基于喇曼组合放大的长距离光纤传输系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于具有与光纤系统完全匹配的独特优点,光纤激光器可以方便地应用于各种光纤通信和光纤传感系统,光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势,受到了来自电子信息、工业加工和国防科技等领域的高度关注。本文研究了基于喇曼组合放大的带光纤光栅光纤喇曼激光器长距离传输系统,从理论和实验两方面分析了此系统在光纤通信中的应用。具体完成的工作如下。
     首先,总结了光纤中的非线性效应对光纤通信的影响及其在光纤通信中的应用,研究了光纤中受激布里渊散射的阈值特性,并进行了两种G.652B和一种G.652D单模光纤的受激布里渊散射的阈值的测量实验,从理论上分析了光纤SBS阈值估算公式,理论估算值与实验测量值吻合很好。
     然后,从喇曼散射的原理出发,对喇曼放大的原理及其应用进行了分析,提出了基于喇曼组合放大的带光纤光栅喇曼激光器光纤长距离传输系统,即利用两级泵浦光产生的喇曼效应,对信号光进行喇曼组合放大,也就是在光纤光栅对形成的谐振腔产生的激射光对信号光进行喇曼放大的基础上,利用抽运泵浦光再对信号光进行喇曼放大,比仅依靠激射光的喇曼放大可以获得更高的喇曼增益以实现长距离的带增益钳制的光纤传输,建立了此系统的理论模型,并采用开关增益法进行了光纤喇曼增益系数的测量实验。
     最后,分析了喇曼放大器的性能参数,实验搭建了基于喇曼组合放大的长距离光纤传输系统,测量了该系统的开关增益、自发辐射噪声、噪声指数和在光纤长度上的光功率分布等,实现了国际上已报道的此类系统的最长准无损光纤传输距离(125km)。对系统的增益、自发辐射噪声及光功率分布实验结果与理论模拟进行了对比,并通过系统的理论模型分析了泵浦方式、光纤长度对系统的增益钳制效果、噪声性能和非线性损伤的影响。结果表明该系统作为一个长距离光纤传输系统,其增益钳制效果对克服密集波分复用系统中信号的失真和通道串扰的影响有着很好的应用前景。
In recent years, because of being perfectly matched with the optical fiber system, fiber lasers can be conveniently applied to a variety of fiber-optic communications and optical fiber sensing systems. The broad application prospects and enormous technological advantages of the fiber laser technology have shown in the high-speed large-capacity WDM optical fiber communication systems, high-precision optical sensor technology and high-power laser, etc. which have attracted attention from the research and development technology from the field of electronic, industrial processing and national defense science. In this paper, the long-distance transmission system of Raman fiber laser with FBG based on the Raman hybrid amplification has been studied, and its applications in optical fiber communication have been analyzed from both theoretical and experimental. The main work can be summarized as follows:
     Firstly, the nonlinear effect and applications in optical fiber communications have been summarized; the characteristics of Stimulated Brillouin Scattering (SBS) threshold have been studied. The SBS thresholds of the single mode fiber of two G.652B and one G.652D are measured, the estimation formula of the SBS threshold in optical fiber has been analyzed theoretically, and the theoretical estimates and experimental measurements are in good agreement.
     Secondly, the principle of the Raman amplification and its application are analyzed from the theory of Raman scattering. The long-distance transmission system of Raman fiber laser with FBGs based on the Raman hybrid amplification has been constituted, which is by the use of Raman Effect generated by two pumps, and the signal light is amplified on Raman hybrid amplification. By using fiber Bragg grating to structure resonant cavity, the lasing light is generated as a secondary pump for the secondary Raman amplification to the signal light, to obtain a higher Raman gain to achieve long-distance optical fiber transmission with no loss of gain-clamped. A theoretical model of this system has been set up. The measurement experiment of the fiber Raman gain coefficient has been carried out by gain switching method. The measuring principle has been analyzed, and the experimental data and the literature value have been compared.
     Finally, the Raman amplifier performance parameters are analyzed. The experiment of the long-distance transmission systems of Raman fiber laser with FBGs based on the Raman hybrid amplification has been built Experimently. The system’s switching gain, ASE noise, noise figure and the signal power’s distribution have been measured, and the longest non-loss optical fiber transmission distance (125km) to the best of our knowledge has been achieved.The effects of gain-clamped from the theoretical model system have been studied, and the effects of the way pumped and the fiber length in the dynamic range, noise performance and the impact of non-linear damage are mainly discussed. The results show that the system as an ultra-long fiber transmission system, the effects of gain-clamped in DWDM system to overcome the signal distortion and channel crosstalk has a very good application prospects.
引文
[1]杨祥林.光放大器及其应用.北京:电子工业出版社,2000
    [2] K. Ueda, A. Liu. Future of high-power fiber lasers. Laser Physics, 1998, 8(3):774-781
    [3]叶青.光纤激光器.激光与光电子学进展,2002,39(6):40-41
    [4]张宝富,谭笑,蒋慧娟.光纤通信系统原理与实验教程.北京:电子工业出版社,2003,43-44
    [5]原荣.光纤通信.北京:电子工业出版社,2002,290-330
    [6]常军,王青圃,丁双红,等.掺稀土光纤放大器研究进展.光通信研究,2004,6(126):60-66
    [7]丁双红,张行愚,常军,等.S波段掺铥光纤放大器的研究进展.光通信研究,2005,3(129): 53-57
    [8]黄章勇.光纤通信用光电子器件和组件.北京:北京邮电大学出版社,2001
    [9]杨青.光纤激光器的发展现状.光电子技术与信息,2002,15(5):13-18
    [10] E. Yablovovitvch. Inhibited sponlmeous emission in solid-state physics and electronics. Phys Rev.Lett., 1987, 58:2059-2062
    [11] S. Johv. Strong localization of photons in certain disordered dieleclric superlattices. Phys Rev.Lett., 1987, 58(3):2486-2489
    [12] T. P. Hansenp, J. Broeng. Highly birefringence index-guiding photonic crystal fibers. IEEE Photon.Technol.Lett., 2001, 13(6):588-590
    [13] P. Russell. Holey fiber concept spawns optical-fiber renais-sance. Laser Focus World, 2002, 38(12):72-82
    [14] K. O. Hill, D. C. Johnson. CW Brillouin laser. Appl. Phys. Lett., 1976, 28(10):608-609
    [15]董天临.光纤通信与光纤信息网.北京:清华大学出版社,2005
    [16] A. R. Chraplyvy. Limitation on lightwave communication imposed by optical fiber nonlinearities. J. Lightwave Technol, 1990, 8:1548-1557
    [17]宋开,李林,叶培大.单模光纤的四波混频,光子学报,1995,3:273-277
    [18] L.G.卡佐夫斯基,S.贝勒迪多,A.威尔勒.光纤通信系统.北京,人民邮电出版社,1999
    [19] G. P. Agrawal.非线性光纤光学原理及应用.北京:电子工业出版社,2002
    [20]程光煦.拉曼布里渊散射原理及其应用.北京:科学出版社,2001
    [21] D. Cotter. Stimulated Brillouin Scattering in Monomode Optical Fiber. J. Opt. Commun., 1983,4(1):10-19
    [22] R. H. Stolen. Nonlinearity in Fiber Transmission. Proceedings of the IEEE, 1980, 68(10):1232-1236
    [23] A. Yeniay, J. M. Delavaux, J. Toulouse. Spontaneous and stimulated Brillouin scattering gain Spectra in optical fibers. Journal of Lightwave Technology. 2002, 20(8):1425-1432
    [24]范琦康,吴存恺等.非线性光学.江苏:科学技术出版社.1989,10
    [25] X. P. Mao, R. W. Tkach. Stimulated Brillouin threshold dependence on fiber type and uniformity. IEEE Photon. Technol. Lett., 1992, 4(1):66-69
    [26]林如俭.关于石英单模光纤受激布里渊散射门限功率的讨论.上海大学学报(自然科学学版),1999,5(3):194-198
    [27]陈永诗,程淑玲.单模光纤有效面积及测试方法.光通信研究,2001,10(6):33-37
    [28]沈一春,宋牟平,章献民,陈抗生.单模光纤中受激布里渊散射阈值研究.中国激光,2005,4(32):497-500
    [29]王辉,吕月兰,吕志伟.光纤中受激布里渊散射的应用及研究进展.传感器技术,2005,24(4):8-10
    [30]王辉,朱为.光CATV系统中提高受激布里渊阈值功率方法的研究.东南大学学报(自然科学版),2001,31(4):19-21
    [31] A. Smekal. The quantum theory of dispersion. Naturwiss, 1923, 11:873
    [32] C. V. Raman, K. S. Krishman. A New Type of Secondary Radiation. Nature, 1928, 121:501
    [33] G. Landsberg, L. Mandelstam. A novel effect of light scattering in crystals. Naturwiss, 1928, 16:557-772
    [34] J. Cabannes. New optical phenomenon: pulsations produced when anisotropic molecules in rotation and vibration diffuse visible and ultra-violet light. Compt. Rend, 1928, 186:1201
    [35] Y. Rocard. New diffused radiations. Compt. Rend, 1928, 186:1109
    [36]石顺祥,陈国夫,赵卫,刘继芳.非线性光学.西安电子科技大学出版社,2003
    [37]刘德明,向清,黄德修.光纤光学.北京:国防上业出版社,1995
    [38]韩群.宽带光纤拉曼放大器的理论与实验研究:[博士论文].天津:天津大学,2006
    [39] J. Bromage. Raman amplification for fiber communication systems. J. Lightwave Technol., 2004, 22(1):79-93
    [40] R. H. Stolen, E. P. Ippen. Raman gain in glass optical waveguides. Appl. Phys. Lett., 1973, 22(6):276-278
    [41] F. L. Galeener, M.W. Stringfellow. Comparison of the neutron, Raman, and infrared vibrationalspectra of vitreous SiO2, GeO2 and BeF2. Phys. Rev. B., 1983, 27:1052
    [42]陈晴川.拉曼光纤激光器的设计和实验研究:[硕士学位论文].武汉:华中科技大学,2004
    [43]黄尚廉等.分布式光纤温度传感器系统的研究.仪器仪表学报.1991,12(4):359-364
    [44]张在宣等.激光拉曼型分布式光纤温度传感器系统.光学学报.1995,16(11):1585-1589
    [45]周胜军等.分布式光纤温度传感器的原理和应用.半导体光电.1998,19(5):287-290
    [46] H. S. Seo. Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core. Optics Communications, 2000, 181:145-151
    [47] J. D. Ania-Castanon. Quasi-lossless transmission using second-order Raman amplification and fiber Bragg gratings. Opt. Exp., 2004, 12:4372-4377
    [48] M. Karasek, J. Kanka, L. Bohac, D. Krcmarik, J. Radil, and J. Vojtech. Surviving-channel-power transients in second-order pumped lumped Raman fiber amplifier: experimentation and modeling. IEEE J. Lightwave Technol., 2007, 25:664-672
    [49] S. A. Babin, V. Karalekas , P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Casta?ón, and S. K. Turitsyn. Experimental demonstration of mode structure in ultralong Raman fiber lasers. Opt. Lett., 2007, 32:1135-1137
    [50] V. Karalekas, J. D. Ania-Casta?ón, P. Harper, S. A. Babin, E. V. Podivilov and S. K. Turitsyn. Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers. Opt. Exp., 2007, 15:16690-16695
    [51] S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Casta?ón, and S. K. Turitsyn. Turbulent broadening of optical spectra in ultralong Raman fiber lasers. Phys. Rev. A., 2008, 77:033803
    [52] J. Subias, J. Pelayo, C. Heras, et al. Measurement of the effective area of non-linear power trasfer in single-mode fibers due to stimulated Raman scattering. Optics Communication, 2000, 176(1):387-392
    [53] S. T. Davey, D. L. Williams, B. J. Ainslie, et al. Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers. IEEE Proceedings Pt J, 1989, 136(6):301-306
    [54] Coring Incorporated and Hewlett Packard Incorporated. Question for Clarification of OSNR Definition. TU-T Experts Meeting, October, 1999
    [55] Agilent Optical Specturm Analyzer Amplifier Test Application Product Note,86140
    [56] C. R. S. Fludger, V. Handerek and J. R. Mears. Pump to signal RIN transfer in Raman fiber amplifiesr. Eleetorn. Lett. 2001, 37(1):15-17
    [57] S. R. Chinn. Temporal observation and diagnostic use of double Rayleigh scattering indistributed Raman amplifier. IEEE Photon. Technol. Lett., 1999, 11(12):1632-1634
    [58] S. A. E, Lewis, S. V, Chernikov, J. R. Taylor. Charactization of double Rayleigh scattering noise in Raman amplifier. IEEE Photon. Technol. Lett., 2000, 12(5):528-530
    [59]蒙红云.超宽带放大器理论和实验研究:[博士学位论文].南京:南开大学,2004
    [60]丁镭.光纤激光器及其在WDM通信系统中的应用研究:[博士学位论文].南京:南开大学,2001
    [61] M. Zirngibl. Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop. Electron. Lett., 1991, 27: 560-561
    [62] E. Delevaque, T. George, J. F. Bayon. Gain control in erbiumdoped fibre amplifiers by lasing at 1480nm with photoinduced Bragg gratingswritten on fibre ends. Electron. Lett., 1993, 29: 1112-1113
    [63] Y. Sun, J. W. Sulhoff, A. K. Srivastava, et al. 80nm ultra-wideband erbium-doped silica fibre amplifier. Electron. Lett., 1997, 33(23):1965-1967
    [64] C. Headley, and G. P. Agrawal。Raman Amplification in Fiber Optical Communication Systems. Elsevier Academic Press, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700