携带tPA真核表达载体PLGA纳米粒-超声微泡复合体的构建及体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:pIRES-tPA-Dsred Express-2真核表达质粒的构建和体外表达
     目的:构建携带有组织型纤溶酶原激活因子目的片段的真核表达载体pIRES-tPA-Dsred Express2。验证该质粒转染人脐静脉内皮细胞系EA.hy926是否高表达组织型纤溶酶原激活因子,其产物蛋白是否具有生物学活性。
     方法:勾取tPA基因的CDS序列,通过基因工程技术将其插入pIRES-Dsred Express2质粒,构建携带有人组织型纤溶酶原激活因子目的片段的真核表达载体pIRES-tPA-Dsred Express2。将构建成功的真核表达载体pIRES-tPA-Dsred Express2用脂质体转染试剂Lipofectamine(?) LTX转染人脐静脉内皮细胞系EA.hy926。应用逆转录实时荧光定量PCR检测转染后48小时,细胞内目的蛋白mRNA含量;Western Blot检测转染后相关蛋白表达情况;应用ELISA技术,检测细胞培养上清中tPA含量;应用酶促反应检测细胞培养上清中人组织型纤溶酶原激活因子活性。观察转染pIRES-tPA-Dsred Express2载体后人脐静脉内皮细胞系EA.hy926对于人组织型纤溶酶原激活因子及其相关蛋白分泌及其活性随时间的变化关系。
     结果:通过将tPA目的基因片段插入pIRES-Dsred Express2质粒,成功构建了真核表达载体pIRES-tPA-Dsred Express2。体外转染人脐静脉内皮细胞系EA.hy926后48小时可以观察到细胞可激发红色荧光,转染效率为(20.7±4.2)%。逆转录实时定量PCR检测显示pIRES-tPA-Dsred Express2质粒组其tPA, Dsred的mRNA相对含量分别为769.21±35.11及1164.26±82.85,显著高于对照组。Western Blot检测显示,目的蛋白tPA及红色荧光蛋白Dsred含量显著增高。细胞上清人组织型纤溶酶原激活因子含量及人组织型纤溶酶原激活因子活性检测显示pIRES-tPA-Dsred Express2质粒组(4.73±0.02)ng/hour·(105cells),活性为(9.48±0.12)IU/hour-(105cells),显著高于对照组。转染pIRES-tPA-Dsred Express2后内皮细胞上清中的人组织型纤溶酶原激活因子浓度及活性在24小时为最高,而后呈现下降趋势。人组织型纤溶酶原激活因子活性变化受纤溶酶原激活物抑制剂-1影响与其浓度变化方式不同。
     结论:成功构建了携带有人组织型纤溶酶原激活因子的真核表达载体pIRES-tPA-Dsred Express2。体外转染验证其可正确指导合成及分泌组织型纤溶酶原激活因子,表现出显著纤溶活性,为后续实验奠定了实验基础。
     第二部分:超声微泡介导pIRES-tPA-Dsred Express2-脂质体复合体体外转染及表达
     目的:通过超声微泡介导的基因治疗技术将携带有组织型纤溶酶原激活因子基因的质粒pIRES-tPA-DsRed-Express2-脂质体复合体体外转染内皮细胞,使内皮细胞高表达组织型纤溶酶原激活因子,观察超声介导的基因治疗技术对于内皮细胞质粒转染的效果。
     方法:薄膜水化制备全氟丙烷超声微泡。使用全氟丙烷微泡介导pIRES-tPA-DsRed-Express2-脂质体复合体转染人脐静脉内皮细胞系EA.hy926细胞。通过荧光计数,计算细胞转染效率。应用逆转录实时荧光定量PCR检测转染后48小时,细胞的目的蛋白mRNA含量;应用ELISA技术,检测上清中tPA含量及活性。
     结果:制备的全氟丙烷超声微泡平均大小为(3.5±1.4)μm。微泡浓度为(3.3±1.2)×108/ml。zeta电位为(-2.2±1.5)mV。制备后的12小时内性质稳定。转染后48小时,超声微泡介导组(UM+LTX)转染效率为(27.3±3.6)%,Lipofectamine(?) LTX转染组(LTX)转染效率为(20.6±2.0)%。逆转录实时荧光定量PCR检测显示UM+LTX组及LTX组,目的蛋白tPA的mRNA的相对含量分别为(953.15±92.77)和(721.32±68.31),具有显著性差异。荧光蛋白Dsred的mRNA相对含量分别为(1191.22±109.31)和(1092.15±102.71)。UM+LTX组其细胞上清中的tPA含量及tPA活性均较LTX显著升高。
     结论:成功制备了含有全氟丙烷的超声微泡。通过超声微泡介导质粒-脂质体复合体转染内皮细胞EA.hy926,进一步提高了质粒-脂质体复合体转染内皮细胞的转染效率,从而提高目的蛋白组织型纤溶酶原激活因子的表达分泌量,提高了纤溶活性。
     第三部分:携带可表达tPA真核表达载体PLGA纳米粒-超声微泡复合体的构建及体外吞噬实验
     目的:构建携带有可表达组织型纤维溶酶激活因子质粒的PLGA纳米粒-超声微泡复合体。检测其理化性质,体外缓释方式,细胞毒效应及其在超声介导下对于细胞摄取纳米粒的影响。
     方法:应用双次乳化法制备携带有pIRES-tPA-DsRed Express2质粒的PLGA纳米粒;应用薄膜水化超声法制备阳离子超声微泡;两者通过静电吸附的方式形成PLGA纳米粒-超声微泡复合体。检测PLGA纳米粒的载药量,PLGA纳米粒-超声微泡复合体质粒载量;检测纳米粒及纳米粒-超声微泡复合体细胞毒性;检测PLGA纳米粒及PLGA纳米粒-超声微泡复合体体外缓释质粒的方式;检测其在超声辐照介导的微泡解构时介导体外细胞吞噬纳米粒的能力。
     结果:自制的纳米粒其粒径为(217.2±2.2)nm,zeta电位为(-15.24±0.83)mV。微泡平均大小为(3.2±1.5)μm,Zeta电位为(13.66±2.05)mV。微泡浓度为(4.3±1.1)×108/ml。纳米粒-超声微泡复合体其平均大小为(4.6±1.7)μm。zeta电位为(2.23±1.45)mV。浓度为(3.0±1.3)×108/ml。lmgPLGA纳米粒载有质粒(42.3±2.1)μg。1ml纳米粒-超声微泡复合体中带有质粒(20.5±2.7)μg。纳米粒及纳米粒-超声微泡复合体均表现为在起始段短时内质粒快速释放,后呈现稳定释放的趋势。到达第7天时,释放量达到其总量的(57±3)%。纳米粒及纳米粒-超声微泡复合体均未见明显细胞毒性效应,仅最高浓度组见轻度的细胞活性减少。PLGA纳米粒组及PLGA纳米粒-超声微泡复合体组均可见大量的纳米粒被吞噬。PLGA纳米粒-超声微泡复合体组在超声辐照介导下具有更高的细胞摄取效率。
     结论:所构建的纳米粒-超声微泡复合体显示出较好的缓释效果,较低的细胞毒性,在超声辐照介导下可增强纳米粒吞噬效率。
Part I:Construction of pIRES-tPA-Dsred Express-2Eukaryotic expression vector and expression in vitro
     Objective To construct a eukaryotic expression vector pIRES-tPA-Dsred Express2which carried the gene of human tissue-type plasminogen activator. Verify the improved expression of tissue-type plasminogen activator while human umbilical vein endothelial cell line EA.hy926were transfected by pIRES-tPA-Dsred Express2. And the biological activity of the product protein was investigated.
     Method Access to the tPA gene sequence and insert it into the multiple clone sites of pIRES-Dsred Express2. DNA sequencing was used to affirm construction of the recombinant. The vector, pIRES-tPA-Dsred Express2, was transfected into human umbilical vein endothelial cell line EA.hy926cells by Lipofectamine(?) LTX. Reverse transcription real-time fluorescence quantitative PCR was performed to detect mRNA levels at48hours after transfection. Western blot was taken for the target protein expression. Application of ELISA was to assay tPA concentration in the supernatant. The activity of tPA in the supernatant was quantified by enzymatic reactions. The concentration and activity of the secreted tPA versus time relationships was investigated.
     Results The eukaryotic expression vector pIRES-tPA-Dsred Express2was successfully constructed which verified by DNA sequencing. At48hours after transfection, significantly red fluorescence can be observed in EA.hy926. The transfection efficiency was (20.7±4.2)%. Real-time reverse transcriptase quantitative PCR analysis showed that relative mRNA content of the target protein tPA and red fluorescent protein Dsred in pIRES-tPA-Dsred Express2group was769.21±35.11and1164.26±82.85, significantly higher than that in control. Western Blot showed that tPA and Dsred content was significantly higher in pIRES-tPA-Dsred Express2plasmid group. The concentration and activity of tPA in cell supernatant of pIRES-tPA-Dsred Express2plasmid group was (4.73±0.02)ng/hour-(105cells) and (9.48±0.12) IU/hour(105cells), which is significantly higher than that in control. The concentration and activity of the secreted tPA versus time relationships showed the peak concentration and activity appeared at24hours after transfection. The relationships versus time of tPA activity, the concentration of tPA and PAI-1was associated but different.
     Conclusion We successfully constructed the eukaryotic expression vector, pIRES-tPA-Dsred Express2, which carrying gene sequence of tissue-type plasminogen activator. And verify that the vector can correctly guide the synthesis and secretion of tissue-type plasminogen activator, showing a significant biological activity in vitro transfection.
     Part II:In vitro transfection of pIRES-tPA-Dsred Express2-liposome complexes mediated by ultrasound microbubble and expression in endothelial cells
     Objective pIRES-tPA-DsRed-Express2-lipidsome complexes was admitted to endothelial cells in vitro mediated by ultrasound microbubble targeted destruction. The effection of ultrasound-mediated gene therapy in the plasmid transfection for endothelial cells was investigated.
     Method The perfluoropropane ultrasound microbubbles were prepared by thin-film hydration. The pIRES-tPA-DsRed Express2-liposome complexes were transfected into EA.hy926cells mediated by ultrasound microbubble destruction. Cell transfection efficiency, the target protein mRNA relative content in cells, tPA content and activity in the supernatant was detected.
     Results The average size of perfluoropropane ultrasound microbubbles was (3.5±1.4)μm. The concentration was (3.3±1.2)×108/ml. The zeta potential was (-2.2±1.5) mV. The microbubbles were stable within12hours after preparation. At48hours after transfection, the transfection efficiency of ultrasound microbubble-mediated group (UM+LTX) was (27.3±3.6)%, while (20.6±2.0)%in lipofectamine(?)LTX group (LTX). The relative content of tPA mRNA was respectively (953.15±92.77) and (721.32±68.31) in (UM+LTX) and LTX group. The relative content of fluorescence protein Dsred mRNA was (1191.22±109.31) and (1092.15±102.71) in each group. The concentration and activity of tPA in supernatant of (UM+LTX) group, is significantly higher then that of LTX group.
     Conclusion The perfluoropropane Ultrasound microbubbles were successfully prepared. Mediated by ultrasound microbubble targeted destruction, the transfection efficiency of the plasmid-liposome complexes for endothelial cells was further improved. Thereby the expression and secretion of tissue-type plasminogen activator was enhanced, as a result the fibrinolytic activity was improved.
     Part III:Construction of pIRES-tPA-DsRed Express2loaded PLGA nanoparticles-microbubble complexes and in vitro phagocytosis study
     Objective To construct pIRES-tPA-DsRed Express2loaded PLGA nanoparticles-ultrasound microbubble complexes. To investigate physical and chemical properties, in vitro plasmid release manner, Cytotoxicity and cellular uptake of nanoparticles-microbubble complexes mediated by ultrasound destruction.
     Method pIRES-tPA-DsRed Express2loaded PLGA nanoparticles were prepared by double emulsion method. Cationic ultrasound microbubble were prepared by thin-film hydration method. Nanoparticles-microbubble complexes were created by electrostatic adsorption. The plasmid loading of the PLGA nanoparticles and nanoparticles-microbubble complexes was assayed.In vitro release manner and the cytotoxicity of PLGA nanoparticles and nanoparticles-microbubble complexes was Investigated. The phagocytic manner for nanoparticles-microbubble complexes after ultrasound mediated microbubble destruction was studied.
     Results The size and zeta potential of the plasmid loading PLGA nanoparticles was (217.2±2.2)nm and (-15.24±0.83)mV. The average size and zeta potential of the cationic microbubbles was (3.2±1.5)μm and (13.66±2.05)mV. The concentration is (4.3±1.1)×10/ml. The average size of the nanoparticles-microbubble complexes was (4.6±1.7)μm and zeta potential was (2.23±1.45)mV, and the concentration was (3.0±1.3)×10/ml.1ml nanoparticles-microbubble complexes contained (20.5±2.7)μg plasmid. And PLGA nanoparticles contained (42.3±2.1)μg plasmid per mg. Nanoparticles and nanoparticles-microbubble complexes were both shown a burst release in the initial segment, and then a trend of stable release instead. The total (57±3)%plasmid encapsulated were released in the first seven days. Nanoparticles and nanoparticles-microbubble complexes showed little cytotoxicity. Only the highest concentration group appeared mild reduced cell activity. Nanoparticles-microbubble complexes group showed a higher cellular uptake efficiency after ultrasound mediated microbubble destruction.
     Conclusion The nanoparticles-microbubble complexes with a good release pattern, low toxicity, enhanced phagocytic efficiency.
引文
[1]Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M:Burden of valvular heart diseases:a population-based study. Lancet 2006, 368(9540):1005-1011.
    [2]Carapetis JR, Steer AC, Mulholland EK, Weber M:The global burden of group A streptococcal diseases. Lancet Infect Dis 2005,5(11):685-694.
    [3]Sun JC, Davidson MJ, Lamy A, Eikelboom JW:Antithrombotic management of patients with prosthetic heart valves:current evidence and future trends. Lancet 2009,374(9689):565-576.
    [4]Shinoka T:Tissue engineered heart valves:autologous cell seeding on biodegradable polymer scaffold. Artif Organs 2002,26(5):402-406.
    [5]Jamieson WR, Ling H, Burr LH, Fradet GJ, Miyagishima RT, Janusz MT, Lichtenstein SV:Carpentier-Edwards supraannular porcine bioprosthesis evaluation over 15 years. Ann Thorac Surg 1998,66(6 Suppl):S49-52.
    [6]Emery RW, Emery AM, Raikar GV, Shake JG:Anticoagulation for mechanical heart valves:a role for patient based therapy. J Thromb Thrombolysis 2008, 25(1):18-25.
    [7]Butchart EG, Ionescu A, Payne N, Giddings J, Grunkemeier GL, Fraser AG:A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation 2003,108 Suppl 1:1168-74.
    [8]Trzeciak P, Zembala M, Polonski L:Major hemorrhagic and thromboembolic complications in patients with mechanical heart valves receiving oral anticoagulant therapy. Heart Surg Forum 2010,13(2):E80-85.
    [9]Gene therapy:concepts and methods. Few applications so far. Prescrire Int 2009, 18(104):276-27918(104):276-279.
    [10]Eibel B, Rodrigues CG, Giusti, Ⅱ, Nesralla IA, Prates PR, Sant' Anna RT, Nardi NB, Kalil RA:Gene therapy for ischemic heart disease:review of clinical trials. Rev Bras Cir Cardiovasc 2011,26(4):635-646.
    [11]Mughal NA, Russell DA, Ponnambalam S, Homer-Vanniasinkam S:Gene therapy in the treatment of peripheral arterial disease. Br J Surg 2012, 99(1):6-15..
    [12]Hoshijima M:Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacol Ther 2005,105(3):211-228.
    [13]Waugh JM, Kattash M, Li J, Yuksel E, Kuo MD, Lussier M, Weinfeld AB, Saxena R, Rabinovsky ED, Thung S et al:Gene therapy to promote thromboresistance:local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model. Proc Natl Acad Sci U S A 1999,96(3):1065-1070.
    [14]Ji S, Jun J, Xiaohan Y, Xia H, Xiaolei W, Xiaoqing Y, Jianzhou G, Wenping L, Yanhui Z:Study on construction of nano tPA plasmid to prevent thrombosis after mechanical valve replacement in dogs. J Surg Res 2011,168(1):e1-5.
    [15]Yuan QY, Huang J, Chu BC, Li XS, Si LY:A visible, targeted high-efficiency gene delivery and transfection strategy. BMC Biotechnol 2011,11:56.
    [16]Wang GZ, Liu JH, Lu SZ, Lu Y, Guo CJ, Zhao DH, Fang DP, He DF, Zhou Y, Ge CJ:Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes. Chin Med J (Engl) 2011, 124(9):1395-1400.
    [1]Yacoub M H, Takkenberg J J. Will heart valve tissue engineering change the world?[J]. Nat Clin Pract Cardiovasc Med 2005,2(2):60-61.
    [2]Nkomo V T, Gardin J M, Skelton T N, et al. Burden of valvular heart diseases: a population-based study[J]. Lancet 2006,368(9540):1005-1011.
    [3]Carapetis J R, Steer A C, Mulholland E K, et al. The global burden of group A streptococcal diseases[J]. Lancet Infect Dis 2005,5(11):685-694.
    [4]Sun J C, Davidson M J, Lamy A, et al. Antithrombotic management of patients with prosthetic heart valves:current evidence and future trends[J]. Lancet 2009,374(9689):565-576.
    [5]Elkins R C. Is tissue-engineered heart valve replacement clinically applicable? [J]. Curr Cardiol Rep 2003,5(2):125-128.
    [6]Jamieson W R, Ling H, Burr L H, et al. Carpentier-Edwards supraannular porcine bioprosthesis evaluation over 15 years [J]. Ann Thorac Surg 1998,66(6 Suppl):S49-52.
    [7]Kortke H, Korfer R. International normalized ratio self-management after mechanical heart valve replacement:is an early start advantageous? [J]. Ann Thorac Surg 2001,72(1):44-48.
    [8]Butchart E G, Gohlke-Barwolf C, Antunes M J, et al. Recommendations for the management of patients after heart valve surgery [J]. Eur Heart J 2005, 26(22):2463-2471.
    [9]Butchart E G, Ionescu A, Payne N, et al. A new scoring system to determine thromboembolic risk after heart valve replacement [J]. Circulation 2003,108 Suppl 1:1168-74.
    [10]Trzeciak P, Zembala M, Polonski L. Major hemorrhagic and thromboembolic complications in patients with mechanical heart valves receiving oral anticoagulant therapy[J]. Heart Surg Forum 2010,13(2):E80-85.
    [11]Eibel B, Rodrigues C G, Giusti, I I, et al. Gene therapy for ischemic heart disease:review of clinical trials[J]. Rev Bras Cir Cardiovasc 2011, 26(4):635-646.
    [12]Mughal N A, Russell D A, Ponnambalam S, et al. Gene therapy in the treatment of peripheral arterial disease[J]. Br J Surg 2012,99(1):6-15.
    [13]Hoshijima M. Gene therapy targeted at calcium handling as an approach to the treatment of heart failure[J]. Pharmacol Ther 2005,105(3):211-228.
    [14]Lijnen H R, Collen D. Strategies for the improvement of thrombolytic agents[J]. Thromb Haemost 1991,66(1):88-110.
    [15]GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction[J]. N Engl J Med 1993, 329(22):1615-1622.
    [16]Smadja D, Chausson N, Joux J, et al. A new therapeutic strategy for acute ischemic stroke:sequential combined intravenous tPA-tenecteplase for proximal middle cerebral artery occlusion based on first results in 13 consecutive patients[J]. Stroke 2011,42(6):1644-1647.
    [17]Waugh J M, Kattash M, Li J, et al. Gene therapy to promote thromboresistance:local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model[J]. Proc Natl Acad Sci U S A 1999,96(3):1065-1070.
    [18]Eton D, Yu H, Wang Y, et al. Endograft technology:a delivery vehicle for intravascular gene therapy [J]. J Vase Surg 2004,39(5):1066-1073.
    [19]Thomas A C, Wyatt M J, Newby A C. Reduction of early vein graft thrombosis by tissue plasminogen activator gene transfer[J]. Thromb Haemost 2009,102(1):145-152.
    [20]Ji S, Jun J, Xiaohan Y, et al. Study on construction of nano tPA plasmid to prevent thrombosis after mechanical valve replacement in dogs[J]. J Surg Res 2011,168(1):e1-5.
    [1]Glover DJ, Lipps HJ, Jans DA:Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005,6(4):299-310.
    [2]Laitinen M, Pakkanen T, Donetti E, Baetta R, Luoma J, Lehtolainen P, Viita H, Agrawal R, Miyanohara A, Friedmann T et al: Gene transfer into the carotid artery using an adventitial collar:comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther 1997,8(14):1645-1650.
    [3]Williams PD, Kingston PA:Plasmid-mediated gene therapy for cardiovascular disease. Cardiovasc Res 2011,91(4):565-576.
    [4]Newman CM, Bettinger T:Gene therapy progress and prospects:ultrasound for gene transfer. Gene Ther 2007,14(6):465-475.
    [5]Borden MA, Caskey CF, Little E, Gillies RJ, Ferrara KW:DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 2007,23(18):9401-9408.
    [6]Choi JJ, Carlisle RC, Coussios CC:Enhanced viral activity in tumors using focused ultrasound and microbubbles-A long term study. J Acoust Soc Am 2011, 130(4):2502.
    [7]Wang GZ, Liu JH, Lu SZ, Lu Y, Guo CJ, Zhao DH, Fang DP, He DF, Zhou Y, Ge CJ:Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes. Chin Med J (Engl) 2011,124(9):1395-1400.
    [8]Juffermans LJ, van Dijk A, Jongenelen CA, Drukarch B, Reijerkerk A, de Vries HE, Kamp O, Musters RJ:Ultrasound and microbubble-induced intra-and intercellular bioeffects in primary endothelial cells. Ultrasound Med Biol 2009, 35(11):1917-1927.
    [9]Chumakova OV, Liopo AV, Andreev VG, Cicenaite I, Evers BM, Chakrabarty S, Pappas TC, Esenaliev RO:Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett 2008,261(2):215-225.
    [10]Tiukinhoy-Laing SD, Huang S, Klegerman M, Holland CK, McPherson DD: Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 2007,119(6):777-784.
    [11]Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R:Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004, 56(9):1291-1314.
    [12]Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R:Development of safe and efficient novel nonviral gene transfer using ultrasound:enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 2002, 9(6):372-380.
    [13]Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, Aoki M, Ogihara T, Yasufumi K, Morishita R:Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002,105(10):1233-1239.
    [14]Fujii H, Sun Z, Li SH, Wu J, Fazel S, Weisel RD, Rakowski H, Lindner J, Li RK: Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging 2009,2(7):869-879
    [15]Akowuah EF, Gray C, Lawrie A, Sheridan PJ, Su CH, Bettinger T, Brisken AF, Gunn J, Crossman DC, Francis SE et al: Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther 2005,12(14):1154-1157.
    [16]Phillips LC, Klibanov AL, Bowles DK, Ragosta M, Hossack JA, Wamhoff BR: Focused in vivo delivery of plasmid DNA to the porcine vascular wall via intravascular ultrasound destruction of microbubbles. J Vasc Res 2010, 47(3):270-274.
    [17]Miller DL, Pislaru SV, Greenleaf JE:Sonoporation:mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 2002,27(1-6):115-134.
    [18]van Wamel A, Kooiman K, Emmer M, ten Cate FJ, Versluis M, de Jong N: Ultrasound microbubble induced endothelial cell permeability. J Control Release 2006,116(2):el00-102.
    [19]van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N:Vibrating microbubbles poking individual cells:drug transfer into cells via sonoporation. J Control Release 2006,112(2):149-155.
    [20]Feshitan JA, Chen CC, Kwan JJ, Borden MA:Microbubble size isolation by differential centrifugation. J Colloid Interface Sci 2009,329(2):316-324.
    [1]Borden MA, Caskey CF, Little E, Gillies RJ, Ferrara KW:DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 2007,23 (18):9401-9408.
    [2]Gvili K, Benny O, Danino D, Machluf M:Poly(D,L-lactide-co-glycolide acid) nanoparticles for DNA delivery:waiving preparation complexity and increasing efficiency. Biopolymers 2007,85(5-6):379-391.
    [3]Basarkar A, Devineni D, Palaniappan R, Singh J:Preparation, characterization, cytotoxicity and transfection efficiency of poly(DL-lactide-co-glycolide) and poly(DL-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Int J Pharm 2007,343(1-2):247-254.
    [4]Li JK, Wang N, Wu XS:A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. J Pharm Sci 1997,86(8):891-895.
    [5]Vinogradov SV, Bronich TK, Kabanov AV:Nanosized cationic hydrogels for drug delivery:preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002,54(1):135-147.
    [6]Allen TM, Cullis PR:Drug delivery systems:entering the mainstream. Science 2004,303(5665):1818-1822.
    [7]Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M:Delivery of DNA vaccines:an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010, 2(3):205-218.
    [8]Kumari A, Yadav SK, Yadav SC:Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010,75(1):1-18.
    [9]Bejjani RA, BenEzra D, Cohen H, Rieger J, Andrieu C, Jeanny JC, Gollomb G, Behar-Cohen FF:Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005,11:124-132.
    [10]Luby TM, Cole G, Baker L, Kornher JS, Ramstedt U, Hedley ML:Repeated immunization with plasmid DNA formulated in poly(lactide-co-glycolide) microparticles is well tolerated and stimulates durable T cell responses to the tumor-associated antigen cytochrome P4501B1. Clin Immunol 2004, 112(1):45-53.
    [11]Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum RD, Sealey W, Donahower BC, Lapatra S, Sheridan PP:Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles. J Fish Dis 2012,35(3):203-214.
    [12]Wesselinova D:Current major cancer targets for nanoparticle systems. Curr Cancer Drug Targets 2011,11 (2):164-183.
    [13]Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN: Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release 2008,126(3):265-273.
    [14]Lozano MM, Starkel CD, Longo ML:Vesicles tethered to microbubbles by hybridized DNA oligonucleotides:flow cytometry analysis of this new drug delivery vehicle design. Langmuir 2010,26(11):8517-8524.
    [15]Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel JJ, Yamashiro DJ, Borden MA:Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release 2012,157(2):224-234.
    [16]Diez S, Tros de Ilarduya C:Versatility of biodegradable poly(D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Eur JPharm Biopharm 2006, 63(2):188-197.
    [17]van Wamel A, Kooiman K, Emmer M, ten Cate FJ, Versluis M, de Jong N: Ultrasound microbubble induced endothelial cell permeability. J Control Release 2006,116(2):e100-102.
    [18]Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K et al: Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009,104(5):679-687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700