mech, 2001, 429:187~216.
    [136] Pirozzoli S, Grasso F, Gatski T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25[J]. Physics of Fluids, 2004, 16 (3):530~545.
    [137]李新亮,傅德熏,马延文.可压缩钝楔边界层转捩到湍流的直接数值模拟[J].中国科学, G辑, 2004, 34 (4):466~480.
    [138]康宏琳.高超声速湍流气动加热的数值模拟研究[D].北京:北京航空航天大学,2007.
    [139] David C. Wilcox. Turbulence Modeling for CFD[M]. California:DCW Industries, Inc.,1994.
    [140]韩省思,叶桃红,朱旻明, et al.激波不稳定性效应的k-ε可压缩修正湍流模型[J].科学通报, 2008, 53 (22):2722~2729.
    [141]周松柏.超声速内外流干扰的数值方法研究及其实验验证与应用[D].长沙:国防科技大学,2009.
    [142]吴海燕.超燃冲压发动机燃烧室两相流混合燃烧过程仿真及实验研究[D].长沙:国防科技大学,2009.
    [143]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [144] Shu C W. High order ENO and WENO schemes for computational fluid dynamics. in: Barth T. J.,Deconinck H., High-Order Methods for Computational Physics[J]. Springer-Verlag, 1999:439~582.
    [145] J. Shi, Y. T. Zhang, C. W. Shu. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics, 2003, 186:690~696.
    [146]侯中喜,易仕和,李桦.高精度分辨率WENO格式分析与改进[J].国防科技大学学报, 2003, 25 (1):17~20.
    [147] Yiqing Shen, Baoyuan Wang, GEcheng Zha. Implicit WENO Scheme and High Order Viscous Formulas for Compressible Flows[R].AIAA Paper 2007-4431. 2007.
    [148] Syed F. Rehman, Jeff D. Eldredge, Xiaolin Zhong, et al. An evaluation of shock-capturing methods on a hypersonic boundary layer receptivity problem[R].AIAA Paper 2009-941. 2009.
    [149] Eric Johnsen, Johan Larsson, Ankit V. Bhagatwala, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229:1213~1237.
    [150] Martin M. P., Taylor E. M., Wu M. A bandwidth optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220:270~289.
    [151] M. Wu, M. P. Martiny. New DNS Results of Shockwave/Turbulent Boundary Layer Interaction[R].AIAA Paper 2006-3037. 2006.
    [152] Hoong Thiam Toh. Large Eddy Simulation of Supersonic Twin-Jet Impringement Using a Fifth-Order WENO Scheme[D]. Blacksburg:Virginia Tech,2003.
    [153] D. J. Hill, D. I. Pullin. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics, 2004, 194 (2):435~450.
    [154] Athanasios S. Antoniou, Konstantinos I. Karantasis, Eleftherios D. Polychronopoulos, et al. Acceleration of a Finite-Difference WENO Scheme for Large-Scale Simulations on Many-Core Architectures[R].AIAA Paper 2010-0525. 2010.
    [155] P. Batten, M. A. Leschziner, U. C. Goldberg. Average-state Jacobian and implicit methods for compressible viscous and turbulent flows[J]. Journal of Computational Physics, 1997, 137:38~78.
    [156] Garnier E, Sagaut P. Large Eddy Simulation of Shock/Boundary-Layer Interaction[J]. AIAA Journal,, 2002, 40 (10):1121~1129.
    [157] A. Jameson, W. Schmidt, E. Turkel. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[R].AIAA Paper 81-1259. 1981.
    [158] J. E. Deese, R. K. Agarwal. Navier-Stokes Calculations of Transonic Viscous Flow About Wing/Body Configuration[J]. Journal of Aircraft, 1988, 25 (12)
    [159] Radespiel R. A Cell-Vertex Multigrid Method for the Navier-StokesEquations[R].NASA-TM-101557. 1988.
    [160] Shu C W, Osher S. Efficient Implementation of Essentially Non-oscillatory Shock-capturing Schemes[J]. journal of Computational Physics, 1988, 77:439~471.
    [161]潘沙.高超声速气动热数值模拟方法及大规模并行计算研究[D].长沙:国防科技大学,2010.
    [162] P. Woodward, P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54:115~173.
    [163]刘昕.高阶精度加权紧致非线性格式研究与其在复杂流动中的应用[D].绵阳:中国空气动力研究与发展中心研究生部,2004.
    [164] Law C. Supersonic shock wave turbulent boundary layer interactions[R].A IAA Paper 75-832. 1975.
    [165] C. Herbert Law. SUPERSONIC SHOCK WAVE-TURBULENT BOUNDARY LAYER INTERACTIONS[R].AIAA Paper 75-0832. 1975.
    [166] Gary S. Settles, Lori J. Dodson. Hypersonic Shock/Boundary-Layer Interaction Database[R].NASA-CR-177577. 1991.
    [167] G T Coleman, J L Stollery. Heat transfer from hypersonic turbulent flow at a wedge compression corner[J]. Journal of Fluid Mechanics, 1972, 56 (4):741~752.
    [168] Elfst rom G M. Turbulent hypersonic flow at a wedge-compression corner[J]. Journal of Fluid Mechanics, 1972, 53 (1):113~127.
    [169] W R Hawkins. Two-Dimensional Generic Inlet Unstart Detection at Mach 2.5-5.0[R].AIAA Paper 95-6019. 1995.
    [170] Tahir R B. Starting and unstarting of hypersonic air inlets[D]. Canada:Ryerson Polytechnic University,2003.
    [171] P E Rodi. An Experimental Study of The Effects of Bodyside Compression on Foreward Swept Sidewall Compression Inlets Ingesting a Turbulent Boundary Layer[R].AIAA Paper 93-3125. 1993.
    [172] Saied Emami. Experimental Investigation of inlet-combustor isolators for a dual-mode scramjet at a Mach number of 4[R].NASA TP 3502. 1995.
    [173] Birgit U. Reinartz, Carsten D. Hermann, Josef Ballmann. Analysis of Hypersonic Inlet Flows with Internal Compression[R].AIAA Paper 2002-5230. 2002.
    [174] A. V. Lokotko, A. M. Kharitonov. On the Possible Formation of a Vortex Flow in a Supersonic Inlet with Three-Dimensional Compression[J]. Fluid Dynamics, 2006, 41 (4): 649~660.
    [175] Van Wie D M, Kwok F T, Walsh R F. Starting Characteristics of Supersonic Inlets[R].AIAA Paper 96-2914. 1996.
    [176] F. Falempin, E. Wendling, M. Goldfeld, et al. Experimental Investigation of Starting Process for a Variable Geometry Air Inlet[R].AIAA Paper 2006-4513. 2006.
    [177] Cui Tao, Yu Daren, Chang Juntao, et al. Catastrophe Model for Supersonic Inlet Start/Unstart[J]. Journal of Aircraft, 2009, 46 (4):1160~1166.
    [178] J. L. Wagner, K. B. Yuceil, A. Valdivia, et al. Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow[J]. AIAA Journal, 2009, 47 (6):1528~1542.
    [179] J. L. Wagner, K. B. Yuceil, N. T. Clemens. Velocimetry Measurements of Unstart in an Inlet-Isolator Model in Mach 5 Flow[J]. AIAA Journal, 2010, 48 (9):1875~1888.
    [180]金志光,张堃元.宽马赫数范围高超声速进气道转动唇口变几何方案研究[J].航空动力学报, 2010, 25 (7):1553~1560.
    [181]李璞,郭荣伟.一种高超声速进气道起动/再起动的数值研究[J].航空动力学报, 2010, 25 (5):1049~1055.
    [182] Huebner L D, Rock K E, Ruf E G. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction[R].AIAA Paper 2001-1809. 2001.
    [183]王翼.高超声速进气道启动问题研究[D].长沙:国防科技大学,2008.
    [184] L. S. Jacobsen, C-J.Tam, R. Behdadnia, et al. Starting and Operation of a Streamline-Traced Busemann Inlet at Mach 4[R].AIAA Paper 2006-4508. 2006.
    [185] Donde P, Marathe A G, Sudhakar K. Starting in Hypersonic Intake[R].AIAA Paper 2006-4510. 2006.
    [186]鲍文,常军涛,郭新刚, et al.超燃冲压发动机进气道不起动仿真研究[J].航空动力学报, 2005, 20 (5):731~735.
    [187]袁化成,梁德旺.高超声速进气道再启动特性分析[J].推进技术, 2006, 27 (5):390~393.
    [188] Rodriguez C G. CFD Analysis of the CIAM/NASA Scramjet[R].AIAA Paper 2002-4128. 2002.
    [189] Wagner J L, Valdivia A, Yuceil K B. An Experimental Investigation of Supersonic Inlet Unstart[R].AIAA Paper 2007-4352. 2007.
    [190]李桂春.气动光学[M].北京:国防工业出版社,2006.
    [191] Max Born, Emil Wolf. Principles of optics[M].北京:世界图书出版公司,2001.
    [192]麦伟麟.光学传递函数及其数理基础[M].北京:国防工业出版社,1979.
    [193] VOLKOV N, EMEL'YANOV V N. Aero-optic effects in turbulent flows[J]. Technical Physics Letters, 2006, 32 (2):95~97.
    [194]冯定华,潘沙,田正雨,李桦.含激波流场的光线追迹方法[J].国防科技大学学报, 2010, 32 (1):6~10.
    [195] D. Marcuse. Theory of a Thermal Gradient Gas Lens[J]. IEEE Trans. Microwave Theory and Techniques, 1965, MTT-13 (6)
    [196] Sutton G W P J E, et al. Hypersonic Intercept or Aero Optics Performance Predictions[J]. Journal of Spacecraft and Rocket, 1994, 31 (4):592~599.
    [197] Ali Mani, Meng Wang, Parviz Moin. Resolution requirements for aero-optical simulations[J]. Journal of Computational Physics, 2008, 227:9008~9020.
    [198] T. Gotoh, D. Fukayama. Pressure spectrum in homogeneous turbulence[J]. Physical Review Letters, 2001, 86:3775~3778.
    [199] Sulic D M. Ray tracing study of whistlers guided by a field-aligned depression of electron density in the magnetosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59 (5):569~590.
    [200]乔亚夫.梯度折射率光学[M].北京:科学出版社,1991.
    [201]黄战华,程红飞,蔡怀宇,赵海山,张尹馨.变折射率介质中光线追迹通用算法的研究[J].光学学报, 2005, 25 (5):589~592.
    [202] D. Nikezic F M F N, C.W.Y.Yip, K.N.Yua. Application of the ray tracing method in studyingαtracks in SSNTDs[J]. Radiation Measurements, 2005, 40:375~379.
    [203] Krzysztof S. Klimaszewski, Thomas W. Sederberg. Faster Ray Tracing Using Adaptive Grids[J]. IEEE Computer Graphics and Applications, 1997, 17 (1):42~51.
    [204]赵剡,王涛,许东,杨秋英.基于计算流体力学网格的高超声速流场光传输建模研究[J].兵工学报, 2008, 29 (3):282~286.
    [205]吴琳,房建成,杨照华.高超声速湍流流场高折射率梯度区域气动光学畸变仿真研究[J].光学学报, 2009, 29 (11):2952~2957.
    [206]陈澄,费锦东.侧窗头罩高速层流流场光学传输效应数值模拟[J].红外与激光工程, 2005, 34 (5):548~552.
    [207]刘纯胜,张天序,李晓彤.无规则非均匀折射率场描述[J].红外与激光工程, 2007, 36 (1):127~130.
    [208]冯定华,潘沙,王文龙,李桦.任意梯度折射率介质中光线追迹的仿真与分析[J].计算机仿真, 2010, 27 (2):135~139.
    [209] Weihnurng Tiarn, Robert Cavalleri. Three Dimensional Transonic Optical Distortion Evaluation Using Computational Fluid Dynamics[R].AIAA Paper 92-0655. 1992.
    [210] Barron J L F D J. Systems and experiment performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12 (1):43.
    [211]潘兵,续伯钦,李克景.梯度算子选择对基于梯度的亚像素位移算法的影响[J].光学技术, 2005, 31 (1):26~31.
    [212]冯定华,潘沙,田正雨,李桦.任意折射率的三维离散空间光线追迹方法研究[J].光学学报, 2010, 30 (3):696~701.
    [213] Settles G S. An Experimental Study of Compressible Turbulent Boundary Layer Separation[D]. Princeton University,1975.
    [214] Settles G S, Vas L E, Bogdonoff S M. Details of a Shock-Separated Turbulent Boundary at a Compression Corner[J]. AIAA Journal, 1976, 14 (12):1709~1715.
    [215] C.C. Horstman, G.S. Settles, D.R. Williams. A Reattaching Free Shear Layer in Compressible Turbulent Flow - A Comparison of Numerical and Experimental Results[R].AIAA Paper 81-0333. 1982.
    [216] C.C. Horstman, G.S. Settles, D.R. Williams, et al. A Reattaching Free Shear Layer in Compressible Turbulent Flow[J]. AIAA Journal, 1982, 20 (1):79~85.
    [217] Horstman C C, Rose W C. Hot-Wire Anemometry in Transonic Flow[J]. AIAA Journal, 1977, 15:395~401.
    [218] Zhisong Li, Awatef Hamed. Effect of sidewall boundary conditions on unsteady high speed cavity flow and acoustics[J]. Computers and Fluids, 2008, 37:584~592.
    [219] Rossiter J E. Wind-tunnel experiment on the flow over rectangular cavities at subsonic and transonic speeds[R].Reports and Memo-randa No. 3438. 1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700