基于六端口技术的直接变频接收机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着无线通信技术的飞速发展,无线通信产品越来越普及,已经成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能将直接影响整个通信系统。选择优化的设计体系结构和合适的制造工艺,并提高系统的性价比,是研究人员追求的方向。实用的接收机有两种基本的体系结构:超外差式和零中频式(又称直接变频)。超外差结构作为最经典的接收机结构,长期在无线系统中扮演着非常重要的角色。近年来,由于直接变频结构具有构造简单、不存在镜频干扰、可依靠低通滤波器进行低频信道的选择、易于集成等优点,逐渐成为研究的热点。直接变频接收机能完成测相、测频、测向、测距和解调数字信号等诸多功能,具有良好的发展前景和广泛的用途。六端口技术作为直接变频接收机中的关键技术,研究者倾注了大量精力对其进行了深入探索,并取得了相应的进展。
     本论文将研究基于六端口技术的直接变频接收机,完成理论推导、电路功能模块的设计、系统原理框图组建和实物测试平台的搭建等工作。研究工作包括以下一些内容:宽(窄)带六端口结的设计与实现,基于六端口技术的测相法、测频法、测向法和定位法,高增益放大器的设计与实现,基于人工神经网络(ArtificialNeural Networks, ANN)和支持向量回归(Support Vector Regress,SVR)的校准技术,器件和收发系统LTCC(Low Temperature Co-fired Ceramic)小型化设计等。本文的主要工作包括以下几个方面:
     1.系统地介绍了六端口技术的理论,六端口反射仪和基于六端口技术的直接变频接收机的工作原理。根据六端口结的工作原理和设计方法,设计制作了窄带六端口结。为了进一步拓展带宽,研究了两种类型的超宽带功分器和3dB耦合器。基于这些器件,构建了两种超宽带的六端口结;
     2.构建基于六端口技术的测相、测频、测向和定位系统,完成相关的系统搭建工作,并解决了系统自激振荡、串扰、相位漂移等工程难题。高增益射频放大器是直接变频接收机的设计难点之一。电源线串扰、电磁波空间辐射、内部级联放大器的相互影响等因素将引起放大器自激振荡。在设计时,需要仔细考虑这些因素引入的不确定性,并给出相应的解决对策。基于高增益射频放大器设计的接收系统,需从电磁兼容的角度去搭建系统整机,防止信道和模块间的干扰;
     3.提出了基于ANN和SVR的校准技术。由于六端口接收机固有的缺陷,如:六端口结幅相的非理想特性、二极管平方率检波器的非线性、微波通道的不一致性等,需要一种简单实用的方法对整个系统进行校准。利用相关仪器测量出一组测试数据,然后将测试数据分为两部分,一部分为训练序列,另一部分为验证序列。训练序列用来得到一个反映输入输出关系的“核”,验证序列的目的是考察“核”的预测效果;
     4.针对宽带六端口结占用面积较大的缺点,设计了基于LTCC工艺的宽带器件,如3dB耦合器和功分器等。微带和波导是能量传输的两种基本方法,微带线和空气波导特性阻抗的巨大差异使两者之间的过渡结构成为研究的难点,作者提出了利用多谐振片和多节阻抗变换的方式来拓展工作带宽。同时,还构建了小型化LTCC的收发系统。
With the rapid development of the wireless communication technology, wirelesscommunications products have become a significant part of the developing informationworld. RF receiver, located in the forefront of the wireless communication system,directly determines the structure and performance of the system. Therefore, theresearchers are committed to optimizing the design of the structure and choosing theappropriate manufacturing process in order to improve the performance-to-price ratio.Practical receiver system has two basic architectures: superheterodyne andzero-intermediate frequency (direct conversion). Superheterodyne receiver is the mostclassic receiver structure, which played a significant role in the wireless system for avery long time. In recent years, the direct conversion receiver has gradually become ahotspot for its simple structure, no mirror-frequency interference, low-frequencychannel selection based on the low-pass filter, ease of integration and other advantages.Direct conversion receivers can be used in the phase measurement, frequencymeasurement, direction finding, position sensor or the demodulation of digital signal.As the core technology of the direct conversion receiver, the researchers try their best tomake progress in six-port technology and have gained some achievements these years.
     In this thesis, the direct conversion receiver based on the six-port technology isdiscussed. The theoretical derivation, design of circuit module, composition of the blockdiagram, structure of test platforms and some related tasks are proposed as well. Themain contents of this thesis are summarized as follows: the design and implementationof the wideband (narroband) six-port junction, some measurement techniques based onthe six-port technique (phase measurement, frequency measurement, direction finding,position sensor), the design and implementation of the high-gain amplifier, thecalibration technique based on the ANN (Artificial Neural Networks) and SVR (SupportVector Regress), the miniaturization of components and system via LTCC (LowTemperature Co-fired Ceramic), etc. This thesis is divided as the following aspects:
     1. The theory of six-port technology, the principles of six-port reflectometer anddirect conversion receiver based on six-port technology are introduced systemly. Based on the principles and the design methods of the six-port junction, a narrowband six-portjunction is designed and manufactured. To expand the bandwidth, we designed twokinds of ultra-wideband power dividers and3dB couplers to elucidate two types ofultra-wideband six-port junctions.
     2. Based on the six-port technology, the systems of phase measurement, frequencymeasurement, direction finding and position sensor are intensively studied. Someengineering problems occurring in these systems such as self-oscillation, crosstalk, andphase drift have been solved. One of the difficulties is the design of hign-gain amplifier.The crosstalk of power supply, electromagnetic radiation, interaction of internalcascaded amplifiers and other factors can lead to the self-oscillation. These uncertainfactors need to be taken into considerations, and the corresponding solutions areproposed in the circuit design. The electromagnetic compatibility is utilized in theintegration of receiver system, based on the high-gain RF amplifier.
     3. The calibration techniques based on ANN and SVR is introduced. Owing to theinherent flaws of the six-port receiver, such as the non-idealitied of amplitude and phasecharacteristics in six-port junction, the nonlinearity of diode detector, theinconsistencies of microwave channel and other factors, the system need to becalibrated by a simple and practical methods. First of all, a set of test data is obtained bythe instrumentation. Then all of the test data is divided into two parts: training andcross-validation data set. The training data set is used to obtain a “kernel function” toreflect the relationship between the input and output, while cross-validation data set isused to verify the predicted effect of “kernel function”.
     4. The wideband3dB coupler and power divider based on the LTCC technologyare designed to reduce the circuit area of the six-port junction. Microstrip line andair-filled waveguide are two basic energy transmission pathways. However, theenormous difference in the characteristic impedance between them makes impedancematching difficult. To expand the bandwidth Multi-resonant patches andmulti-impedance transformation sections are added into the LTCC dielectric materialand the transmission line, respectively. Furthermore, the LTCC miniaturization of thetransceiver system has been studied in this thesis.
引文
[1]李智群,王志功.零中频射频接收机技术[J].电子产品世界,2004,(13):69-72
    [2]郝盛.2.4GHz接收机射频前端设计[D].南京:南京理工大学,2006,3-6
    [3]晋军.UWB通信系统简介[J].通讯世界,2003,(6):58-59
    [4] E. R. B. Hansson, G. P. Riblet. An ideal six-port network consisting of a matched reciprocallossless five-port and a perfect directional coupler[J]. IEEE Transactions on Microwave Theoryand Techniques,1983,31(3):284-289
    [5] A. A. Abidi. Direct-conversion radio transceivers for digital communications[C]. Solid-StateCircuits Conference, San Francisco,1995,186-187,363-364
    [6]池保勇.无线局域网收发机射频前端的CMOS实现[D].北京:清华大学,2003,9-11
    [7] J. Li, R. G. Bosisio, K. Wu. Computer and measurement simulation of a new digital receiveroperating directly at millimeter-wave frequencies[J]. IEEE Transactions on Microwave Theoryand Techniques,1995,43(12):2766-2772
    [8] M. Abe, N. Sasho, V. Brankovic, et al. Direct conversion receiver MMIC based on six-porttechnology[C]. Proc. Eur. Conf. Wireless Technology, Paris,2000,139-142
    [9] J. Hyyrylainen, L. Bogod, S. Kangasmaa, et al. Six port direct conversion receiver[C].27thEuropean Microwave Conference, Jerusalem,1997,341-347
    [10] C. A. Hoer. The six-port coupler: A new approach to measuring voltage, current, power,impedance and phase[J]. IEEE Transactions on Instrumentation and Measurement,1972,21(4):466-470
    [11] G. F. Engen. The six-port reflectometer: An alternative network analyzer[J]. IEEE Transactionson Microwave Theory and Techniques,1977,25(12):1075-1080
    [12]李世鹤,王智.微波六端口技术[M].北京:人民邮电出版社,1989,285-293
    [13] M. Cicolani, F. Marchetti. Phase and amplitude automatic measurements on pulsed RFsignals[C].22nd European Microwave Conference, Helsinki,1992,931-936
    [14] B. Galwas, S. Palczewski. Idea of six-port vector-voltmeter with homodyne phase-sensitivedetectors[C]. Ninth Instrumentation and Measurement Technology Conference, New York,1992,380-384
    [15] B. Galwas, S. Palczewski. Broadband homodyne sixport reflectometer[C].21st EuropeanMicrowave Conference, Stuttgart,1991,527-532
    [16] E. Bergeault, B. Huyart, Y. Delisle, et al. A MMIC six-port reflectometer[C]. Proc.35thMidwest Symp. on Circuits and Systems, Washington. DC,1992,1458-1488
    [17] J. Li, R. G. Bosisio, K. Wu. A six-port direct digital millimeter wave receiver[C]. IEEE Microw.Theory Tech. Symp. Dig, San Diego,1994,1659-1662
    [18] T. Yakabe, F. C. Xiao, K. Iwamoto, et al. Six-port based wave-correlator with application tobeam direction finding[J]. IEEE Transactions on Instrumentation and Measurement,2001,50(2):377-380
    [19] J.-R. Yang, S. Hong, D.-W. Kim. A Distance-Compensated Radar Sensor with a Six-PortNetwork for Remote Distinction of Objects with Different Dielectric Constants[J]. Journal ofElectromagnetic Waves and Applications,2010,24:1429-1437
    [20] J. P. Coupez, H. Gruchala, A. Slowik, et al. High resolution IFMs[C].14th InternationalConference on Microwaves, Radar and Wireless Communications, Gdańsk,2002,484-487
    [21] N. Khaddaj Mallat, E. Moldovan, S. O. Tatu. Comparative demodulation results for six-port andconventional60GHz direct conversion receivers[J]. Progress In Electromagnetics Research,2008,84:437-499
    [22] C. Gutierrez Miguelez, B. Huyart, E. Bergeault, et al. A new automobile radar based on thesix-port phase/frequency discriminator[J]. IEEE Trans. Veh. Technol,2000,49(4):1416-1423
    [23] B. Boukari, E. Moldovan, S. Affes, et al. A heterodyne six-port FMCW radar sensorarchitecture based on beat signal phase slope techniques[J]. Progress In ElectromagneticsResearch,2009,93:307-322
    [24] F. C. Xiao, F. M. Ghannouchi, T. Yakabe. Application of a six-port wave-correlator for a verylow velocity measurement using the Doppler effect[J]. IEEE Transactions on Instrumentationand Measurement,2003,52(2):297-301
    [25] E. Moldovan, S. O. Tatu, T. Gaman, et al. A New94-GHz Six-Port Collision-Avoidance RadarSensor[J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(3):751-759
    [26] S. O. Tatu, E. Moldovan, G. Brehm, et al. Ka-band direct digital receiver[J]. IEEE Transactionson Microwave Theory and Techniques,2002,50(11):2436-2442
    [27] Y. Zhao, C. Viereck, J. F. Frigon, et al. Direct quadrature phase shift keying modulator usingsix-port technology[J]. Electronics Letters,2005,41(21):1180-1181
    [28] J. F. Luy, T. Mueller, T. Mack, et al. Configurable RF receiver architectures[J]. IEEEMicrowave Magazine,2004,5(1):75-82
    [29] J. Osth, A. Serban, Owais, et al. Six-Port Gigabit Demodulator[J]. IEEE Transactions onMicrowave Theory and Techniques,2011,59(1):125-131
    [30] V. F. Fusco, C. Wang.54-65Ghz Six Port Demodulator[C]. IEEE International Symposium onSoC Conference, Belfast,2009,125-128
    [31] X. Y. Xu, R. G. Bosisio, K. Wu. A new six-port junction based on substrate integratedwaveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(7):2267-2273
    [32]陈勤琴,王卫东.一种新的六端口接收机的校准方法[J].中国科学技术大学学报,2006,36(5):490-496
    [33]仝仲彬.基于六端口技术的直接变频接收前端[D].成都:电子科技大学,2008,30-49
    [34]张兰,王兵.射频六端口OFDM解调器研究[J].电子科技大学学报,2008,37(1):31-34
    [35]李康,陈呈午,季忠.用开路同轴线和六端口测量材料的介电系数[J].山东大学学报,1995,30(1):87-93
    [36]胡希平.双六端口网络分析仪的误差分析[J].测量学报,1993,14(4):270-275
    [37]周俊孟,谢丽珍.六端口微波测量技术[J].宇航计测技术,1991,(1):1-4
    [38] T. Morita, L. S. Sheingold. A coaxial magic T[J]. IEEE Transactions on Microwave Theoryand Techniques,1953,1(2):17-23
    [39]储雪子,顾浩然,陈迎华.六端口反射系数测量技术[J].电子技术,1983,(6):246-248
    [40]汤世贤.微波测量[M].北京:国防工业出版社,1981,343-345
    [41] M. E. Bialkowski, A. M. Abbosh, N. Seman. Compact microwave six-port vector voltmeters forultra-wideband applications[J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(10):2216-2223
    [42] M. E. Bialkowski, A. M. Abbosh, J. Swayn. Design of a compact microwave six-port vectorvoltmeter for UWB applications[C]. IEEE/MTT-S International Microwave Symposium,Honolulu,2007,999-1002
    [43] E. Moldovan, S. O. Tatu, S. Affes, et al. W-band substrate integrated waveguide radar sensorbased on multi-port technology[C]. European Microwave Conference (EuMC), Munich,2007,1453-1456
    [44] I. Ohta. A new six-port microwave network; six-port magic junction[J]. IEEE Transactions onMicrowave Theory and Techniques,1988,36(5):859-864
    [45] T. Kaneko. Parallel running system of three oscillators coupled through a six-port magicjunction[J]. IEEE Transactions on Microwave Theory and Techniques,1989,37(11):1699-1707
    [46] S. O. Tatu, E. Moldovan, G. Brehm, et al. Ka-band direct digital receiver using0.25μm GaAsPHEMTs[C]. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Seattle,2002,155-158
    [47] L. Gerardi, Y. S. Xu, Y. Y. Zhao, et al. A new six-port circuit architecture using only powerdividers/combiners[C]. IEEE/MTT-S International Microwave Symposium, Honolulu,2007,41-44
    [48] S. O. Tatu, E. Moldovan, K. Wu, et al. Ka-band analog front-end for a software-defined directconversion receiver[J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(9):2768-2776
    [49]张海燕.薄硅外延片的生长及高频肖特基二极管的研制[D].浙江:浙江大学,2002,3-4
    [50] Y. Anand, W. J. Moroney. Microwave Mixer and Detector Diodes[J]. IEEE Proceedings,1971,59(8):1182-1190
    [51] C. de la Morena-Alvarez-Palencia, M. B. Garcia, D. R. Aparicio. Three octave six-port networkfor a broadband software radio receiver[C]. European Microwave Conference (EuMC), Paris,2010,1110-1113
    [52] L. Kaliouby, R. G. Bosisio. New extensions of six-port theory and practice[C]. IEEE MTT-SInternational Microwave Symposium Digest, Baltimore,1986,673-676
    [53] Hewlett Packard. The Schottky Diode Mixer: Application Note995[DB/OL].http://f6csx.free.fr/techni/notes_d'application/HP%20An995.pdf, Aug1,2012
    [54]张肇仪,周乐柱,吴德明,等.微波工程(第三版)[M].北京:电子工业出版社,2006,265-379
    [55]清华大学《微带电路》编写组.微带电路[M].北京:人民邮电出版社,1979,100-226
    [56] G. L. Matthaei, L. Young, E. M. T. Jones. Microwave filters impedance-matching networks,and coupling structures[M]. North Bergen: Artech House,1985,255-354
    [57]陆正果,刘烨.宽带正交电桥设计[C].全国第十届微波集成电路与移动通信学术年会,昆明,2004,250-254
    [58] S. Gruszczynski, K. Wincza. Broadband multisection asymmetric8.34-dB directional couplerwith improved directivity[C]. Asia-Pacific Microwave Conference(APMC), Bangkok,2007,1-4
    [59]张中枢.2-18GHz超宽带定向耦合器的设计[C].中国西部青年通信学术会议论文集,成都,2006,321-325
    [60] J. L. B. Walker. A comparison of two multi-octave3dB quadrature couplers[C]. IEEColloquium on Multi-Octave Active and Passive Components and Antennas, London,1989,1-6
    [61] J. L. B. Walker. Analysis and design of Kemp-type3-dB quadrature couplers[J]. IEEETransactions on Microwave Theory and Techniques,1990,38(1):88-90
    [62] J. P. Shelton, J. A. Mosko. Synthesis and Design of Wide-Band Equal-Ripple TEM DirectionalCouplers and Fixed Phase Shifters[J]. IEEE Transactions on Microwave Theory and Techniques,1966,14(10):462-473
    [63] E. Carpenter. The Virtues of Mixing Tandem and Cascade Coupler Connections[C]. IEEEGMTT International Microwave Symposium Digest, Washington. DC,1971,8-9
    [64]周萌.带状线定向耦合器的分析与设计[D].西安:西安电子科技大学,2009,31-34
    [65] J. B. Knorr. Slot-line transitions[J]. IEEE Transactions on Microwave Theory and Techniques,1974,22(5):548-554.
    [66] B. Schuppert. Microstrip/slotline transitions: Modeling and experimental investigation[J]. IEEETransactions on Microwave Theory and Techniques,1988,36(8):1272-1282
    [67] E. A. Mariani, C. P. Heinzman, J. P. Agrios, et al. Slot line characteristics[J]. IEEETransactions on Microwave Theory and Techniques,1969,17(12):1091-1096
    [68] J. Lange. Interdigitated stripline quadrature hybrid[J]. IEEE Transactions on Microwave Theoryand Techniques,1969,17(12):1150-1151
    [69] T. Tanaka, K. Kusoda, M. Aikawa. Slot-coupled directional couplers on a both-sided substrateMIC and their applications[J]. Electronics and Communications in Japan, Part2,1989,72(3):570-577
    [70] A. M. Abbosh and M. E. Bialkowski. Design of compact directional couplers for UWBapplications[J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(2):189-194
    [71] M.-F. Wong, V. F. Hanna, O. Picon. Analysis and design of slot-coupled directional couplersbetween double-sided substrate microstrip lines[J]. IEEE Transactions on Microwave Theoryand Techniques,1991,29(12):2123-2129
    [72] C. P. Tresselt. The design and construction of broadband high directivity90-degree couplersusing nonuniform line techniques[J]. IEEE Transactions on Microwave Theory and Techniques,1966,14(12):647-656
    [73] D. W. Kammler. The design of discrete N-section and continuously tapered symmetricalmicrowave TEM directional couplers[J]. IEEE Transactions on Microwave Theory andTechniques,1969,17(8):577-590
    [74] S. Uysal, H. Aghvami. Synthesis, design, and construction of ultrawide-band nonuniformquadrature directional couplers in inhomogeneous media[J]. IEEE Transactions on MicrowaveTheory and Techniques,1989,37(6):969-976
    [75] R. Mongia, I. Bahl, P. Bhartia. RF and microwave coupled-line circuits[M]. Norwood, MA:Artech House,1999,136-139
    [76] A. M. Abbosh. Effect of tapering shape on performance of broadside-coupled directionalcouplers[J]. Microwave and Optical Technology Letters,2009,51(5):1285-1288.
    [77]刘树棠.信号与系统[M].西安:西安交通大学出版社,2011,202-234
    [78] J. P. Y. Lee. Detection of complex and simultanceous signals using an instantaneous frequencymeasurement receiver s[J]. IEE Proceedings-F Communications, Radar and Signal Processing,1985,132(4):267-274
    [79] H. Gruchala, M. Czyzewski. The instantaneous frequency measurement receiver in the complexelectromagnetic environment[C].15th International Conference on Microwaves, Radar andWireless Communications, Warsaw,2004,155-158
    [80] C. Pandolfi, E. Fitini, G. Gabrielli, E. Megna, A. Zaccaron. Comparison of analog IFM anddigital frequency measurement receivers for electronic warfare[C]. European Radar Conference(EuRAD), Paris,2010,232-235
    [81]胡来招.雷达侦察接收机设计[M].北京:国防工业出版社,2000,105-146
    [82]李勋,张斌,戴果.最大似然估计在搜索法测向中的应用[J].雷达与对抗,2000,(2):32-38
    [83]杨瑞明.基于压缩采样的比幅测向方法研究[D].成都:电子科技大学,2009,51-52
    [84] B. Hnyart, J. J. Laurin, R. G. Bosisio, et al. A direction-finding antenna system using anintegrated six-port circuit[J]. IEEE Transactions on Antennas Propagation,1995,43(12):1508-1512
    [85] G. Vinci, A. Koelpin, R. Weigel. Employing Six-Port Technology forPhase-Measurement-Based Calibration of Automotive Radar[C]. Asia Pacific MicrowaveConference (APMC), Singapore,2009,329-332
    [86]潘琴格.无源系统测向及时差频差联合定位方法研究[D].西安:西安电子科技大学,2005,17-27
    [87] J. Falk, P. Handel, M. Jansson. Estimation of receiver frequency error in a TDOA-baseddirection-finding system[C].. Proceedings of IEEE Record of the38th Asilomar Conference onSignals, Systems and Computers,2004,2079-2083
    [88] W. Zheng, X. G. Zuo, Y. K. Ma, et al. Algorithm of multi-baseline interferometer phasedifference in fuzzy circumstance[C]. International Conference on Consumer Electronics,Communications and Networks (CECNet), Xianning,2011,3902-3905
    [89] C. A. Balanis. Antenna Theory Analysis and Design[M]. New Jersey: John Wiley&Sons,2005,566-576
    [90]张玉兴,杨玉梅,敬守钊,等.射频模拟电路与系统[M].成都:电子科技大学出版社,2008,371-374
    [91]夏文鹤,黄建国,李力.基于多路数字移相时钟的瞬时测频模块设计[J].电子测量技术,2007,30(7):155-157
    [92]张玉兴.射频模拟电路[M].北京:电子工业出版社,2002,141-147
    [93]胡来招.瞬时测频[M].北京:国防工业出版社,2002,86-95
    [94] B. Boukari, E. Moldovan, R. I. Cojocaru. A77GHz six-port FMCW collision-avoidance radarsensor with baseband analytical calibration[J]. Microw. Optical Technology Lett.,2009,51(3):720-725
    [95] A. Stelzer, C. G. Diskus, K. Lubke, et al. A microwave position sensor with submillimeteraccuracy[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(12):2621-2624
    [96] J. Li, R. G. Bosisio, K. Wu. A collision avoidance radar using six-port phase/frequencydiscriminator[C]. IEEE MTT-S International Microwave Symposium Digest, San Diego,1994,1553-1556
    [97] Y. Liu. Calibrating an industrial microwave six-port instrument using the artificial neuralnetwork technique[J]. IEEE Transactions on Instrumentation and Measurement,1996,45(2):651-656
    [98]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    [99]章锦文,马远良.神经网络计算机的现状与发展趋势[J].计算机科学,1993,20(6):24-27
    [100] V. N. Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag,1995,1-16
    [101] L. Xia, R. Xu, B. Yan. LTCC interconnect modeling by support vector regression[J]. ProgressIn Electromagnetics Research,2007,69:67-75
    [102] Z. Q. Yang, T. Yang, Y. Liu, et al. MIM capacitor modeling by support vector regression[J].Journal of Electromagnetics Waves and Applications,2008,22(1):61-67
    [103] E. Bermani, A. Boni, A. Kerhet, et al. Kernels evaluation of svm-based estimators for inversescattering problems[J]. Progress In Electromagnetics Research,2005,53:167-188
    [104] X. Li, Y. Li, J. Zhao. ANN-based pad modeling technique for mosfet devices[J]. Progress InElectromagnetics Research,2011,118:303-319
    [105] L. Xia, J. C. Meng, R. M. Xu. Modeling of3-D vertical interconnect using support vectormachine regression[J]. IEEE Microwave and Wireless Components Letters,2006,16(12):639-641
    [106]王敬轩.基于图像识别技术的豆科牧草分类研究[D].兰州:甘肃农业大学,2010,28-30
    [107] J. J. Hopfield. Neural networks and physical systems with emergent collective computationalabilities[J]. Proceedings of the national academy of sciences of the United States of America,1982,79(8):2554-2558
    [108]白鹏,张喜斌,张斌,等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008,1-20
    [109]钟以融. P2P流量识别方法研究[D].大连:东北财经大学,2010,41-43
    [110]夏雷.微波毫米波LTCC关键技术研究[D].成都:电子科技大学,2008,75-76
    [111] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines[DB/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm/
    [112] Y. Bengio, Y. Grandvalet. No unbiased estimator of the variance of K-fold cross-validation[J].Journal of Machine Learning Research,20045:1089-1105
    [113]丁世华,姚熹.低温共烧片式微波陶瓷介质谐振器[J].四川大学学报,2005,42(2):512-518
    [114] P. Pruna, P. Yan, R. D. Gardner, et al. Microwave characterization of low temperature co-firedceramic[C]. Proceedings of the International Symposium on Advanced Packaging Materials,Braselton,1998,134-137
    [115]王悦辉,周济,崔学民,等.低温共烧陶瓷无源集成技术及其应用[J].材料导报,2005,9:83-90
    [116] B. Peter, W. M. Zhang, L. Jeff, et al. An investigation of the properties of LTCC materials andcompatible conductors for their use in wireless applications[C]. Proc. International Symposiumon Microelectronics, Boston MA,2000,659-664
    [117] H. Jantunen, T. Kangasvieri, J. Vahakangas. Design aspects of microwave components withLTCC technique[C]. Microwave Materials and Applications, York,2003,2541-2548
    [118] S. X. Dai, R. F. Huang, D. L. Wilcox Sr. Use of titanate to achieve a temperature-stable lowtemperature cofired ceramic dielectric for wireless application[J]. Journal of the AmericanCeramic Society,2002,85(4):828-832
    [119] R. E. Hayes, J. W. Gipprich, M. G. Hershfeld. A stripline re-entrant coupler network for cofiredmultilayer microwave circuits[C]. IEEE MTT-S International Microwave Symposium Digest,San Francisco,1996,801-804
    [120] Y. S. Dai, Y. L. Lu, Q. S. Luo, et al. A microminiature3dB multilayer double-octave hybridcoupler using LTCC[C]. Asia-Pacific Microwave Conference Proceedings, Suzhou,2005,1
    [121] J. D. S. Deng, F. K. Hsiao, J. I. Luo, et al. Tightly Coupling LTCC Microwave Coupled Lines:Analysis, Modelling and Realization[C]. Proceedings of the4th International Symposium onElectronic Materials and Packaging, Kaohsiung,2002,391-396
    [122] W. I. Chang, D. Y. Jung, C. S. Park. A K-band LTCC SMD type balun using a multi-layercoupler insensitive to misalignment[C]. IEEE Radio and Wireless Symposium, San Diego,2006,595-597
    [123] A. Sawicki, K. Sachse. Novel Coupled-Line Conductor-Backed Coplanar and MicrostripDirectional Couplers for PCB and LTCC Applications[J]. IEEE Transactions on MicrowaveTheory and Techniques,2003,51(6):1743-1751
    [124] M. M. Fahmi, J. A. Ruiz-Cruz, K. A. Zaki. Multilayer multi-section broadband LTCC striplinedirectional couplers[C]. IEEE/MTT-S International Microwave Symposium, Honolulu,2007,173-176
    [125] E. G. Cristal, L. Young. Theory and Tables of Optimum Symmetrical TEM-ModeCoupled-Transmission-Line Directional Couplers[J]. IEEE Transactions on Microwave Theoryand Techniques,1965,13(5):544-558
    [126] Y. P. Liu, L. Xia, R. M. Xu. A U-band Wilkinson type UWB power divider in LTCCtechnology[C]. International Conference on Microwave and Millimeter Wave Technology(ICMMT), Shenzhen,2012,1-3
    [127] Y. X. Zhang, Z. G. Wang, R. M. Xu. A Ka-band high isolation and in phase planar six waypower divider based on LTCC technology[C]. IEEE International Conference on SignalProcessing, Communications and Computing (ICSPCC), Xi’an,2011,1-4
    [128] M. Q. Liu, X. B. Wei, P. Wang. Compact LTCC multilayer broadband power divider[C]. IEEEInternational Conference on Signal Processing, International Conference on ComputationalProblem-Solving (ICCP), Chengdu,2011,370-372
    [129] T. H. Duong, I. S. Kim. Single section Wilkinson type UWB power divider with bandpassfilter and DC block characteristics in LTCC technology[C]. IEEE MTT-S InternationalMicrowave Symposium Digest, Anaheim,2010,117-120
    [130] Y. C. Leong, S. Weinreb. Full band waveguide to microstrip probe transitions[C]. IEEEMTT-S International Microwave Symposium Digest, Anaheim,1999,1435-1438
    [131] H. W. Yao, A. Abdelmonem, J. F. Liang, et al. A full wave analysis of microstrip to waveguidetransitions[C]. IEEE MTT-S International Microwave Symposium Digest, San Diego,1994,213-216
    [132] L. J. Lavedan. Design of waveguide-to-microstrip transition specially suited tomillimeter-wave application[J]. Electronics Letters,1977,13(20):604-605
    [133] F. J. Villegas, D. I. Stones, H. A. Hung. A novel waveguide-to-microstrip transition formillimeter-wave module applications[J]. IEEE Transactions on Microwave Theory andTechniques,1999,47(1):48-55
    [134] P. J. Meier. Integrated Fin-Line Millimeter Components[J]. IEEE Transactions on MicrowaveTheory and Techniques,1974,22(12):1209-1216
    [135] L. Xia, R. Xu, B. Yan. Broadband transition between air-filled waveguide and substrateintegrated waveguide[J]. Electronics Letters,2006,42(24):1403-1405
    [136] Z. G. Wang, L. Xia, B. Yan. A novel waveguide to microstrip transition in millimeter-waveLTCC module[C]. International Symposium on Microwave, Antenna, Propagation and EMCTechnologies for Wireless Communications, Hangzhou,2007,340-343
    [137] S. Costanzo. Synthesis of multi-step coplanar waveguide-to-microstrip transition[J]. ProgressIn Electromagnetics Research,2011,113:111-126
    [138] H. Aliakbarian, A. Enayati, G. A. E. Vandenbosch, et al. Novel low-cost end-wallmicrostrip-to-waveguide splitter transition[J]. Progress In Electromagnetics Research,2010,101:75-96
    [139] M. Gholami, M. N. Jazi. Implementation of a Low Loss Microstrip to Waveguide Transition inX-band using CAD Methods[J]. Journal of Electromagnetic Waves and Applications,2009,23(8-9):1133-1141
    [140] D. Hammou, E. Moldovan, S. O. Tatu. V-Band Microstrip to Standard Rectangular WaveguideTransition Using a Substrate Integrated Waveguide (SIW)[J]. Journal of ElectromagneticWaves and Applications,2009,23(2-3):221-230
    [141] E. S. Li, C. C. Lai. A comprehensive study on the bandwidth of broad-band slot-coupled andcavity-coupled vertical transitions[C]. IEEE Antennas and Propagation Society InternationalSymposium, Honolulu,2007,3109-3112
    [142] X. B. Huang, K. L. Wu. A broadband U-slot coupled microstrip-to-waveguide transition[J].IEEE Transactions on Microwave Theory and Techniques,2012,60(5):1210-1217
    [143] L. Hyvonen, A. Hujanen. A compact MMIC-compatible microstrip to waveguide transition[C].IEEE MTT-S International Microwave Symposium Digest, San Francisco,1996,875-878
    [144] N. Herscovici, D. M. Pozar. Full-wave analysis of aperture-coupled microstrip lines[J]. IEEETransactions on Microwave Theory and Techniques,1991,39(7):1108-1114
    [145] W. H. Kim, J. W. Shin, J. P. Kim. Equivalent Network Modeling of Slot CoupledMicrostripline to Waveguide Transition[C]. IEEE Antennas and Propagation SocietyInternational Symposium, Monterey,2004,2345-2348
    [146] J. Park, J. Kim, A. C. W. Lu, et al. Noise isolation in LTCC-based X or Ku-band transceiverSiP using double-stacked electromagnetic bandgap structure[C]. IEEE International Symposiumon Electromagnetic Compatibility, Honolulu,2007,1-6
    [147] A. Yatsenko, W. S. Wong, J. Heyen, et al. System-in-Package solutions for WiMAXapplications based on LTCC technology[C]. IEEE Radio and Wireless Symposium, San Diego,2009,470-473
    [148] R. Giordani, M. Amici, A. Barigelli, et al. Highly Integrated and Solderless LTCC BasedC-band T/R Module[C]. European Microwave Integrated Circuits Conference, Rome,2009,407-410
    [149] P. Pursula, T. Karttaavi, M. Kantanen, et al.60-GHz Millimeter-Wave Identification Reader on90-nm CMOS and LTCC[J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(4):1166-1173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700