增益控制及超宽带EDFA的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺铒光纤放大器的出现是光纤通信发展史中重要的里程碑,EDFA使用全光中继来代替了光-电-光中继,极大地降低了系统的成本和延长了信号传输的距离,同时还推动了WDM/DWDM通信系统的整体发展。WDM/DWDM通信系统的发展又需要EDFA具有更大的带宽、优良的增益和噪声特性和增益控制等功能。
     基于上面的情况,并结合天津市重点基金项目——智能光纤放大器光源的研究、天津市重点基金项目——(C+L)超宽带掺杂光纤放大器和南开-达尔泰(天津)项目——开发增益平坦的掺铒光纤放大器等课题,论文主要围绕新型增益控制EDFA、增益控制用光源、多波长激光器及可调光衰减器、EDFA性能优化和超宽带EDFA等方面进行了理论和实验研究。主要工作如下:
     1.首次提出了基于双折射光纤环镜优化L-band EDFA噪声性能的方案。利用双折射环镜的梳状反射特性抑制双通EDFA的ASE,从而使放大器的噪声性能得到了明显改善。基于双折射光纤环镜的L-band EDFA比用普通光纤环镜的放大器的平均噪声低3.7dB。
     2.首次提出基于光纤起偏器和双折射光纤环镜的多波长掺铒光纤激光器。通过双折射光纤环境反射器和光纤起偏器来控制腔内偏振态,实现了利用偏振烧孔效应的多波长掺铒光纤激光器。实验中获得了4波长和5波长的稳定的激光输出,其波长间隔小于2nm。另外,我们还利用光纤起偏器和双折射光纤构成Lyot滤波器作为选频器件,同时通过利用腔内双折射增强偏振烧孔效应构成了可以获得稳定双波长输出的线形腔掺铒光纤激光器。实验上得到了两组间隔分别为3.44nm和1.56nm的L波段双波长激光,而且通过调整偏振控制器还得到的由1599.28nm~1605.84nm的五个单波长激光。
     3.首次提出利用前置放大器提高双通EDFA增益与噪声性能的方案。通过在基于普通光纤环镜的L-band EDFA前面加入一段已被泵浦的铒纤提高了输入端的铒离子的粒子数反转程度,使普通的双通L-band EDFA性能得到了改善。同普通双通放大器相比,在约1568nm~1594nm的范围内,加入前置放大器的L-band EDFA的增益提高了2.3dB~12.6dB,而噪声系数降低了2.2dB~23.9dB。
     4.提出了一种基于光纤环形镜对L-band EDFA增益控制的方法。输入信号光功率在约-40dBm~-15dBm的范围内,1595nm处反馈光衰减量为0时的增益波动和饱和输出功率比衰减量为4dB(控制光强度较弱)时的情况分别降低了0.33dB
The emergence of erbium-doped fiber amplifier is the landmark in the history of optical fiber communication. By utilizing EDFAs, all-optical relay is realized, transmission distance is much lengthened, and the development of WDM/DWDM (Wavelength-Division Multiplexing/Dense WDM) communication systems is generally accelerated. Meanwhile, with the development of WDM/DWDM communication systems, more and more attention is paid on the EDFAs with broader bandwidth, good gain and noise feature, and gain clamping, etc.
     According to the Tianjin Natural Science Foundation project: Intelligent fiber amplifiers and light sources, the Tianjin Natural Science Foundation project: (C+L) broadband fiber amplifier and the Nankai-Delta (Tianjin) project: Development of gain flattened erbium-doped fiber amplifiers, this dissertation is mainly focused on the study of novel gain-clamped EDFA, light sources, multi-wavelength fiber laser and variable optical attenuator for gain-clamped usage, gain and noise improvement of EDFA, and broadband EDFA. The main contents are listed as follows:
     1. A noise figure improved L-band EDFA based on Hi-Bi (high birefringence) fiber loop mirror as ASE rejecter is presented for the first time. By utilizing the comb-like reflection spectrum of a Hi-Bi fiber loop mirror to suppress the ASE (amplified spontaneous emission) of a double-pass EDFA, the noise figure of this amplifier is much improved. The average noise figure of the double-pass L-band EDFA based on Hi-Bi fiber loop mirror is 3.7dB lower than that of the one based on a common fiber loop mirror.
     2. A multi-wavelength erbium-doped fiber laser based on fiber polarizer and Hi-Bi fiber loop mirror is put forward for the first time. By utilizing Hi-Bi fiber loop mirror and fiber polarizer to control the intracavity polarization state, a multi-wavelength erbium-doped fiber laser by exploiting PHB (polarization hole-burning) is realized. We have experimentally achieved four-wavelength or five-wavelength stable lasers with wavelength spacing of less than 2nm. Moreover, by using fiber polarizer and birefringence fiber to constitute a Lyot filter, the intracavity PHB effect is enhanced and a dual-wavelength linear cavity erbium-doped fiber laser is achieved. We have experimentally obtained two series of L-band dual-wavelength lasers with wavelength spacing of 3.44nm and 1.56nm, respectively. Furthermore, by tuning the polarization controller, five single-wavelength lasers ranging from 1599.28nm to 1605.84nm can be also acquired.
引文
[1-1] T. H. Mainman, “Stimulated optical radiation in ruby laser”, Nature, 1960, 187: 493
    [1-2] K. C. Kao, Hockham G. A., “Dielectric-fiber surface waveguide for optical frequencies”, Proc. IEE (London), 1966, 113: 1151~1158
    [1-3] F. P. Kapron, et al., “Radiation losses in optical waveguide”, Appl. Phys. Lett., 1970, 17: 423~425
    [1-4] I. Hayashi, et al., “Injection lasers which operate continuously at room temperature”, Appl. Phys. Lett., 1970, 17: 109~111
    [1-5] A. Shen, S. Bouchoule, P. Crozat, et al., “Low timing jitter of gain- and Q-switched laser diodes for high bit rate OTDM applications”, Electron. Lett., 1997, 33 (22): 1875~1877
    [1-6] D. D. Marcenac, A. D. Ellis and D. G. Moodie, “80Gbit/s OTDM using electroabsorption modulators”, Electron. Lett., 1998, 34 (1): 101~103
    [1-7] R. Ludwig, S. Diez, A. Ehrhardt, et al., “Tunable femtosecond modelocked semiconductor laser for applications in OTDM systems”, IEICE Tran. Electron., 1998, E81-C (2): 140~145
    [1-8] M. Nakazawa, E. Yoshida, T. Yamamoto, et al., “TDM single channel 640Gbit/s transmission experiment over 60km using 400fs pulse train and walk-off free, dispersion flattened nonlinear fiber loop mirror”, Electron. Lett., 1998, 34 (9): 907~908
    [1-9] E. Desurvire, J. L. Zyskind and J. R. Simpson, “Spectral gain hole-burning at 1.53μm in erbium-doped fiber amplifiers”, IEEE Photon. Technol. Lett., 1990, 2 (4): 246~248
    [1-10] J. Chow, G. Town, B. Eggleton, et al., “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters”, IEEE Photon. Technol. Lett., 1996, 8 (1): 60~62
    [1-11] S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen”, Electron. Lett., 1996, 32 (14): 1298~1299
    [1-12] H. L. An, X. Z. Lin, E. Y. B. Pun, et al., “Multi-wavelength operation of an erbium-doped
    fiber ring laser using a double-pass Mach-Zehnder comb filter”, Opt. Commun., 1999, 169: 159~165
    [1-13] O. Graydon, W. H. Loh, R. I. Laming, et al., “Trple-frequency operation of an Er-doped twincore fiber loop laser”, IEEE Photon. Technol. Lett., 1996, 8 (1): 63~65
    [1-14] J. Sun, J. Qiu and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning”, Opt. Commun., 2000, 182: 193~197
    [1-15] A. Bellemare, M. Karasek, M. Rochette, et al., “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid”, J. Lightwave Techonol., 2000, 18 (6): 825~831
    [1-16] R. Slavik, S. LaRochelle and M. Karasek, “High performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band”, Opt. Commun., 2002, 206: 365~371
    [1-17] John Auyeung and Amono Yariv, “Spontaneous and Stimulated Raman Scattering in Loss Fibers”, IEEE J. Quantum Electron., 1978, QE-14 (5): 347~352
    [1-18] R. W. Davies, Paul Melman, William H. Nelson, et al., “Output Moment and Photon Statistics in Fiber Raman Amplification”, IEEE J. Lightwave Technol., 1987, 5 (8): 1068~1073
    [1-19] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, et al., “Raman response function of silica-core fibers”, J. Opt. Soc. Am. B., 1989, 6 (6): 1159~1166
    [1-20] Y. Aoki, “Fiber Raman amplifier properties for applications to long-distance optical communications”, Optical and Quantum Electron., 1989, 21: S89~S104
    [1-21] N. Edagawa, K. Mochizuki and Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers”, Electron. Lett., 1987, 23 (5): 196~197
    [1-22] Sien Chi and Ming-Seng Kao, “Bidirectional Optical Fiber Transmission System Using Raman Amplification”, IEEE J. Lightwave Technol., 1988, 6 (2): 312~317
    [1-23] Y. Aoki, “Properties of Fiber Raman Amplifier and Their Applicability to Digital Optical Communications Systems”, IEEE J. Lightwave Technol., 1988, 6 (7): 1225~1239
    [1-24] Tetsuro Komukai, Takashi Yamamoto, Tomoki Sugawa, et al., “Upconversion Pumped Thulium-Doped Fluoride Fiber Amplifier and Laser Operating at 1.47μm”, IEEE J. Quantum Electronics, 1995, 31 (11): 1880~1888
    [1-25] Tadashi Sakamoto, “S-band fiber optic amplifiers”, Proc. of OFC’2001, Paper TuQ1
    [1-26] Fabien Roy, Dominique Bayart and Pascal Baniel, “Novel pumping schemes for thulium- doped fiber amplifier”, Proc. of OFC’2000, Paper WA6
    [1-27] Tadashi Kasamatsu, Yutaka Yano and Hitoshi Sekita, “1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-μm dual-wavelength pumping”, Optics Lett., 1999, 24 (23): 1684~1685
    [1-28] T. Kasamstsu, Y. Yano and T. Ono, “Laser-diode pumping (1.4 and 1.56μm) of gain-shifted thulium-doped fibre amplifier”, Electron. Lett., 2000, 36 (19): 1607~1609
    [1-29] Tadashi Kasamatsu, Yutaka Yano and Takashi Ono, “Gain-Shifted Dual-Wavelength-Pumped Thulium-Doped Fiber Amplifier for WDM Signals in the 1.48-1.51-μm Wavelength Region”, IEEE Photon. Technol. Lett., 2001, 13 (1): 31~33
    [1-30] Tadashi Kasamatsu, Yutaka Yano and Takashi Ono, “Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480-1510-nm Band”, IEEE Photon. Technol. Lett., 2001, 13 (5): 433~435
    [1-31] F. Roy, F. Leplingard, L. Lorcy, et al., “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier”, Electron. Lett., 2001, 37 (15): 943~945
    [1-32] T. Sakamoto, S. Aozasa, T. Kanamori, et al, “High gain and low noise TDFA and 1500nm band employing novel high concentration doping technique”, Proc. of OFC’2000, Postdeadline Paper, PD4
    [1-33] S. Aozasa, T. Sakamoto, T. Kanamori, et al., “Gain-shifted thulium-doped fibre amplifiers employing novel high concentration doping technique”, Electron. Lett., 2000, 36 (5): 418~419
    [1-34] S. Aozasa, H. Masuda, H. Ono, et al., “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42%”, Proc. of OFC’2001, Postdeanline Paper, PD1
    [1-35] M. Tachibana, R. I. Laming, P. R. Morkel, et al., “Erbium-Doped Fiber Amplifier with Flattened Gain Spectrum”, IEEE Photon. Technol. Lett., 1991, 3 (2): 118~120
    [1-36] Y. Sun, J. W. Sulhoff, A. K. Srivastava, et al., “80nm ultra-wideband erbium-doped silica fibre amplifier”, Electron. Lett., 1997, 33 (23): 1965~1967
    [1-37] 宋开,范崇澄,“掺铒光纤放大器的频率响应和瞬态增益”,光学学报,1999, 19 (5): 616~620
    [1-38] A. K. Srivastava, Y. Sun, J. L. Zyskind, et al., “EDFA transient response to channel loss in WDM transmission system”, IEEE Photon. Technol. Lett., 1997, 9 (3):386~388
    [1-39] M. Maeda, “Operations and management of WDM optical networks”, Proc. of OFC’1996, paper FD4
    [1-40] J. L. Zyskind, Y. Sun, A. K. Srivastava, et al., “Fast power transients in optically amplified optical networks”, Proc. of OFC’1996, paper PD31
    [1-41] G. Luo, J. L. Zyskind, J. A. Nagel, et al., “Experimental and theoretical analysis of relaxation-oscillations and spectral hole burning effects in all all-optical gain-clamped EDFAs for WDM networks”, J. Lightwave Technol., 1998, 16 (4): 527~533
    [1-42] A. D. Ellis, R. M. Percival, A. Lord, et al., “Automatic gain control in cascaded erbium doped fibre amplifier systems”, Electron. Lett., 1991, 27 (3): 193~195
    [1-43] Ki-Woon Na, Joo-Tack Choi, Woo-Jin Lee, et al., “A cost-effective gain control using pump modulation for erbium-doped fiber amplifiers”, IEEE Photon. Technol. Lett., 2000, 12 (4): 383~385
    [1-44] Mirosalv Karasek, Alberto Boroni, Lesilie A. Rusch, et al., “Gain stabilization in gain clamped EDFA cascades fed by WDM burst-mode packet traffic”, J. Lightwave Technol., 2000, 18 (3): 308~313
    [1-45] M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop”, Electron. Lett., 1991, 27 (7): 560~561
    [1-46] M. Kobayashi, “Noise figure improvement of optical gain-clamped fibre amplifier by mid-point band reject filter for lasing light”, Electron. Lett., 1999, 35 (6): 486~488
    [1-47] Kyo Inoue, “Gain-clamped fiber amplifier with a short length of preamplification fiber “, IEEE Photon. Technol. Lett., 1999, 11 (9): 1108~1110
    [1-48] T. Subramaniam, M. A. Mahdi, P. Poopalan, et al., “All-optical gain-clamped erbium-doped fiber ring lasing amplifier with laser filtering technique”, IEEE Photon. Technol. Lett., 2001, 13 (8): 785~787
    [1-49] E. Delevaque, T. Georges, J. F. Bayon, et al., “Gain control in erbium-doped fibre amplifier by lasing at 1480nm with photoinduced Bragg gratings written on fibre ends”, Electron. Lett., 1993, 29 (12): 1112~1114
    [1-50] J. F. Massicott, S. D. Willson, R. Wyatt, et al., “1480nm pumped erbium doped fibre amplifier with all optical automatic gain control”, Electron. Lett., 1994, 30 (12): 962~964
    [1-51] S. Y. Ko, M. W. Kim, D. H. Kim, et al., “Gain control in erbium-doped fibre amplifiers by tuning center wavelength of a fibre Bragg grating constituting resonant cavity”, Electron. Lett., 1998, 34 (10): 990~991
    [1-52] Yanhong Xiao, Xiaoming Liu and Jiangde Peng, “A novel compensating light injection configuration for gain-clamped EDFAs”, IEEE Photon. Technol. Lett., 2000, 12 (7): 789~791
    [1-53] Bing Xia, Dominik Pudo and Lawrence R. Chen, “Comparison of the static and dynamic properties of single- and double-pass partially gain-clamped two-stage L-band EDFAs”, IEEE Photon. Technol. Lett., 2003, 15 (4): 519~521
    [1-54] Chia-Chi Wang and Gregory J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber”, IEEE Photon. Technol. Lett., 2000, 12 (5): 483~485
    [1-55] Yongqian Liu and Mark F. Krol, “Transient gain control in EDFAs by dual-cavity optical automatic gain control”, IEEE Photon. Technol. Lett., 1999, 11 (11): 1381~1383
    [1-56] 赵春柳,关柏鸥,董新永等,“新型双波长激光增益控制掺铒光纤放大器”,光学学报,2002, 22 (11): 1331~1335
    [1-57] 赵春柳,关柏鸥,董新永等,“利用光纤光栅对实现双波长增益控制掺铒光纤放大器特性的实验研究”,光学学报,2003, 23 (4): 417~421
    [2-1] A. D. Ellis, R. M. Percival, A. Lord, et al., “Automatic gain control in cascaded erbium doped fibre amplifier systems”, Electron. Lett., 1991, 27 (3): 193~195
    [2-2] Ki-Woon Na, Joo-Taek Choi, Woo-Jin Lee, et al., “A cost-effective gain control using pump modulation for erbium-doped fiber amplifiers”, IEEE Photon. Technol. Lett., 2000, 12 (4): 383~385
    [2-3] M. Zirngibl, “Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop”, Electron. Lett., 1991, 27 (7): 560~561
    [2-4] Miroslav Karasek, Alberto Boroni, Lesilie A. Rusch, et al., “Gain stabilization in gain clamped EDFA cascades fed by WDM burst-mode packet traffic”, J. Lightwave Technol., 2000, 18 (3): 308~313
    [2-5] Kai Song, Malin Premaratne and Richard D. T. Lauder, “An analytical formulation of the transient response of gain-clamped EDFA’s”, IEEE Photon. Technol. Lett., 1999,11 (11): 1378~1380
    [2-6] Dwight H. Richards, Janet L. and Mohamed A. Ali, “A theoretical investigation of dynamic all-optical automatic gain control in multichannel EDFA’s and EDFA cascades”, IEEE J. Select. Topics Quantum Electron., 1997, 3 (4): 1027~1036
    [2-7] Stephen R. Chinn, “Simplified modeling of transients in gain-clamped erbium-doped fiber amplifiers”, J. Lightwave Technol., 1998, 16 (6): 1095~1100
    [2-8] G. Luo, J. L. Zyskind, J. A. Nagel, et al., “Experimental and theoretical analysis of relaxation-oscillations and spectral hole burning effects in all-optical gain-clamped EDFA’s for WDM Networks”, J. Lightwave Technol., 1998, 16 (4): 527~533
    [2-9] Miroslav Karasek and Juan A. Valles, “Analysis of channel addition/removal response in all-optical gain-controlled cascade of erbium-doped fiber amplifiers”, J. Lightwave Technol., 1998, 16 (10): 1795~1803
    [2-10] Qian Yu and Chongcheng Fan, “Simple dynamic model of all-optical gain-clamped erbium-doped fiber amplifiers”, J. Lightwave Technol., 1999, 17 (7): 1166~1171
    [2-11] Alberto Bononi and Lorenzo Barbieri, “Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance”, J. Lightwave Technol., 1999, 17 (7): 1229~1240
    [2-12] Ali Reza Bahrampour and Mahyar Mahjoei, “Theoretical analysis of spectral hole burning and relaxation oscillation in al-optical gain stabilized multichannel erbium-doped fiber amplifier (EDFA)”, J. Lightwave Technol., 2001, 19 (8): 1130~1139
    [2-13] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers”, J. Lightwave Technol., 1991, 9: 271~283
    [2-14] R. Gafsi and M. A. El-Sherif, “Analysis of Induced-Birefringence Effects on Fibre Bragg Gratings”, Opt. Fiber Technol., 2000, N6: 299~323
    [3-1] S. M. Garner and S. Caracci, “Variable Attenuator for large-scale integration”, IEEE Photon. Technol. Lett., 2002, 14 (11): 1560~1562
    [3-2] Qun Li, Amy A. Au, Chien-Hung Lin, et al., “An efficient all-fiber variable optical attenuator via acoustooptic mode coupling”, IEEE Photon. Technol. Lett., 2002, 14 (11): 1563~1565
    [3-3] F. R. Akkari, K. H. Cazzini, and W. Blau, “Thermo-optic mode extinction modulation in polymeric waveguide structures”, J. Non-Cryst. Solids, 1995, 187: 494~497
    [3-4] X. M. Zhang, A. Q. Liu, C. Lu, et al., “MEMS variable optical attenuator using low driving voltage for DWDM systems”, Electron. Lett., 2001, 38 (8): 382~383
    [3-5] Hao Zhang, Yange Liu, Ling Yu, et al., “Novel all-fiber variable optical attenuator based on high birefringence fiber loop mirror”, Proc. of SPIE, 2004, 5279: 456~460
    [3-6] Guanghui Chen, Liying Liu, Hongzhi Jia, et al., “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber”, IEEE Photon. Technol. Lett., 2004, 16 (1): 221~223
    [3-7] Hao-Jan Sheng, Ming-Yue Fu, Tzu-Chiang Chen, et al., “A lateral pressure sensor using a fiber Bragg grating”, IEEE Photon. Technol. Lett., 2004, 16 (4): 1146~1148
    [3-8] Ll. Martinez-Leon, A. Diez, J. L. Cruz, et al., “A frequency-output fiber optic voltage sensor with temperature compensation for power systems”, Opt. Commun., 2003, 102 (3): 210~215
    [3-9] Yong Wook Lee, Ilyong Yoon and Byoungho Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator”, Sensors and Actuators A: Physical, 2004, 112 (2-3): 308~312
    [3-10] 黄勇林,冯德军,许兆文等,“基于全光纤马赫-曾德尔干涉仪的电压传感研究”,传感技术学报,2001, 4: 344~348
    [3-11] Feng Dejun, Kai Guiyun, Huang Yonglin, et al., “Electric voltage tuning of all-fiber Mach-Zehnder interferometer”, Chinese Journal of Lasers, 2002, B11 (4): 281~285
    [3-12] R. C. Gauthier and C. Ross, “Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor”, Appl. Opt., 1997, 36: 6264
    [3-13] D. Marcuse, “Curvature loss formula for optical fibers”, J. Opt. Soc. Am., 1976, 66: 216~220
    [3-14] A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman & Hall, London, 1983
    [3-15] K. Nagano, S. Kawakami and S. Nishida, “Change of the refractive index in an optical fiber due to external forces”, Appl. Opt., 1978, 17: 2080
    [4-1] Yongqian Liu and Mark F. Krol, “Transient gain control in EDFAs by dual-cavity optical automatic gain control”, IEEE Photon. Technol. Lett., 1999, 11 (11): 1381~1383
    [4-2] 赵春柳,关柏鸥,董新永等,“新型双波长激光增益控制掺铒光纤放大器”,光学学报,2002, 22 (11): 1331~1335
    [4-3] 赵春柳,关柏鸥,董新永等,“利用光纤光栅对实现双波长增益控制掺铒光纤放大器特性的实验研究”,光学学报,2003, 23 (4): 417~421
    [4-4] 黄志坚,孙军强,黄德修,“线形腔掺铒光纤激光器输出特性的理论研究”,光学学报,1996, 16 (12): 1671~1675
    [4-5] E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers”, IEEE J. Lightwave Technol., 1989, 7 (5): 835~845
    [4-6] C. R. Giles and D. DiGiovanni, “Spectral dependence of gain and noise in erbium doped fiber amplifiers”, IEEE Photon. Technol. Lett., 1990, 2 (3): 797~799
    [4-7] P. Franco, M. Midrio, A. Tozzato, et al., “Characterization and optimization criteria for filterless erbium-doped fiber lasers”, J. Opt. Soc. Am., 1994, 11 (6): 1090~1097
    [4-8] 赵春柳,马宁,袁树忠等,“一种新颖的波长可调谐锁模光纤环形腔激光器”,光学学报,2002, 22 (4): 509~511
    [4-9] 赵春柳,马宁,董新永等,“利用啁啾光纤光栅大色散特性实现波长可调谐的锁模光纤激光器”,光学学报,2002, 22 (7): 822~824
    [4-10] Belloui Bouzid, Borhanuddin Mohd. Ali and Mohamad Khazani Abdullah, “A high-gain EDFA design using double-pass amplification with a double-pass filter”, IEEE Photon. Technol. Lett., 2003, 15 (9): 1195~1197
    [4-11] Juhan Lee, Uh-Chan Ryu, Seong Joon Ahn, et al., “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section”, IEEE Photon. Technol. Lett., 1999, 11(1): 42~44
    [4-12] Seung Kwan Kim, Moo Jung Chu and Jong Hyun Lee, “L-band multi-wavelength erbium-doped fiber laser”, OFC’2001, 2001, paper WDD: 19-1~19-3
    [4-13] J. M. Oh, H. B. Choi, D. Lee, “Incorporation of a fiber Bragg grating to improve the efficiency of a 1580-nm-band tunable fiber ring laser”, Opt. Lett., 2002, 27(8): 589~591
    [4-14] Shih Hsu, Tsair-Chun Liang, Yung-Kuang Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier”, Opt.Commun., 2001, 196: 149~157
    [4-15] M. A. Mahdi, F. R. Mahamd Adikan, P. Poopalan, et al., “Long-wavelength EDFA gain enhancement through 1550nm band signal injection”, Opt.Commun.,2000, 176: 125~129
    [4-16] M. A. Mahdi, H. Ahmad, “Low-noise and high-gain L-band EDFA utilising a novel self-generated signal-seeding technique”, Opt.Commun ,2001, 195: 241~248
    [4-17] M. A. Mahdi, F. R. Mahamd Adikan, P. Poopalan, et al., “Gain-clamped fibre amplifier using an ASE end reflector”, Opt.Commun., 2000, 177: 195~199
    [4-18] Yang Shiquan, Zhao Chunliu, Meng Hongyun, et al., “Wavelength tunable erbium-doped fiber ring laser operating in L-band”, Opt. and Quant Electron.,2003, 35: 69~73
    [4-19] Bumki Min, Hosung Yoon, Won Jae Lee, et al., “Coupled structure for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection”, IEEE Photon. Technol. Lett., 2000, 12 (5): 480~482
    [4-20] Uri Ghera, Naim Konforti and Moshe Tur, “Wavelength tunability in a Nd-doped fiber laser with an intracavity polarizer”, IEEE Photon. Technol. Lett., 1992, 4 (1): 4~6
    [4-21] Q. Mao and J. W. Y. Lit, “Widely tunable L-band erbium-doped fiber laser with fiber Bragg gratings based on optical bistability”, Appl. Opt., 2003, 82 (9): 1335~1337
    [4-22] Y. W. Song, S. A. Havstad, D. Starodubov, et al., “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG”, IEEE Photon. Technol. Lett., 2001, 13 (11): 1167~1169
    [4-23] B. O. Gaun, H. Y. Tam, H. L. W. Chan, et al., “Temperature-tuned erbium-doped fiber ring laser with polymer-coated fiber grating”, Opt.Commun., 2002, 202: 331~334
    [4-24] C. C. Lee, “Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback”, Opt. Lett., 2000, 25 (24): 1774~1776
    [4-25] Y. Luo, G. D. Cao, J. X. Geng, et al., “Longitudinal mode characteristics of an external-cavity semiconductor laser with fiber Bragg gratings”, Acta Optica Sinica, 2000, 20 (3): 357~362
    [4-26] J. M. Oh, H. B. Choi, D. Lee, et al., “Efficient tunable fiber ring laser for 1580nm band with a fiber Bragg grating”, Proc. of OFC’2001, 2001, paper WA6
    [4-27] L. Ding, G. Y. Kai, Y. J. Xu, et al., “A four-wavelength all-fibre laser for wavelength division multiplexing system”, Chin. Phys. Lett., 2001, 18 (3): 376~378
    [4-28] Z. X. Qin, Q. K. Zeng, Y. Xiang, et al., “Grating wavelength shifter with a broad-range tenability by using a beam of uniform strength”, Acta Optica Sinica, 2001, 21 (12): 1421~1425
    [4-29] X. P. Dong, S. Li, K. S. Chiang, et al., “Multiwavelength erbium-doped fiber laser based on a high-birefringence fibre loop mirror”, Electron. Lett., 2000, 36 (19): 1609~1610
    [4-30] A. Yariv 著,刘松豪译,量子电子学,科学出版社,1983
    [4-31] 周炳琨等,激光原理,国防工业出版社,1995 [4-32] E. Desurvire, J. L. Zyskind and Jr. Simpson, “Spectral gain hole-burning at 1.53μm in erbium-doped fiber amplifiers”, IEEE Photon. Technol. Lett., 1990, 2 (4): 246~248 [4-33] Xuewen Shu, Shan Jiang and Dexiu Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application”, IEEE Photon. Technol. Lett., 2000, 12 (8): 980~982 [4-34] Jong Chow, Graham Town, Ben Eggleton, et al., “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters”, IEEE Photon. Technol. Lett., 1996, 8 (1): 60~62 [4-35] Yamashita S., Hotate K., et al., “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen”, Electron. Lett., 1996, 32 (14): 1298~1299
    [4-36] H. L. An, X. Z. Lin, E. Y. B. Pun, et al., “Multi-wavelength operation of erbium-doped fiber ring laser using a dual-pass Mach-Zenhder comb filter”, Opt. Commun., 1999, 169: 159~165
    [4-37] Namkyoo Park and Paul F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser”, IEEE Photon. Technol. Lett., 1996, 8 (11): 1459~1461
    [4-38] A. Bellemare, M. Karasek, et al., “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid”, J. Lightwave Technol., 2000, 18 (6): 825~831
    [4-39] Kejiang Zhou, et al., “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback”, Opt. Lett., 2003, 28 (11): 893~895
    [4-40] O. Graydon, W. H. Loh, R. I. Laming, et al., “Triple-frequency operation of an Er-Doped twin-core fiber loop laser”, IEEE Photon. Technol. Lett., 1996, 8 (1): 63~65
    [4-41] G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber”, IEEE Photon. Technol. Lett., 2002, 14 (5): 606~608
    [4-42] Y. Yen and R. Urlich, “Birefringence optical filters in single-mode fiber”, Opt. Lett., 1981, 6: 278~280
    [5-1] 杨祥林,光放大器及其应用,电子工业出版社,2000,6 月
    [5-2] Buxens A., Poulsen H. N., Clausen A. T., et al., “Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section”, Electron. Lett., 2000, 36 (9): 821~823
    [5-3] Mori A., Sakamoto T., Shikano K., et al., “Gain flattened Er3+-doped telluride fibre amplifier for WDM signals in the 1581-1616nm wavelength region”, Electron. Lett., 2000, 36 (7): 621~622
    [5-4] XIE Zeng-hua, CHEN Gen-xiang, LI Tang-jun, et al., “EDFA gain flattening equalizer based on long period fiber gratings”, Chinese J. of Lasers, 2001, 28 (6): 553~555
    [5-5] An H. L., Lin X. Z., Pun E. Y. B., et al., “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter”, Opt. Commun., 1999, 169: 159~165
    [5-6] Tetsuya Kawanishi, Kenji Kogo, Satoshi Oikawa, et al., “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators”, Opt. Commun., 2001, 195: 399~404
    [5-7] Hans-Martin Keller, Suresh Pereira and Sipe J. E., “Grating enhanced all-optical switching in a Mach-Zehnder interferometer”, Opt. Commun., 1999, 170: 35~40
    [5-8] Q. Mao and J. W. Y. Lit, “ Amplification enhancement of L-band erbium-doped fiber amplifiers by reflection scheme”, Opt. Commun., 2002, 201: 61~69
    [5-9] H. Ono, M. Yamada, T. Kanamori, et al., “1.58μm band gain-flattened erbium-doped fiber amplifier for WDM transmission systems”, J. Lightwave Technol., 1999, 17: 490~496
    [5-10] S. Yang, C. Zhao, H. Meng, et al., “Wavelength tunable erbium-doped fiber ring laser operating in L-band”, Opt. and Quant. Electron., 2003, 35: 69~73
    [5-11] J. Lee, U. Ryu, S. J. Ahn, et al., “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section”, IEEE Photon. Technol. Lett., 1999, 11 (1): 42~44
    [5-12] M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE”, IEEE Photon. Technol. Lett., 2001, 13 (10): 1067~1069
    [5-13] S. W. Harun, P. Poopalan and H. Ahmad, “Gain enhancement in L-band EDFA through a double-pass technique”, IEEE Photon. Technol. Lett., 2002, 14 (3): 296~297
    [5-14] J. Nilsson, S. Y. Yun, S. T. Hwang, et al., “Long-wavelength erbium-doped fiber amplifier gain enhanced by ASE end-reflectors”, IEEE Photon. Technol. Lett., 1998, 10 (11): 1551~1553
    [5-15] H. Meng, Y. Liu, W. Gao, et al., “Reflection L-band erbium-doped fiber-amplifier-based on a fiber-loop mirror”, Microwave and Opt. Technol. Lett., 2003, 36 (6): 501~503
    [5-16] M. Cai, X. Liu, J. Cui, et al., “Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier”, IEEE Photon. Technol. Lett., 1997, 9: 1093~1095
    [5-17] X. P. Dong, S. Li, K. S. Chiang, et al., “Multiwavelength erbium-doped fiber laser based on a high-birefringence fibre loop mirror”, Electron. Lett., 2000, 36 (19): 1609~1610
    [6-1] M. Yamada, H. Ono and Y. Ohishi, “Gain-flattened broadband Er3+-doped silica fibre amplifier with low noise characteristics”, Electron. Lett., 1998, 34 (18): 1747~1748
    [6-2] M. Karasek and M. Menif, “Serial topology of wide-band Erbium-Doped fiber amplifier for WDM applications”, IEEE Photon. Technol., 2001, 13 (9): 939~941
    [6-3] S. T. Hwang, K. W. Song, S. T. Kim, et al., “The novel structure of C plus L-band erbium-doped fiber amplifier”, Proc. 27th Eur. Conf. on Opt. Comm., 2001, We.p.11: 400~401
    [6-4] M. A. Mahdi, F. R. M. Adikan, P. Poolan, et al., “Simultaneous bi-directional of C-band and L-band erbium doped fiber amplifier”, Optical Fiber Communication Conference, 7~10 March 2000, 1: 8 ~11
    [6-5] M. Yamada, H. Ono, T. Kanamori et al., “Broadband and gain-flattened amplifier composed of a 1.55μm-band Er3+-doped fibre amplifier in a parallel configuration”, Electron. Lett., 1997, 33 (8): 710~711
    [6-6] Y. Sun, J. W. Sulhoff, A. K. Srivastava et al., “80nm ultra-wideband erbium-doped fiber amplifier”, Electron. Lett., 1997, 33 (23): 1965~1967
    [6-7] Shiquan Yang, Chunliu Zhao, Hongyun Meng et al., “Wavelength tunable erbium-doped fiber ring laser operating in L-band”, Opt. and Quant. Electron., 2003, 35: 69~73
    [6-8] Bumki Min, Hosung Yoon, Won Jae Lee et al., “Coupled structure for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection”, IEEE Photon. Technol., 2000, 12 (5): 480~482
    [6-9] Berendt M. O., Arellana W. A., Faria I de, et al., “Extended band erbium amplified spontaneous emission source”, Lasers and Electro-Optics Europe, Conference Digest, 2000, 1
    [6-10] Espindola R. P., Ales G., Park J., et al., “80nm spectrally flattened, high power erbium amplified spontaneous emission fibre source”, Electron. Lett., 2000, 36 (15): 1263~1265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700