用户名: 密码: 验证码:
各向异性超声马达摩擦材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声马达是一种借助摩擦传递弹性超声波振动以获得动力的新型驱动机构,摩擦材料是超声马达的关键技术之一。目前常用的摩擦材料为各向同性材料,根据超声马达的接触摩擦传动特点,其定子和转子界面不仅具有一定的接触变形,而且还应有较好的界面传力性能,因此设计各向异性摩擦材料,研究各向异性摩擦材料对超声马达性能的影响,对更好地揭示马达的驱动机理,开发适合超声马达的摩擦材料有重要的理论和现实意义。
     本文研究了以纤维增强基体树脂的各向异性材料,选择了4种纤维和3种树脂,通过纤维单向取向和复合取向改变复合材料的各向异性程度。设计了制备纤维复合取向板状摩擦材料的模具,研究了不同组分、用量和纤维取向对复合材料各向异性的影响,并研究了不同基体、不同增强纤维、混杂纤维和玻璃纤维复合取向复合材料的制备工艺,制备出不同EH/EV匹配的摩擦材料。研究了纤维取向对各向异性复合材料动态弹性模量和硬度的影响。利用M200摩擦磨损试验机研究了材料的摩擦系数和磨损率,利用金相显微镜对磨损表面进行了形貌分析,建立了不同纤维取向的摩擦磨损模型。结果表明,玻璃纤维N取向时材料摩擦磨损较大,P和AP取向时摩擦磨损较小。P和AP交织取向时摩擦磨损最小。填加二硫化钼使偶件表面形成连续而致密的转移膜,填加石墨使石墨颗粒在磨损表面发生涂抹形成自润滑薄膜,都能降低复合材料的摩擦磨损。
     利用模拟超声马达微驱动试验台研究了摩擦材料不同EH/EV匹配对超声马达使用性能的影响。结果表明,当摩擦材料的EH/EV值由0.71增大到1.42时,正压力和驱动力先增大后减小,比值约为1.24时,正压力和驱动力最大,驱动效果好。研究了二硫化钼和石墨改性的各向异性摩擦材料对超声马达使用性能的影响,得出填加二硫化钼和石墨正压力基本不变,两者都降低了驱动力。在相同质量百分比时二硫化钼改性后的摩擦材料的驱动效果比石墨改性的好,但石墨改性后材料的磨损率比二硫化钼改性后的低。
Ultrasonic motor is a new kind of driving machine which obtains dynamic in virtue of use friction to transfer elastic ultrasonic vibration. Friction material is a key technique of ultrasonic motor. Common friction material is isotropic at the present time. According to the characteristics of the contact friction - transmission of ultrasonic motor drive, the interface of stator and rotor has not only some contact deformation but also good interface transmitting force performance, thereby the design of anisotropic friction material and the research of anisotropic friction material on the performance of ultrasonic motor is theoretical and practical important for better revealing the driving mechanism and the development of the suitable motor friction material.
     Fiber reinforced resin anisotropic material is mainly researched in this paper. 4 fibers and 3 resins are chosen to manufacture different anisotropic extent material by different fiber tropism and multiplex tropism. Plate mould is designed, and facture flows are studied of different element, dosage and fiber tropism to manufacture different EH/EV anisotropic material. Elastic modulus in fiber array direction and hardness are also researched. M200 is made use to research Friction and wear of anisotropic material and Metallography microscope is also used to analyze the wear surface. The result shows that friction coefficient and wear is high when fiberglass is N tropism compared with A and AP tropism, the P and AP multiplex tropism is lowest. Friction and wear of materials filled with supramoly and graphite decreases because of transfer film is formed on the wear surface filled with supramoly and self-friction film is formed on the wear surface filled with graphite.
     The ultrasonic micro-driving test bed is made use of to simulate the driving force and positive pressure of ultrasonic motor. Different EH/EV matches of the friction material on the performance of ultrasonic motor is also researched . The results show that when the EH/EV of friction material ranges from 0.71 to 1.42, the driving force and positive pressure would increase at first then decrease. The value of driving force and positive pressure would achieve maximum when the specific value is 1.24, also the effect of driving is best. The anisotropic friction materials filled with supramoly and graphite on the performance of ultrasonic motor is researched and the results show that the value of positive pressure remains basically unchanged and the value of positive pressure decreases. When the mass percents of two materials are the same, the driving effect of friction material filled with supramoly is better than that of friction material filled with graphite. but the wear rate of friction material filled with graphite is lower than that of friction material filled with supramoly.
引文
1赵淳生. 21世纪超声电机技术展望.振动、测试与诊断. 2000, 20(1): 7~9
    2赵淳生.面向21世纪的超声电机技术.中国工程科学. 2002, 4(2): 86~91
    3 A. M. Flynn. Piezoelectric ultrasonic micro motors. MIT, Ph.D. Thesis, 1995.
    4上羽贞行,富川仪郎.超声波马达理论与应用.上海科学技术出版社. 1998: 46~53
    5 J. Maas, P. Ide, H. Grotstollen. Simulation model for ultrasonic motors powered by resonant converters. Proceedings of IEEE IAS’95, Vol. 1, Orlando, Florida, 1995:111~120
    6赵淳生,李朝东.日本超声电机的产业化、应用和发展.振动、测试与诊断. 1999, 19(1): 1~7
    7 S. Ueha, Y. Tomikawa, M. Kurosawa. Ultrasonic motors theory and application. Clarendon Press, Oxford. 1993: 58~63
    8 Junhui Hu. Analysis of ultrasonic motor driving fluid directly. Jpn. Appl. Phys. 1995, 34(5B):2702~2705
    9 F. LEEH, S. P. LIM. Contact modeling of viscoelastic friction layer of traveling wave ultrasonic motor. Smart Mater Struct, 2001, 10: 314-320.
    10 P. Le Moal, P. Cusin. Optimization of travelling wave ultrasonic motors using a three-dimensional analysis of the contact mechanism at the stator–rotor interface. Eur. J. Mech. A/Solids. 1999, (18): 1061–1084
    11 Ken. Higuchi. A piezoelectric linear motor driven by superposing standing waves with phase difference. Institute Of Space And Astronautical Science. 1995: 3296~3303.
    12 M. Hermann, W. Schinkothe, J. Haug. Properties of a Piezoelectric Travelling Wave Motor Generating Direct Linear Motion. ACTUATOR 98.6th International Conference on New Actuators with Accompanying Exhibition. Conference Proceedings. 1998: 17~19
    13陈维山,赵学涛,刘军考.压电超声马达发展现状及研究方向.电机与控制学报. 2006, 10(9): 499~502
    14刘世清.超声波马达原理及其应用.湖南师范学院学报. 2004, 19(5): 13~16
    15 Jurgen maas. High performance speed control for ultrasonic motors. Proceedingof the 1999 IEEE /ASME International Conference on Advanced Intelligent Mechatronics. 1999, 12(9): 19~23
    16孙合明,赵淳生.纵扭型压电超声电机的研究进展.振动、测试与诊断. 2002, 22(1): 9-14
    17胡敏强,金龙,顾菊平.超声波电机原理与设计.科学出版社. 2005, 112~123
    18尹真.清华研制成直径最小的超声马达.中国青年科技. 2003, (3): 16~17
    19莫岳平,胡敏强,石斌,等.材料对超声电动机性能的影响及其选择.微电机. 2002, 35 (1): 41~44
    20栗大超,靳世久.微型超声波电机接触界面的摩擦学模型与摩擦材料.微特电机. 2002, (1): 9~11
    21 P. Rehbein, J. Wallaschek. Friction and wear behaviour of polymer/steel and alumina under high-frequency fretting conditions. Wear. 1998, (216): 97~105
    22 S. Furuya, T. Maruhashi, Y. Izuno. Load-adaptive frequency tracking control implementation of two-phase resonant inverter for ultrasonic motor, IEEE Trans. Power Electron. 1992, 7(3): 542~550
    23刘旭军,李同生.芳香聚酰胺基摩擦材料的研制及应用.塑料工业.1999, 27(3): 25~27
    24龚文,褚祥诚,李龙土.行波超声马达摩擦材料的研究.压电与声光. 2005, (8): 305~308
    25陈永校,郭吉丰.超声波电动机.浙江大学出版社. 1994, (9): 9~21
    26 Heiner Storck, Jorg Wallaschek. The effect of tangential elasticity of the contact layer between stator and rotor in travelling wave ultrasonic motor. Non-Linear Mechanics. 2003, (38): 143–159
    27曲建俊,齐毓霖,张志谦.超声马达摩擦学及其摩擦材料研究进展.摩擦学学报. 1998, 18(1): 80~87
    28曲建俊,张凯.摩擦材料的各向异性对超声马达特性的影响.压电与声光. 2002, (1): 75~77
    29 Jun satonobu,J. R. Friend,Kentaro Nakamure etc. Numerical analysis of the hybrid transducer ultrasonic motor: Comparison of characteristics calculated by transmission-line and lumped-element Models. Ultrasonics. 2002, 3(9): 559~565
    30 M. A. Dubois, P. Muralt. PZT thin film actuated elastic micro motor. IEEE TUFFC, 45(5), 1998:1169~1177
    31 E. Purw Anto, S. Toyama. Development of an ultrasonic motor as a fine-orienting stage. IEEE Transactions on Robotics and Automation. 2001, 17(4): 464~471
    32 F. LEEH, S. P. LIM. Contact modeling of viscoelastic friction layer of traveling wave ultrasonic motor. Smart Mater Struct, 2001, 10: 314-320.
    33 P. Le Moal, P. Cusin. Optimization of travelling wave ultrasonic motors using a three-dimensional analysis of the contact mechanism at the stator–rotor interface. Eur. J. Mech. A/Solids. 1999, (18): 1061–1084
    34薛振宇.一种环型直线超声波马达的研究.哈尔滨工业大学硕士论文. 2006: 24~31
    35贺思源.超声波马达理论模型与新型超声驱动器的研究.哈尔滨土业大学博士学位论文. 1998, (7): 10~61
    36 S. J. KIM, H. JANG.. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribology INT, 2000, 33(7): 477~488
    37张佐光.功能复合材料.化学工业出版社. 2004: 217~230
    38刘仁怀.复合材料层合板壳理论探索.暨南大学出版社. 2003: 117~119
    39吴人浩.复合材料.天津大学出版社. 2000: 35~37
    40吴培熙,沈健.特种性能树脂及复合材料.化学工业出版社. 2001: 10~15
    41白树林,戴兰宏,张庆明.先进纤维增强复合材料性能测试.化学工业出版社, 2005: 35~40
    42张凤英.纤维增强聚合物复合材料摩擦、磨损机理.纤维复合材料. 1994, (1): 12~14
    43郭芳,张招柱,苏峰华.聚四氟蜡和二硫化钼填充凯夫拉纤维织物复合材料的摩擦磨损性能研究.摩擦擦学学报. 2007, 27(2): 137~140
    44黄仁和,王力,王旭.固体润滑剂及其在树脂基减摩复合材料中的应用.材料科学与工程学报. 2005, 23(5): 626~628
    45 Chee Kian Lim, Siyuan He, I-Ming Chen, etc. A piezo-on-slider type linear ultrasonic motor for the application of position stages. 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.1999:103~109
    46 Zhang Fan, Chen Weishan, Liu Junkao. Bidirectional linear ultrasonic motor using longitudinal vibrating transducers IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(1): 134-138.
    47 T. Yamazaki. Trial construction of a non-contact ultrasonic motor with an ultrasonic levitated Rotor. Jpn. J. Appl. Phys. 1996, 35(5): 3286~3288
    48 M. Umeda, Ohnishi, Kazumasa. Dumbbell-shaped small sized hybrid ultrasonic motor. Proceedings of the Symposium on Ultrasonic Electronics, 1990: 191~193
    49 Marc. Budinger, Jean-Francois Rouchon, Bertrand Nogarede. Analytical modeling for the design of a piezoelectric rotating-mode motor. IEEE/ASME Transactions On Mechanics. 2004, 9(1):19
    50丁熠.超声马达真空低温驱动特性研究.哈尔滨工业大学硕士论文. 2006: 31~38
    51 Cheol Ho YUN. A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped type transducer. Jpn. Appl. Phys. 2001, (40): 3773~3776

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700