共面波导馈电的多陷波超宽带天线的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(Ultra-wideband,UWB)无线通信技术以其高速率、低误码率等优异特性在高速无线通信、雷达跟踪、测距、精确定位制导等领域得到了迅猛的发展,已经成为下一代短距离、高速率商用无线通信系统的研究热点。而天线作为无线通信系统的射频前端,其性能将直接影响通信的品质。因此,对于UWB无线通信系统而言,UWB天线的研究具有极其重要的现实意义和应用价值。
     为了避免UWB无线通信系统与频段范围内的其他窄带系统信号(如5.15GHz-5.825GHz的无线局域网(WLAN)、3.3GHz-3.8GHz的全球微波互联接入系统(WiMAX)等)产生相互干扰,需要使UWB天线在这些潜在的干扰频段内产生阻断,即具有陷波特性。目前,比较常见的产生陷波特性的方法有嵌入槽孔、加载结构、嵌入枝节等,但是这些方法大多只能在相对狭窄的范围内产生陷波特性,很难实现对种类繁多的潜在干扰信号的抑制,进而难以满足现代UWB通信的要求。
     针对UWB无线通信技术研究工作中这一迫切要求,本论文对具有多个陷波特性的简单紧凑的小型UWB天线开展了以下研究工作:
     1.根据UWB无线通信系统对天线的设计参数要求,论文开展了UWB天线的研究设计工作。首先,系统地分析了共面波导馈电的结构与工作机理,得到了共面波导结构的设计公式,在此基础上设计了一种宽带的共面波导馈电微带天线,同时验证了基于共面波导馈电设计宽带天线的有效性。然后,使用共面波导馈电结构,提出了一种共面波导馈电的叉形UWB天线设计方法,利用此方法设计出的天线具有较宽的相对带宽、稳定的增益和较好的全向辐射特性。
     2.针对UWB频段内潜在干扰覆盖范围较宽的问题,论文开展了具有较宽陷波可调范围的单陷波UWB天线的研究设计工作。首先,使用微带线网络分析理论对嵌入槽孔结构、嵌入缺陷地结构及嵌入枝节结构进行研究,在得出各自谐振条件并解释实现陷波原理的基础上,分别对其加以改进。然后,将改进后的结构分别集成到设计出的共面波导馈电的叉形UWB天线中,得到了一系列具有较宽陷波可调范围的单陷波UWB天线。同时,提出了在整个UWB频段内实现陷波功能的单陷波微带UWB天线的具体设计方法。
     3.针对UWB频段内多种潜在干扰的问题,论文在上述研究基础上分别开展了具有宽阻带陷波、双陷波、多陷波特性的UWB的研究设计工作。首先,使用缺陷地和L形槽孔的复合结构来完成陷波频段扩展的UWB天线的研究设计,证实了两个技术的复合可以有效地拓宽陷波阻带带宽。然后,分别使用哑铃形缺陷地和十字形枝节谐振结构、三阶开路枝节结构和哑铃形缺陷地结构完成了双陷波及三陷波UWB天线的设计,同时对多陷波生成技术的有效性和可行性进行了验证。这两种天线均具有良好的陷波特性,各个陷波频率的调节相对独立且具有一定的可调范围,可以很好地抑制WLAN、WiMAX、RFID及C/X波段信号的潜在干扰。
Ultra wideband (UWB) wireless communication technology has attracted considerableattention in the field of short-distance wireless communication systems for next generationsdue to its high transmission speed and low bit error rate (BER), which has been extensivelyutilized and further developed in many significant domains, such as high-speedcommunication, radar tracking, distance measuring, and precision positioning and guiding.On the other hand, antenna has a decisive role in the wireless communication systems; itsproperty influences directly the performance of the whole wireless communication systems.Therefore, research on UWB antennas is definitely of great realistic significance and value ofapplication.
     In order to effectively mitigate the undesirable interferences generated from othernarrow-band systems within the range of the bandwidth of UWB wireless communicationsystems (like wireless local area networks (WLAN)(5.15-5.825GHz) and WorldwideInteroperability for Microwave Access (WiMAX)(3.3-3.8GHz)), UWB antennas shouldentail band-notch property. Recently, some of the most popular ways involved in band-notchgeneration include embedding slot structure, load structure, and embedding stub structure, etc.,which, however, are seriously restricted to realizing the performance within only a relativelynarrow band-range, and consequently cannot satisfy the requirement of UWB wirelesscommunication systems.
     In allusion to the problems mentioned above, this thesis conducts profound researchabout simple and compact small-sized UWB antenna with multiple band-notch property. Themain contributions are as follows:
     1. This thesis puts the highlight on the development and designing of the UWB antennasconforming to series of parameter measurements. Firstly, the structure and workingmechanism of Coplanar Waveguide fed (CPW-fed) system are systematically analyzed, andon the basis of giving the relevant formulas for designing CPW-fed structures, this thesispresents a new type of wideband CPW-fed micro-strip antenna, and verify the feasibility ofthe idea to design a wideband antenna using CPW-fed theory. Then, based on theparameter-designing index, it proposes a designing method for CPW-fed fork-shaped UWB antenna, which can provide wide relative bandwidth, robust gain and excellentomni-directional radiation property.
     2. In allusion to the problem of a wide coverage of interfering signal on the spectrum ofUWB signals, this thesis presents a designing method, which enables UWB antennas withsingle band-notch property to operate among the full band-range. To begin with, by the use ofmicro-strip network analysis theory, this thesis conducts deep research into three differentband-notch structures, i.e. embedding slot structure, embedding defected ground structure,and embedding stub structure. Then, it presents a novel UWB antenna based on resonanceconditions of those three structures respectively, and gives out a specific designing method onsingle band-notch microtrip UWB antennas, which can support the whole-range singleband-notch on the spectrum of UWB signals.
     3. This thesis explores the means of designing UWB antennas with dual band-notch andmulti band-notch properties respectively to the question of various underlying interference inUWB frequency range. Firstly, the research begins with designing of UWB antennas, which iscarried out by combing the defected ground structure and L-shaped slot structure with spreadband-notch property. Results show the combination can spread band-notch of UWB antennas.Secondly, the thesis proposes two methods to design the UWB antennas with dual band-notchand triple band-notch property respectively. One is combining the dumbbell-shaped defectedground structure and cross-shaped stub resonance structure, and the other is combing the thirdorder open circuit structure and the dumbbell-shaped defected ground structure. Theeffectiveness and feasibility of the multi band-notch generation technology also have beenverified in this paper. The results show that these antennas possess improved band-notchproperty with each notched bandwidth relatively independent and more flexible-adjusted, andadvanced capabilities of mitigating the interference from WLAN, WiMAX, RFID and C/Xwave-band systems.
引文
[1] Powell J, Chandrakasan A. Differential and single ended elliptical antennas for3.1-10.6GHz ultra wideband communication[C].IEEE Antennas and PropagationSociety International Symposium.California: The Institute of Electrical and ElectronicsEngineers,2004:2935-2938.
    [2]顾笑也.超宽带无线通信技术的发展[J].中国新通信.2013(5):47-48.
    [3]杨志红,周娟.超宽带无线通信技术[J].科技信息.2009(9):52-62.
    [4] Fowler C, Entzminger J, Corum J. Assessment of ultra-wideband (UWB) technology[J].Aerospace and Electronic Systems Magazine, IEEE.1990,5(11):45-49.
    [5] FCC02-48, First Report and Order in the Matter of Revision of Part15of theCommission’s Rules Regarding Ultra-Wideband Transmission Systems[S]. Washington,D.C.:Federal Communications Commission,2002.
    [6] FCC02-48, New Public Safety Applications and Broadband Internet Access AmongUses Envisioned by FCC Authorization of Ultra-Wideband Technology[S]. Washington,D.C.:Federal Communications Commission,2002.
    [7]邢茂柱.超宽带无线通信技术发展浅析[J].科技与企业.2013(5):105-106.
    [8] Siriwongpairat W P, Olfat M, Liu K J R. Performance Analysis and ComparisonofTime-Hopping and Direct-Sequence UWB-MIMO Systems[J]. EURASIP Journal onApplied Signal Processing.2005(1):328-345.
    [9] Mccorkle J. A tutorial on ultrawideband technology[R]. U.S.: IEEE P802.15,2000.
    [10]魏磊磊,熊建设.超宽带无线通信[J].微计算机信息.2010(26):58-60.
    [11]赵丽丽.浅谈超宽带无线通信技术的发展[J].数字技术与应用.2011(3):31-31.
    [12]刘翔.超宽带无线通信相关技术的研究[J].科技创新导报.2009(5):1-3.
    [13]孟琰.超宽带无线通信技术发展浅析[J].科学之友.2012(6):50-54.
    [14]杨雷,王丹.超宽带无线通信系统关键技术及应用[J].科技创新导报.2011(22):36-40.
    [15]杨志红,周娟.超宽带无线通信技术[J].科技信息.2009(09):58-61.
    [16]徐征.UWB超宽带无线通信技术[J].中国电力教育.2006(3):77-80.
    [17]楚政,谢飞.超宽带无线通信技术的发展[J].电信科学.2007(11):23-26.
    [18]魏为民,唐振军. UWB超宽带无线通信技术研究[J].计算机工程与设计.2008(11):44-46.
    [19]王一强,孙罡,侯祥博. UWB超宽带技术研究及应用[J].通信技术.2009(03):66-70.
    [20] Rumsey V. Frequency independent antennas[J]. IRE International Convention Record.1957:114-118.
    [21] Dyson J. The equiangular spiral antenna[J]. IRE Transactions on Antennas andPropagation.1959,7(2):181-187.
    [22] Gibson P J. The Vivaldi Aerial[R]. Microwave Conference,1979.9thEuropean.Brighton, UK:1979:101-105.
    [23] Suh Y H, Chang K. A high-efficiency dual-frequency rectenna for2.45-and5.8-GHzwireless power transmission[J]. IEEE Transactions on Microwave Theory andTechniques.2002,50(7):1784-1789.
    [24] Ammann M J, Doyle L E. A Loaded Inverted-F Antenna for Mobile Handset[J].Microwave and Optical Technology Letters.2001,28(4):226-228.
    [25] Suh S Y, Stutzman W L, Davis W A. A new ultrawideband printed monopole antenna:the planar inverted cone antenna (PICA)[J]. IEEE Transactions on Antennas andPropagation.2004,52(5):1361-1364.
    [26] Tung H, Wong K. A shorted microstrip antenna for2.4/5.2GHz dual-band operation[J].Microwave and Optical Technology Letters.2001,30(6):401-402.
    [27] Soras C, Karaboikis M, Tsachtsiris G, et al. Analysis and design of an inverted-F antennaprinted on a PCMCIA card for the2.4GHz ISM band[J]. IEEE Antennas andPropagation Magazine.2002,44(1):37-44.
    [28] Ogawa K, Iwai H, Koyanagi Y. Balance-fed planar built-in antenna[J]. ElectronicsLetters.2001,37(8):476-478.
    [29] Ghosh I S, Hilgers A, Schlenker T, et al. Ceramic microwave antennas for mobileapplications[J]. Journal of the European Ceramic Society.2001,21(15):2621-2628.
    [30] Lee E, Hall P S, Gardner P. Compact wideband planar monopole antenna[J]. Electronicsletters.1999,35(25):2157-2158.
    [31] Ammann M J. Control of the impedance bandwidth of wideband planar monopoleantennas using a beveling technique[J]. Microwave and Optical Technology Letters.2001,30(4):229-232.
    [32] Liu Z D, Hall P S. Dual-band antenna for hand held portable telephones[J]. ElectronicsLetters.1996,32(7):609-610.
    [33] Zi D L, Hall P S, Wake D. Dual-frequency planar inverted-F antenna[J]. IEEETransactions on Antennas and Propagation.1997,45(10):1451-1458.
    [34] Young-Ho S, Kai C. Low cost microstrip-fed dual frequency printed dipole antenna forwireless communications[J]. Electronics Letters.2000,36(14):1177-1179.
    [35] Yang H D. Miniaturized printed wire antenna for wireless communications[J]. IEEEAntennas and Wireless Propagation Letters.2005,4:358-361.
    [36] Su C M, Wong K L. Narrow flat-plate antenna for2.4GHz WLAN operation[J].Electronics Letters.2003,39(4):344-345.
    [37] Salonen P, Keskilammi M, Kivikoski M. New Slot Configurations for Dual-Band PlanarInverted-F Antenna[J]. Microwave and Optical Technology Letters.2001,28(5):293-298.
    [38]刘乘源,李迎松,杨晓冬,姜弢.基于等效面积法的UWB天线设计[J].系统仿真技术.2009(5):263-266.
    [39]周旺,李迎松,刘乘源,姜弢.共面波导馈电的超宽带天线的研究[J].微波学报.2010(26):234-237.
    [40] Jan J Y, Tseng L C. Small planar monopole antenna with a shorted parasitic inverted-Lwire for wireless communications in the2.4-,5.2-, and5.8-GHz bands[J]. IEEETransactions on Antennas and Propagation.2004,52(7):1903-1905.
    [41] Kin-Lu W, Chih-Hsien W, Saou-Wen S. Ultrawide-band square planar metal-platemonopole antenna with a trident-shaped feeding strip[J]. IEEE Transactions onAntennas and Propagation.2005,53(4):1262-1269.
    [42] Chen Z N, Qing X. Research and development of planar UWB antennas[C].IEEEAsia-Pacific Conference Proceedings
    [43]覃严明.基于进化算法的超宽带TEM喇叭天线阵列优化研究[D].成都:西南交通大学,2009.
    [44]王建朋.超宽带天线设计及应用研究[D].长沙:国防科学技术大学,2003,6-30.
    [45]张跃远.超宽带高功率天线及实验研究[D].长沙:国防科学技术大学,2003,10-15.
    [46]王洋聪.椭圆形平板单极子天线的宽带特性分析[J].信息通信.2006(1):33-35.
    [47]白晓锋,钟顺时,梁仙灵.叶片形超宽带单极天线[J].微波学报.2006:22-24.
    [48] Anob P V, Ray K P, Kumar G. Wideband orthogonal square monopole antennas withsemi-circular base[C].Antennas and Propagation Society International Symposium,2001. IEEE2001.294-297.
    [49] Ammann M J, Zhi N C. A wide-band shorted planar monopole with bevel[J]. IEEETransactions on Antennas and Propagation.2003,51(4):901-903.
    [50] Antonino-Daviu E, Cabedo-Fabres M, Ferrando-Bataller M, et al. Wideband double-fedplanar monopole antennas[J]. Electronics Letters.2003,39(23):1635-1636.
    [51] Toshihiro N, Hisao I. Planar Monopole Antenna Having a Band-Notch Characteristic forUWB[C].Antennas and Propagation Society International SymPosium2006.4641-4644.
    [52]钟玲玲,李鹏,章飚.超宽带平板圆片单极天线及其小型化研究[J].装备环境工程.2011(3):70-75.
    [53] Qu S W, Ruan C L, Wang B Z, et al. Planar Bow-tie Antenna Embedded in CircularAperture Within Conductive Frame[J]. Antennas and Wireless Propagation Letters,IEEE.2006,5(1):399-401.
    [54] Hossain I, Noghanian S, Pistorius S. A diamond shaped small planar ultra wide band(UWB) antenna for microwave imaging purpose[C].Antennas and Propagation SocietyInternational Symposium2007.5713-5716.
    [55] Chen Z N, See T S P, Qing X. Small printed ultrawideband antenna with reduced groundplane effect[J]. IEEE Transactions on Antennas and Propagation.2007,55(2):383-388.
    [56] Chung K, Yun T, Choi J. Wideband CPW-fed monopole antenna with parasitic elementsand slots[J]. Electronics Letters.2004,40(17):1038-1040.
    [57] Yu Y J, Yang S Z. A novel and simple coplanar waveguide-fed planar monopole antennafor ultra-wideband applications[J]. Journal of Chongqing University.2006,5(1):24-26.
    [58] Liang X L, Zhong S S, Wang W, et al. Printed annular monopole antenna forultra-wideband applications[J]. Electronics Letters.2006,42(2):71-72.
    [59] Koohestani M, Naser-Moghadasi M. Very compact ultra-wideband antenna withCPW-FED monopole[J]. Microwave and Optical Technology Letters.2012,54(3):560-564.
    [60] Liu Y F, Lau K L, Xue Q, et al. Experimental studies of printed wide-slot antenna forwide-band applications[J]. IEEE Antennas and Wireless Propagation Letters.2004,3(1):273-275.
    [61]陈董,程崇虎.宽缝结构超宽带天线的研究[J].南京邮电大学学报(自然科学版).2006,26(2):72-75.
    [62] Gopikrishna M, Krishna D D, Aanandan C K, et al. Compact linear tapered slot antennafor UWB applications[J]. Electronics Letters.2008,44(20):1174-1175.
    [63] Ghaderi M R, Mohajeri F. A Compact Hexagonal Wide-Slot Antenna WithMicrostrip-Fed Monopole for UWB Application[J]. Antennas and Wireless PropagationLetters, IEEE.2011,10:682-685.
    [64] Hsu S H, Chang K. Ultra-thin CPW-fed rectangular slot antenna for UWBapplications[C].Antennas and Propagation Society International Symposium, IEEE2006.2587-2590.
    [65] Mehdipour A, Mohammadpour-Aghdam K, Faraji-Dana R, et al. A Novel CoplanarWaveguide-Fed Slot Antenna for Ultrawideband Applications[J]. IEEE Transactions onAntennas and Propagation.2008,56(12):3857-3862.
    [66] Pourahmadazar J, Ghobadi C, Nourinia J, et al. Broadband CPW-Fed CircularlyPolarized Square Slot Antenna With Inverted-L Strips for UWB Applications[J]. IEEEAntennas and Wireless Propagation Letters.2011,10:369-372.
    [67] Chung K, Kim J, Choi J. Wideband microstrip-fed monopole antenna having frequencyband-notch function[J]. IEEE Microwave and Wireless Components Letters.2005,15(11):766-768.
    [68] Liu Z, Deng H, He X. A New Band-Notched UWB Printed Monopole Antenna[C].Global Symposium On Millimeter Waves2008.291-294.
    [69] Eshtiaghi R, Nourinia J, Ghobadi C. Electromagnetically coupled band-notchedelliptical monopole antenna for UWB applications[J]. IEEE Transactions on Antennasand Propagation.2010,58(4):1397-1402.
    [70] Yan Y D, Zhou X L, Wu L S, et al. A novel microstrip-fed dual band-notchedultrawideband antenna with a defected ground structure[J]. Microwave and OpticalTechnology Letters.2011,53(4):704-706.
    [71] Zhou H J, Sun B H, Liu Q Z, et al. Implementation and investigation of U-shapedaperture UWB antenna with dual band-notched characteristics[J]. Electronics Letters.2008,44(24):1387-1388.
    [72] Li C S, Chiu C W. A CPW-fed band-notched slot antenna for UWB applications[C].Antennas and Propagation Society International Symposium2008.1-4.
    [73] Chu Q X, Huang T G. Compact UWB antenna with sharp band-notched characteristicsfor lower WLAN band [J]. Electronics Letters.2011,47(15):838-839.
    [74] G. Yang, Q. X. Chu, T.G. Huang. A Compact UWB Antenna with Sharp DualBand-Notched Characteristics for Lower and Upper WLAN Band[J]. PIERC.2012,29(5):135-148.
    [75] X.D. Yang, Y.S. Li, C.Y. Liu. A Toothbrush-Shaped Patch Antenna for Millimeter WaveCommunication. Journal of Electromagnetic Waves and Applications[J].2009,23(1):31-37.
    [76] Y. S. Li, X. D. Yang, C. Y. Liu, T. Jiang. Compact CPW-fed ultra-wideband antennawith dual band-notched characteristics[J]. Electronics letters.2010,46(14):967-968.
    [77] Yang Xiao-dong, Li Ying-song, Li Qu-tang. Analysis and Experimental Investigation ona Novel Wideband Sleeve Dipole Array Antenna[J].AEUE-International Journal ofElectronics and Communications.2011,65(4):373-376.
    [78] Y. S. Li, X. D. Yang, C. Y. Liu, T. Jiang,Compact CPW-fed ultra-wide band antennawith dual band notched characteristics[J]. IEICE Electronics Express.2010,20(7):1597-1601.
    [79] Y. S. Li, X. D. Yang, C. Y. Liu, T. Jiang. Compact CPW-fed ultra-wideband antennawith band-notched characteristics[J]. Electronics Letters.2010,46(23):1533-1534.
    [80] Y.S. LI, X.D. YANG, C.Y. LIU, T. JIANG. A sleeve monopole antenna with wideimpedance bandwidth for indoor base station applications[J]. Progress InElectromagnetics Research C.2010,16(1):223-232.
    [81] Ying-song LI, Xiao-dong YANG, Chengyuan LIU, Lin-lin FENG. A Dual-band TaperedSlot Omni-directional Antenna with an Orthogonal Polygon Parasitic Element[J].Advanced Electrical and Electronics Engineering Lecture Notes in ElectricalEngineering.2011,87(1):595-602.
    [82]李迎松,杨晓冬.共面波导馈电的超宽带天线研究[J].电子测量与仪器学报.2010,24(9):819-823.
    [83]李迎松,苏畅.一种基于分形结构的超宽带天线研究[J].系统仿真技术.2010,6(2):61-64.
    [84] Li Yingsong, Li Wenxing, Jiang Tao. Implementation and Investigation of a CompactCircular Wide Slot UWB Antenna with Dual Notched Band Characteristics usingStepped Impedance Resonators[J]. RADIOENGINEERING.2012,21(1):517-527.
    [85] Li Yingsong, Li Wenxing. Compact reconfigurable UWB antenna integrated with SIRsand switches for multimode wireless communications[J]. IEICE ELECTRONICSEXPRESS.2012,9(7):629-635.
    [86] Li Yingsong, Li Wenxing. A Switchable UWB Slot Antenna using SIS-HSIR andSIS-SIR for Multi-Mode Wireless Communications Applications[J]. APPLIEDCOMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL.2012,27(4):340-351.
    [87] Li Yingsong, Li Wenxing. A reconfigurable wide slot antenna integrated with sirs forUWB/multiband communication applications[J]. MICROWAVE AND OPTICALTECHNOLOGY LETTERS.2013,55(1):52-55.
    [88] Li Yingsong, Li Wenxing. A cognitive radio antenna integrated withnarrow/ultra-wideband antenna and switches[J]. IEICE ELECTRONICS EXPRESS.2012,9(15):1273-1283.
    [89] Li Yingsong, Yan Xiaodong. Tiny UWB Antenna Notches Two Bands[J].MICROWAVES&RF.2012.51(2):81-86.
    [90] Bitchikh M., Aksas R., Azrar A.A2.3–14GHz UWB planar octagonal antenna withmodified ground plane[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(3):479-482.
    [91] Yoon Joong Han, Rhee Young Chul, Jang Yeon Kil. A study on the rectangular ring,open-ended monopole antenna with a vertical strip for WLAN dual-band operations[J].MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(3):619-624.
    [92] Aboufoul Tamer, Alomainy Akram, Parini Clive. Polarization reconfigurableultrawideband antenna for cognitive radio applications[J]. MICROWAVE ANDOPTICAL TECHNOLOGY LETTERS.2013,55(3):501-506.
    [93] Ojaroudi Nasser, Ojaroudi Mohammad. Small monopole antenna with multiresonancecharacteristic by using rotated T-shaped slit and parasitic structure for UWB systems[J].MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(3):482-485.
    [94] Li Tong, Zhai Huiqing, Li, Guihong. Planar ultrawideband antenna with multipleband-notches based on folded stepped-impedance resonator and defected split ringresonator[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(3):600-603.
    [95] Esmati Zahra, Moosazadeh Mahdi. Dual-band notched ultra-wideband antenna by usingstep-by-step design inside conductor-backed plane[J]. MICROWAVE AND OPTICALTECHNOLOGY LETTERS.2013,55(3):1069-1073.
    [96] Liu Xianglong, Yin Yingzeng, Liu Pingan. A compact CPW-FED UWB antenna withindependent dual band-notched characteristics[J]. MICROWAVE AND OPTICALTECHNOLOGY LETTERS.2013,55(3):1126-1130.
    [97] Zhai Huiqing,Ou Jinxia,Li Tong. A compact ultrawideband antenna with twoband-notches[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(3):583-586.
    [98] Li Xiaoyin,Yan Lianshan. A Compact Printed Quadruple Band-Notched UWBAntenna[J]. INTERNATIONAL JOURNAL OF ANTENNAS ANDPROPAGATION.2013:586-592.
    [99] Lotfi Parisa. Rotatable Dual Band-Notched UWB/Triple-Band WLAN ReconfigurableAntenna[J]. IEEE ANTENNAS AND WIRELESS PROPAGATIONLETTERS.2013,12(1):104-107.
    [100] Moeikham Pichet, Mahatthanajatuphat Chatree. A Compact UWB Antenna with aQuarter-Wavelength Strip in a Rectangular Slot for5.5GHz Band Notch[J].INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION.2013:532-539.
    [101] Rad A. Ghobadi, Qotolo Sajjad Faraji. A novel elliptic microstrip FED antenna withdouble band notched characteristic for UWB application[J]. MICROWAVE ANDOPTICAL TECHNOLOGY.2013,54(11):2659-2662.
    [102] Naser-Moghadasi Mohammad, Haraty Mohammad Reza. Novel compact UWB antennawith reconfigurable dual-band notches using pin diode switches actuated withoutlambda g/4DC bias lines[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2012,54(10):2392-2397.
    [103] Moradhesari Amin, Moosazadeh Mahdi. Design of compact planar antenna with dualnotched bands using slotted rectangular patch for ultrawideband applications[J].MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2012,54(9):2053-2056.
    [104] Emadian Seyed Ramin, Ghobadi Changiz. A novel compact dual band-notchedslot antenna for ultrawideband applications[J]. MICROWAVE AND OPTICALTECHNOLOGY LETTERS.2012,54(6):1365-1368.
    [105] Ojaroudi Nasser, Ojaroudi Mohammad. A novel design of reconfigurable smallmonopole antenna with switchable band notch and multi-resonance functions for UWBapplications[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(3):652-656.
    [106] Mohammad Sajad, Nezhad Ali. A dual-band WLAN/UWB printed wide slot antenna formimo/diversity applications[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2013,55(3):461-465.
    [107] Ojaroudi Nasser, Ojaroudi Mohammad. Compact h-ring antenna with dual-bandoperation for wireless sensors and RFID tag systems in ISM frequency bands[J].MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(4):697-700.
    [108] Ojaroudi Nasser, Ojaroudi Mohammad. CPW-FED slot antenna for personal mobilecommunication service (PCS) and bluetooth applications[J]. MICROWAVE ANDOPTICAL TECHNOLOGY LETTERS.2013,55(4):734-737.
    [109] Singh Kishan, Mulgi S. N. Design and development of U-notched corner truncatedsquare microstrip antenna for X to Ku band operation[J]. MICROWAVE ANDOPTICAL TECHNOLOGY LETTERS.2013,55(4):719-723.
    [110] Rezaeieh Sasan Ahdi, Kartal Mesut. Dual band high gain monopole antenna for modernmobile devices[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(4):796-800.
    [111] Ojaroudi Nasser, Ojaroudi Mohammad. Compact UWB microstrip antenna with satellitedown-link frequency rejection in X-band communications by etching an E-shapedstep-impedance resonator slot[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2013,55(4):922-926.
    [112] Subbarao Akkala,Raghavan Singaravelu.Printed planar UWB antenna with rejection ofWLAN and WiMAX bands[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2013,55(4):740-744.
    [113] Ali-Akbari Elnaz, Azarmanesh Mohammad-Naghi. Design of miniaturised band-notchultra-wideband monopole-slot antenna by modified half-mode substrate-integratedwaveguide[J]. IET MICROWAVES ANTENNAS&PROPAGATION.2013,7(1):26-34.
    [114] Moosazadeh M.,Abbosh A. M. Design of compact planar ultrawideband antenna withdual-notched bands using slotted square patch and pi-shaped conductor-backed plane[J].IET MICROWAVES ANTENNAS&PROPAGATION.2012,6(3):290-294.
    [115] Shinde Pratap N., Mishra B. K. Compact thin ground plane UWB antenna with dualband stop characteristics[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2013,55(5):1055-1058.
    [116] Guo Lu, Chen Xiaodong.Frequency-and time-domain performance of a miniatureplanar ultra-wideband antenna[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2013,55(5):1058-1065.
    [117] Esmati Zahra, Moosazadeh Mahdi. Dual-band notched ultra-wideband antenna by usingstep-by-step design inside conductor-backed plane[J]. MICROWAVE AND OPTICALTECHNOLOGY LETTERS.2013,55(5):1069-1074.
    [118] Thwin, Su Sandar. Highly compact UWB printed monopole antennas with differentground plane structures[J]. MICROWAVE AND OPTICAL TECHNOLOGYLETTERS.2013,55(6):1191-1196.
    [119] Ojaroudi Nasser, Ojaroudi Mohammad. Application of the protruded strip structures todesign an ultra-wideband slot antenna with variable frequency band-stop function[J].MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(6):1312-1316.
    [120] Xu Jie, Shen Dongya. A novel miniaturized UWB antenna with four band-notches[J].MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(6):1202-1206.
    [121] Pan Yong,Liu Kaihua. A novel printed microstrip antenna with frequency reconfigurablecharacteristics for bluetooth/WLAN/WIMAX applications[J]. MICROWAVE ANDOPTICAL TECHNOLOGY LETTERS.2013,55(6):1341-1345.
    [122] Kahar Manisha, Ray Arup.Studies on the orientation of radiators For high-gain line-fedarray antenna[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(6):1348-1351.
    [123] Dikmen Cengizhan M, Cimen Sibel. A novel ultrawideband antenna with switchablenotch band[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(7):1461-1466.
    [124] Valizade A., Ghobadi Ch. A Novel Design of Reconfigurable Slot Antenna WithSwitchable Band Notch and Multiresonance Functions for UWB Applications[J]. IEEEANTENNAS AND WIRELESS PROPAGATION LETTERS.2012,11(1):1166-1169.
    [125] Jeng Bo-Ming, Luo Ching-Hsing.Dual band-notched annular monopole antenna withtunable structure for UWB application[J]. MICROWAVE AND OPTICALTECHNOLOGY LETTERS.2013,55(7):1546-1549.
    [126] Ojaroudi Nasser, Ojaroudi Mohammad. Bandwidth enhancement of an ultra-widebandprinted slot antenna with WLAN band-notched function[J]. MICROWAVE ANDOPTICAL TECHNOLOGY LETTERS.2013,55(7):1448-1451.
    [127] Gautam A. K., Yadav, Swati. A CPW-FED compact inverted L-strip UWB microstripantenna[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2013,55(7):1584-1589.
    [128] Gautam A. K., Yadav, Swati. A CPW-Fed Compact UWB Microstrip Antenna[J]. IEEEANTENNAS AND WIRELESS PROPAGATION LETTERS.2013,12(1):151-154.
    [129] Cheng-yuan Liu, Ying-song Li, Tao Jiang, Xiao-dong. Compact CPW-fed UWBAntenna with a Notched Band Characteristic[J]. Microwave Journal.2011,54(8):104-112.
    [130] C. Y. Liu, T. Jiang, Y. S. Li. A novel UWB filter with notch-band characteristic usingradial-UIR/SIR loaded stub resonators[J]. Journal of Electromagnetic Waves andApplications.2011,25(3):233-245.
    [131] Hirtenfelder F. Effective Antenna Simulations Using CST Microwave Studio[A].2ndInternational ITG Conference on Antennas [C].U.S.: The Institute of Electrical andElectronics Engineers,2007,1(1):239-240.
    [132] Weiland T, A discretization method for the solution of Maxwell’s equationsforsix-component fields [J], Electronics and communication,1977,31(1):116-120.
    [133]俞忠武,王光明,俞志英.基于缺陷地面结构和补偿微带线的低通滤波器[J].信息与电子工程,2009,7(1):28-31.
    [134]金涛斌.不同结构DGS微波滤波器的传输特性研究[D].天津:天津大学博士学位论文.2011,40-60.
    [135]张金.基于SIR与DGS技术的微带滤波器的研究[D].合肥:安徽大学硕士学位论文.2011,55-76..
    [136]陈小群.射频功率放大器与微带电路设计[D].西安:西安电子科技大学博士学位论文.2009,33-39.
    [137]李奇.无线通信中微带滤波器的研究与设计[D].西安:西安电子科技大学博士学位
    论文.2011,56-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700