复杂结构腔体气动声学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年以来,有关空腔方面的研究已成为空气动力学界的一个研究热点,大多数研究工作局限于跨音速或超音速等气流条件下,简单腔体的气动声学特性研究,而在普通的工程实践中,气流速度通常小于声速,并且腔体结构比简单空腔更为复杂。在较低气流速度下,复杂结构腔体气动声学特性的研究更具有广泛的实用价值。尽管目前国内外关于气流流过简单空腔所引发的边界层分离、气动噪声、压缩波—剪切层相互干扰等一系列复杂问题的研究工作和发表的成果较多,但是关于复杂结构腔体方面的研究比较少见,公开发表成果也较少。
     本文以插入管型消声器和油液分离器模型两种常见复杂结构腔体为研究对象,采用实验测试、理论分析和有限元数值分析相结合的研究手段,对该两种复杂结构腔体的气动声学特性进行了较为详尽的研究,并对其峰值频率进行了预测,最后总结出复杂结构腔体气动声学特性研究的一般方法。本文主要的研究工作包括:
     1、研制了以低压低速开放式消声风洞为气流源的复杂结构腔体气动声学特性测试实验台。分析了流动、尾管、腔体、以及腔体内部流—声反馈机制等因素的影响。
     2、研究发现:插入管型消声器的主要气动声学特性包含三类哨音。第一类哨音同时出现在消声器内部和外部,与尾管声学模态关系密切;第二类哨音在小长径比消声器内外部均未出现,而出现在中长径比消声器内部和外部,且仅出现在大长径比消声器的内部,与腔体声学模态密切相关;第三类哨音在中、小长径比消声器内部出现,而未出现在大长径比消声器内部和外部,与腔体内部流—声反馈机制关系密切。
     3、分别采用一维平面波分析法、声传递矩阵法和二维理论分析法推导出插入管型消声器穿透损失的计算公式,并对各种方法进行了比较。同时研究表明,采用一维平面波分析法和三维有限元数值分析法预测第一类和第二类哨音的峰值频率是有效的和准确的。
     4、研究发现:油液分离器模型的主要气动声学特性包含两类哨音。第一类哨音同时在其内部和外部,与腔体的声学模态关系密切;第二类哨音仅出现在其外部,与尾管声学模态密切相关。
     5、油液分离器模型气动声学特性的分析方法目前仅限于一维平面波分析法和三维有限元数值分析法,而声传递矩阵法和二维理论分析法暂时无法使用。同时研究表明,采用一维平面波分析法和有限元数值分析法预测第一类哨音的峰值频率是有效的和准确的;对于第二类哨音峰值频率的预测,仅有一维平面波分析法是有效的和准确的,而有限元数值分析法是不适用的。
     6、将原本应用于简单空腔的修正Rossiter公式进行再次修正后应用于复杂结构腔体气动声学特性的研究。
     7、总结出复杂结构腔体气动声学特性研究的一般方法。
Many aerodynamic investigations have been focused on the study of cavity problems over the past decades and most of them have been carried out on the simple cavity with transonic and supersonic speeds. But the cavity structures are more complex and the flow speeds are usually lower than the sound speed in the common engineering practices. So, the studies on aeroacoustic characteristics of the cavity with complex structure at quite low speeds are more valuable. However, there are few studies and published papers that focus on the problems of cavity with the complex structure, although many investigations have been carried out on the studies of some quite difficult problems for the simple cavity by the researchers at home and abroad, such as the shear layer separation, the aerodynamic noise, the interactions between compressed wave and shear layer, etc..
     The insert pipe muffler and the oil separator model were selected as the major research objects in present study. The studies on aeroacoustic characteristics of them were carried out and analyzed quite in detail by the experiments, the theory analysis and the FEM analysis. Moreover, the whistle tone frequencies are predicated. Finally, a general study method on the aeroacoustic characteristics of cavity with complex structure is put forward in this dissertation. The major research contents are presented as follows,
     1、The experimental test rig of study on the aeroacoustic characteristics of cavity with complex structure was set up and the flow was supplied by an open circuit centrifugal fan driven wind tunnel with low pressure and low speed. The effects of flow, tailpipe, cavity, flow-acoustic feedback loop inside the cavity, etc. were detailed analyzed.
     2、Three types of the whistle tones are included mainly in the aeroacoustic characteristics of insert pipe muffler. The first one appears both inside and outside the mufflers and it is closely related with the acoustic modes of tailpipe. The second one is not captured both inside and outside the muffler with small length-to-diameter ratio (L/D), but appears both inside and outside the muffler with middle L/D, and only inside the muffler with large L/D. Furthermore, it has a close relationship with the acoustic modes of cavity. The third one is captured only inside the mufflers with small and middle L/Ds, but disappeared both inside and outside the muffler with large L/D. Moreover, it is generated by the flow-acoustic feedback loop inside the cavity.
     3、The transmission loss (TL) formula of insert pipe muffler is given by the plane wave method, the acoustic transfer matrix method, and the two-dimensional theory method, as well as the comparisons of these methods are also presented. Furthermore, it is proved that the whistle peak frequencies of the first type and the second type whistle tones can be predicated accurately by the plane wave method and the 3D FEM method.
     4、Two types of the whistle tones are included mainly in the aeroacoustic characteristics of oil separator model. The first one appears both inside and outside the oil separator model and it is closely related with the acoustic modes of cavity. The second one is only captured outside the oil separator model and it has a close relationship with the acoustic modes of tailpipe.
     5、The study on aeroacoustic characteristics of the oil separator model can be carried out by the plane wave method and the 3D FEM method but not for the acoustic transfer matrix method and the two-dimensional theory method at present time. Moreover, it is found that the whistle peak frequencies of the first type whistle tones can be predicated accurately by the plane wave method and the 3D FEM method and for the second type whistle peaks, the plane wave method can be used efficiently but the 3D FEM method are not suitable for predication of the whistle peak frequencies.
     6、The study on aeroacoustic characteristics of the cavity with complex structure has been carried out by the Rossiter’s re-modified formula, which is revised based on the Rossiter’s modified formula that is widely used in the investigations of simple cavity problem.
     7、A general study method on the aeroacoustic characteristics of cavity with complex structure is put forward.
引文
1 HELLER H. H., BLISS D. B., Aerodynamically induced pressure oscillations in cavities. Physical Mechanisms and Suppression Concepts, AFFDL-TR-74-133, 1975
    2 BARTEL H. W., MCAVOY J. M., Cavity oscillation in cruise missile carrier aircraft, AFWAL-TR-81-3036, 1981
    3 LAMP A. M., CHOKANI N., Computation of cavity flows with suppression using jet blowing, Journal of Aircraft, 1997, 34(4): 545-551
    4 ARUNAJATESAN S., SINHA N., MENON S., Towards hybrid LES-RANS computations of cavity flowfield, AIAA Paper 2000-0401, 2000
    5 ZHANG X., CHEN X. X., RONA A., Attenuation of cavity flow oscillation through leading edge flow control, Journal of Sound and Vibration, 1999, 221(1): 223-247
    6 SODERMAN P. T., Flow-induced resonance of screen-covered cavities. NASA TP-3052, 1990
    7 CHOKANI N., Flow induced oscillations in cavities– A critical survey, DGLR/AIAA 92-02-159, 1992
    8 DESANTES J. M., TORREGROSA A. J., AND BROATCH A, Experiments on flow noise generation in simple exhaust geometries, Acta Acustica united with Acustica, 2001, 87: 46-55
    9 ROCKWELL D., Oscillations of impinging shear layers, American Institute of Aeronautics and Astronautics Journal, 1983, 21: 645-664
    10 DAVIES P. O. A. L., Flow-acoustic coupling in ducts, Journal of Sound and Vibration, 1981, 77: 91-209
    11 NAKANO M., Self-sustained flow oscillations in a silencer with a single expansion chamber, Internoise, 1991, 91: 545-548
    12 DAVIES P. O. A. L. and HOLLAND K. R., IC engine intake and exhaust noise assessment, Journal of Sound and Vibration, 1999, 223: 425-444
    13方丹群,空气动力性噪声与消声器,北京,科学出版社,1978
    14平田能睦,日本音响学会誌,1971,27:501
    15 MUNJAL M. L., Acoustics of Ducts and Mufflers, New York: Wiley-Interscience, 1987
    16 HELMHOLTZ H. L. F., Sensations of tone, 2nd ed., Dover, New York, 1954
    17 KARAMCHETI K., Sound radiation from rectangular cutout. NACA TN-3487, 1955
    18 ROSSITER J. E., Wind tunnel experiments of the flow over rectangular cavities at subsonic and transonic speeds, ARC R&M 3458, 1964
    19 ROSSITER J. E., Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, ARC R&M 3448, 1966
    20 HELLER H. H., HOLMES D. G.. and COVERT E. E., Flow-induced pressure oscillations in shallow cavities. Journal of Sound and Vibration 1971, 18: 545-553
    21 HELLER H. H., WIDNALL S., JONES J., and BLISS D., Water table visualization of flow induced pressure oscillations in shallow cavities for simulated supersonic flow conditions. Journal of the Acoustical Society of America, Paper Z13, 1973
    22 HELLER H. H., and BLISS D. B., Physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression, AIAA Paper 75-491, 1975
    23 BARTEL H. W., MCAVOY J. M., Cavity oscillation in cruise missile carrier aircraft, AFWAL-TR-81-3036, 1981
    24 HANKEY W. L., and SHANG J. S., Analysis of pressure oscillations in an open cavity, AIAA, 1980, 18: 892~898
    25 ROWLEY C. W., COLONIUS T., BASU A. J., On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. Journal of Fluid Mechanics, 2002, 455: 315~346
    26 LILLBERG E., FUREBY C., Large eddy simulations of supersonic cavity flow. AIAA-00-2411, 2000
    27 SHIEH C. M., MORRIS P. J., Parallel computational aeroacoustic simulation of turbulent subsonic cavity flow. AIAA-00-1914, 2000
    28 SAROHIA V., Experimental investigations of oscillation in flow over shallow cavities. AIAA, 15(7), 1977
    29 ROCKWELL D. and NAUDASCHER E., Review-self-sustaining oscillations of flow past cavities, Transaction of ASME, Journal of Fluids Engineering, June 1978, 100: 152-165
    30 STALLINGS R. L. JR., Separation characteristics of internally carried stores at supersonic speeds. NASA TP-2993, 1990
    31 WILCOX F. J. JR., Experimental investigation of porous-floor effects on cavity flow fields at supersonic speeds. NASA TP-3032, 1990
    32 JUNGOWSKI W. M., BOTROS K. K. and STUDZINSKI W., Cylindrical sidebranch as tone generator. Journal of Sound and Vibration, 1989, 131: 265-285
    33 EAST L. F., Aerodynamically induced resonance in rectangular cavities. Journal of Sound and Vibration, 1966, 3: 277-287
    34 INGARD U. and SINGHAL V. K., Flow excitation and coupling of acoustic modes of a side-branch cavity in a duct. Journal of the Acoustical Society of America, 1976, 60: 1213-1215
    35 PLUMBLEE H., GIBSON J., and LASSITER L., A theoretical and experimental investigation of the aeroacoustic response of cavities in aerodynamic flow, WADD-TR-61-75, Wright-Patterson AFB, Dayton, OH, 1962
    36 SHAW L., BARTEL H., and MCAVOY J., Acoustic environment in large enclosures with a small opening exposed to flow, Journal of Aircraft, 1983, 20(3): 250-256
    37 ROCKWELL D., LIN J.-C, OSHKAI P, REISS M., POLLACK M., Shallow cavity flow tones experiments: onset of lock-on states. Journal of Fluids and Structures, 2003, 17(3): 381-414
    38 DEMETZ F. C., FARABEE T. M., Laminar and turbulent shear flow-induced resonances, AIAA Paper 77-1293, 1977
    39 ELDER S. A., Self-excited depth-mode resonance for a wall-mounted cavity in turbulent flow, Journal of the Acoustical Society of America, 1978, 64 (3): 877–890
    40 ELDER S. A., Farabee T. M., DeMetz F. C., Mechanisms of flow-excited cavity tones at low Mach number, Journal of the Acoustical Society of America, 1982, 72(2): 532–549
    41 NELSON P. A., Halliwell N. A., Doak P. E., Fluid dynamics of a flow excited resonance. Part I: experiment. Journal of Sound and Vibration, 1981, 78 (1): 15–38
    42 NELSON P. A., Halliwell N. A., Doak P. E., Fluid dynamics of a flow excited resonance. Part II: flow acoustic interaction. The dissipation of sound at an edge. Journal of Sound and Vibration, 1983, 91: 375–402
    43罗伯华、胡章伟、戴昌辉,空腔流激振荡的实验研究,上海交通大学学报, 1998,32(7):32~35
    44罗伯华,胡章伟,流动诱导空腔振荡及其声激励抑制的实验研究,南京航空航天大学学报,1996,28(3):331-336
    45吴继飞、罗新福、范召林,亚、跨、超声速下空腔流场特性实验研究,实验流体力学,2008,22(1):71-75
    46杨党国、李建强、罗新福等,弹穴流动特性高速风洞试验研究,实验流体力学,2006,20(4):33-39
    47 KOMERATH N. M., AHUJIA K. K. and CHAMBERS F. W., Predication and measurement of flows over cavities– a survey, AIAA 87-0166, 1987
    48 CHOKANI N., Flow induced oscillations in cavities– A critical survey, DGLR/AIAA 92-02-0159, 1992
    49 STALLINGS R. L. JR., AND WILCOX F. J., Experimental cavity pressure distributions at supersonic speeds, NASA TP-2683, 1987
    50 PLENTOVICH E. B., Three-dimensional cavity flow fields at subsonic and transonic speeds, NASA TM-4209, 1990
    51 PLENTOVICH E. B., Characterization of cavity flow fields using pressure date obtained in the Langley 0.3-meter transonic cryogenic tunnel. NASA TM-4436, 1993
    52 TRACY M. B., Measurements of fluctuating pressure in a rectangular cavity in transonic flow at high Reynolds numbers. NASA TM-4363, 1992
    53 PLENTOVICH E. B., et al., Effects of yaw angle and Reynolds numbers on rectangular-box cavities at subsonic and transonic speeds. NASA TP-3099, 1991
    54 PLENTOVICH E. B., Three-dimensional cavity flow fields at subsonic and transonic speeds, NASA TM-4209, 1990
    55 LADA C., KONTIS K., Fluidic control of cavity configurations at subsonic and supersonic speeds, AIAA 2005-1298
    56 KUNG-MING CHUNG, A study of transonic rectangular cavity of varying dimensions, AIAA 99-1909
    57 PLENTOVICH E. B., Experimental cavity pressure measurements at subsonic and transonic speeds, NASA TP-3358, 1993
    58 OM D., Navier-Stokes simulation for flow past an open cavity, Journal of aircraft, 1988, 25: 842-848
    59 SRINIVASAN S., and BAYSAL O., Navier-Stokes calculations of transonic flows past cavities, ASME Journal of Fluids Engineering, 1991, 113 (3): 368-376
    60 BAYSAL O., SRINIVASAN S., and STALLINGS JR. R. L., Unsteady viscous calculations of supersonic flows past deep and shallow three dimensional cavities, AIAA 88-0101, 1988
    61 BAYSAL O., and YEN G. W., Implicit and explicit computations of flows past cavities with and without yaw, AIAA 90-0049, 1990
    62 BAYSAL O., YEN G. W. and FOULADI K., Navier-Stokes computations of cavity aeroacoustics with suppression devices, DGLR/AIAA 92-02-0161, 1992
    63 ZHANG X. and EDWARDS J. A., Computational analysis of unsteady supersonic cavity flows driven by thick shear layers, Aeronautical Journal, 1988: 365-374
    64 JENG Y. N. and WU T. J., Numerically study on a supersonic open cavity flow with geometric modification on aft bulkhead, AIAA 92-2627-cp, 1992
    65 DOUGHERTY JR. N. S., etc., Time-accurate Navier-Stokes computations of self-excited two dimensional unsteady cavity flows, AIAA 90-0691,1990
    66 HENDERSON J., BADCOCK K., RICHARDS B., Understanding subsonic and transonic open cavity flows and suppression of cavity tones, AIAA 2000-0658, 38th Aerospace Science Exhibit Reno, US, AIAA, 2000
    67 FUGLSANG D. F. and CAIN A. B., Evaluation of shear layer cavity resonance mechanisms by numerical simulations, AIAA 92-05555, 1992
    68 ATWOOD C. A. and VAN DALSEM W. R., Flowfield simulation about the SOFIA airborne observatory, AIAA 92-0656, 1992
    69 LARCHEVEQUE L., SAGAUT P., Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number, Journal of Fluid Mechanics, 2004, 516(1): 265-301
    70 KRISHNAMURTY K., Acoustic radiation from two dimensional rectangular cutouts in aerodynamic surfaces, NACA TN-3478, 1955
    71侯中喜、易仕和、王承尧,超声速开式空腔流动的数值模拟,推进技术,2001,22(5):400-403
    72罗柏华,二维高亚音速空腔流激振荡的数值模拟研究,空气动力学学报,2002,20(1):84-88
    73李晓东、刘靖东、高军辉,空腔流激振荡发声的数值模拟研究,力学学报, 2006,38 (5):599-604
    74司海青、王同光,边界条件对三维空腔流动振荡的影响,南京航空航天大学学报,2006,38 (5):595-599
    75白玉平,空腔流动特性数值模拟研究,气动研究与实验,2007,25 (2):11-16
    76 COLONIUS T., BASU A. J., ROWLEY C. W., Numerical investigation of the flow past a cavity, AIAA Paper 99-1912, 1999
    77 LELE S. K., Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103 (1): 16-42
    78 TAM C. and WEBB J., Dispersion-relation-preserving finite-difference schemes for computational acoustics. Journal of Computational Physics, 1993, 107 (2): 262-281
    79 TAM C. K. W. and BLOCK P. J. W., On the tones and pressure oscillations induced by flow over rectangular cavities, Journal of Fluid Mechanics, 1978, 89, Part 2:373-399
    80 TAM C. J., ORKWIS P. D., DISIMILE P. J., Algebraic turbulence model simulations of supersonic open-cavity flow physics, AIAA, 1996, 34 (11): 2255-2260
    81 BILANIN A. J., COVERT E. E., Estimation of possible excitation frequencies for shallow rectangular cavities. AIAA, 1973, 11 (3): 347-399
    82 FRANKE M. E. and CARR D. L., Effect of geometry on open cavity flow induced pressure oscillations, AIAA 75-492, 1975
    83 CHARWAT A. F., ROOS J. N., etc., An investigation of separated flows, Part 1: The pressure field, Journal of Aerospace Sciences, 1961, 28: 457-470
    84 SHAW L. L., etc. F-111 generic weapons bay acoustic environment, AIAA 87-0168, 1987
    85 VAKILI A. D. and GAUTHIER C., Control of cavity flow by upstream mass injection, AIAA 91-1645, 1991
    86 FRANKE M. E. and SAINO R. E., Suppression of flow-induced pressure oscillations in cavities, AIAA 90-4018, 1990
    87 SAROHIA V. and MASSIER P. F., Control of cavity noise, AIAA 76-528, 1976
    88 AHUJIA K. K., WHIPKEY R. R., and JOOES G. S., Control of turbulent boundary layer flows by sound, AIAA 83-726, 1983
    89 AHUJIA K. K. and BURRIN R. H., Control of flow separation by sound, AIAA 84-2298, 1984
    90 ZAMAN K. B. M. Q., BAR-SEVER A., and MANGALAM S. M., Effect of acoustic excitation of the flow over a low-Re airfoil, Journal of Fluid Mechanics, 1987, 1982: 127-148
    91 SIGURDSON L. W. and ROSHKO A., Controlled unsteady excitation of a reattaching flow, AIAA 85-0552, 1985
    92 BLEVIOS R. D., The effect of sound on vortex shedding from cylinders, Journal of Fluid Mechanics, 1985, 161: 217-237
    93 HSIAO F., LIU C. F., SHYU J. Y., Control of wall separated flow by internal acoustic excitation, AIAA 89-0974, 1989
    94 CZECH MICHAEL J., CROUCH JEFFREY D. and STOKER ROBERT W., et al., Cavity noise generation for circular and rectangular vent, AIAA 2006-2508, 2006
    95üNALMIS ?. H., CLEMENS N. T., and DOLLING D. S., Experimental study of shear layer/acoustics coupling in Mach 5 cavity flow, AIAA Journal, 2001, 39 (2): 242-252
    96 LARSSON JOHAN, DAVIDSON LARS, OLSSON MAGNUS, and ERIKSSON LARS-ERIK, Aeroacoustic investigation of an open cavity at low Mach number, AIAA Journal, 2004, 42 (12): 2462-2473
    97 TAM CHUNG-JEN, ORKWIS PAUL D., and DISIMILE PETER J., Algebraic turbulence model simulations of supersonic open-cavity flow physics, AIAA Journal, 1996, 34 (11): 2255-2260
    98 ROSSITER, J. E., The Effect of Cavities on the Buffeting of Aircraft, Royal Aircraft Establishment, Farnborough, UK, April 1962
    99 ESDU International, Aerodynamics and aero-acoustics of rectangular planform cavities, PART II: Unsteady flow and aero-acoustics, Item No. 04023, The Royal Aeronautical Society, March 2005
    100üNALMIS ?. H., CLEMENS N. T., DOLLING D. S., Cavity oscillation mechanisms in high-speed flows, AIAA Journal, 2004, 42(10): 2035-2041
    101 MARK F. REEDER, SUBRAMANIAN C., Mean and instantaneous flow properties of an object exciting a cavity, AIAA 2003-3723, 2003
    102 SCHULZ MAIKE, LAUBE LUTZ, Experimental Investigation of Cavity Mode Frequencies on an External Aircraft Store, AIAA 2009-3327, 2009
    103张强,流动诱导空腔振荡频率方程的改进,振动工程学报,2004,17 (1):53-57
    104司海青、王同光、宗慧英,腔内平板对空腔自激励振荡的影响及预估振荡频率方程的改进,航空动力学报,2006,21(6):1037-1042
    105 BERANEK L. L., VéR I. L., Noise and vibration control engineering, principles and applications, Second Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2006
    106衣云峰、何祚镛,圆柱形空腔流激振荡及其耦合共振的研究,声学学报,1996,21 (4):339-456
    107 SMITH D. L., SHAW L. L., Predication of the pressure oscillations in cavities exposed to aerodynamic flow, AFFDL-TR-34, 1975
    108田春、张强、李青,流动诱导空腔振荡预测方法的改进,南京航空航天大学学报,2002,34 (2):173-177
    109 FLATAU A., Acoustic interaction with resonance and vortex shedding in a cylindrical cavity, AIAA 89-0848, 1989
    110 ROECK DE W., DESMET W., Experimental analysis of the aerodynamic noise generating mechanisms in a simple expansion chamber, Paper 2008-3055, 2008
    111 MAUREL A., ERN P., ZIELINSKA B. J. A., and WESFREID J. E., Experimental study of self-sustained oscillations in a confined jet, Physical Review E, 1996, 54:3643-3651
    112 DAVIES P. O. A. L., HOLLAND K. R., The observed aeroacoustic behavior of some flow-excited expansion chambers, Journal of Sound and Vibration, 2001, 239 (4): 695-708
    113 DAVIES P. O. A. L., Piston engine intake and exhaust system design, Journal of Sound and Vibration, 1996, 190: 677-712
    114 HOLLAND K. R., and DAVIES P. O. A. L., The measurement of sound power flux in flow ducts, Journal of Sound and Vibration, 2000, 230: 915-932
    115 DAVIES P. O. A. L., Aeroacoustics and time varying system, Journal of Sound and Vibration, 1996, 190: 345-362
    116 LIU BENZHU, MIKAMI MASATO and KOJIMA NANYA, Predominance of resonance in expansion cavity-type muffler with flow, JSME, 1996, 62 (600): 312-318
    117 LIU BENZHU, OKA TOMOHIRO, MIKAMI MASATO, KOJIMA NANYA, Predominance of resonance in expansion-cavity-type muffler with flow (2nd report, generalization of predominance phenomena of tail pipe resonance), JSME, 1997, 63 (611): 240-246
    118 ESAKI TAKASHI, MIKAMI MASATO and KOJIMA NAOYA, Predominance of resonance in insert-pipe-type muffler with flow, JSME, 2004, 70 (693): 216-223
    119杜功焕,宋哲民,龚秀芬,声学基础(下册),上海科学技术出版社,1981
    120赵松龄,噪声的减低与隔离(下册),同济大学出版社,1989
    121 BARRON RANDALL F., Industrial noise control and acoustics, Marcel Dekker, Inc., New York, Basel, 2001
    122 SELAMET A., and JI Z. L., Acoustic attenuation performance of expansion chambers with two end-inlet/one side-outlet, Journal of Sound and Vibration, 2000, 231 (4): 1159-1167
    123 MUNJAL M. L., Velocity ratio cum transfer matrix method for evaluation of a muffler, Journal of Sound and Vibration, 1975, 39: 105-119
    124 PANICKER V. B., and MUNJAL. M. L., Aeroacoustic analysis of straight-through mufflers with simple and extended-tube expansion chambers, Journal of the Indian Institute of Science, 1981, A63: 1-19
    125 PANICKER V. B., and MUNJAL. M. L., Aeroacoustics of mufflers with flow reversals, Journal of the Indian Institute of Science, 1981, A63: 21-38
    126 PANICKER V. B., and MUNJAL. M. L., Acoustic dissipation in a uniform tube with moving medium, Journal of the Indian Institute of Science, 1981, 91: 95-101
    127 ALFREDSON R. J., and DAVIES P. O. L. A., Performance of exhaust silencer components, Journal of Sound and Vibration, 1971, 15: 175-196
    128赵剑,拖拉机排气消声器性能研究及CAD,江苏工学院,学位论文,1989
    129 SULLIVAN J. W., A method of modeling perforated tube muffler components. I. Theory. Journal of the Acoustical Society of America, 1979, 66: 772-778
    130 SULLIVAN J. W., A method of modeling perforated tube muffler components. II. Applications. Journal of the Acoustical Society of America, 1979, 66: 779-788
    131 MUNJAL M. L., RAO K. N., and SAHASRABUDHE A. D., Aeroacoustic analysis of perforated muffler components, Journal of Sound and Vibration, 1987, 114: 173-188
    132 RAO K. N., MUNJAL. M. L., Noise reduction with perforated three-duct muffler components, Sadhana (Academy Proceedings in Engineering Sciences), 1986, 9: 255-269
    133 PEAT K. S., A numerical decoupling analysis of perforated pipe silencer elements, Journal of Sound and Vibration, 1988, 123: 199-212
    134 GOGATE G. R., and MUNJAL M. L., Analytical and experimental acoustics studies of open-ended three-duct perforated elements used in mufflers, Journal of the Acoustical Society of America, 1995, 97: 2919-2927
    135 MILES J., The reflection of sound due to a change in cross section of a circular tube, Journal of the Acoustical Society of America, 1944, 16: 14-19
    136 EL-SHARKAWY A. I., and NAYFEH A. H., Effect of the expansion chamber on the propagation of sound in circular pipes, Journal of the Acoustical Society of America, 1978, 63: 667-674
    137 ?BOM M., Derivation of four pole parameters including higher order mode effects for expansion chamber mufflers with extended inlet and outlet, Journal of Sound and Vibration, 1990, 137: 403-418
    138 AU-YANG M. K., Pump induced acoustic pressure distribution in an annular cylinder, Journal of Sound and Vibration, 1979, 62: 577-591
    139 SELAMET A., and RADAVICH P. M., The effect of length on the acoustic attenuation performance of concentric expansion chambers: an analytical, computational and experimental investigation, Journal of Sound and Vibration, 1997, 201 (4): 407-426
    140 SELAMET A., and JI Z. L., Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet, Journal of Sound and Vibration, 1999, 223 (2): 197-212
    141 SELAMET A., and JI Z. L., Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: I. Analytical approach, journal of Sound and Vibration, 1998, 213 (4): 601-617
    142 SELAMET A., and JI Z. L., Acoustic attenuation performance of circular expansion chambers with single-inlet and double-outlet, Journal of Sound and Vibration, 2000, 229 (1): 3-19
    143 MUNJAL M. L., Analysis and design of mufflers– an overview of research at Indian Institute of Science, Journal of Sound and Vibration, 1998, 211 (3): 425-433
    144 BILAWCHUK S., FYFE K. R., Comparison and implementation of the various numerical method used for calculating transmission loss in silencer systems, Applied Acoustics, 2003, 64: 903-916
    145 LEE F-C, CHEN W-H, On the acoustic absorption of multi-layer absorbers with different inner structures, Journal of Sound and Vibration, 2003, 259 (4): 761-777
    146 MEHDIZADEH OMID Z., PARASCHIVOIU MARIUS, A three-dimensional finite element approach for predicating the transmission loss in mufflers and silencers with no mean flow, Applied Acoustics, 2005, 66: 902-918
    147 KOIKE T., WADA H., KOBAYASHI T., Modeling of the human middle ear using the finite-element method, Journal of the Acoustical Society of America, 2002, 111(3): 1306-1317
    148 TEZAUR R., MACEDO A., FARHAT C., DJELLOULI R., Three-dimensional finite element calculation acoustic scattering using arbitrarily shaped convex artificial boundary, International Journal for Numerical Methods in Engineering, 2002, 53: 1461-1476
    149 GB/T 1236-2000工业通风机—用标准化风道进行性能试验
    150陈克安,曾向阳,李海英.声学测量,北京,科技出版社,2005
    151 DENIA F. D., SELAMET A., FUENMAYOR F. J., KIRBY R., Acoustic attenuation performance of perforated dissipative muffler with empty inlet/outlet extensions, Journal of sound and vibration, 2007, 302: 1000-1017
    152李增刚,SYSNOISE Rev5.6详解,国防工业出版社,北京,2005
    153 ANSYS Rev5.7,建模与分网指南
    154 SYSNOISE Rev 5.5, Getting started manual
    155杜功焕、朱哲民、龚秀芬,声学基础,南京大学出版社,2001
    156任文堂、赵剑、李孝宽,工业噪声和振动控制技术,冶金工业出版社,1986
    157 SAHASRABUDHE A. D., MUNJAL A. L., and RAMU S. A., Design of expansion chamber mufflers incorporating 3-D effect, Noise Control Engineering Journal,1992, 38: 27-38
    158 ERIKSSON L. J., ANDERSON C. A., HOOPS R. H., JAYARAMAN K., Finite length effects on higher order mode propagation in silencers, Proceeding 11th ICA, Paris: 329-332
    159 SADAMOTO A, and MURAKAMI Y., Resonant properties of short expansion chambers in a circular duct: including extremely short cases and asymmetric mode wave incidence cases, Journal of sound and vibration, 2002, 249(1): 165-187
    160 PERNG S. W., Passive control of pressure oscillations in hypersonic cavity flow, Ph. D. dissertation, Dept. of Aerospace Engineering and Engineering Mechanics, Univ. of Texas, Austin, TX, Dec.1996
    161 BAUER R. C. and DIX R. E., Engineering model of unsteady flow in a cavity, Calspan Corp./AEDC Operations, Arnold Engineering Development Center TR-91-17, Dec.1991
    162 RAMAN G., ENVIA E., BENCIC T. J., Jet-cavity interaction tones, AIAA Journal, 2002, 40(8): 1503-1511
    163 ABRAMOWITZ M., and STEGUN I. A., Handbook of Mathematical Functions, New York, Dover, 1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700