基于差分进化算法的共形阵及多频天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁问题中的最优化设计作为现代电磁研究领域的一个重要部分,越来越受到研究者的关注。电磁优化问题的目标函数通常具有高度非线性、不可导和多极值的特点,使得经典优化方法在求解实际问题时存在诸多困难。差分进化算法(Differential Evolution, DE)作为一种简单高效的全局搜索算法,非常适合求解复杂的电磁优化问题。尽管如此,由于电磁优化问题的复杂性,目标函数的计算需要较长的时间,如何提高算法的收敛速度,减少目标函数计算次数是当前亟待解决的关键问题。随着微波集成电路的发展和空间技术的需求,能够与载体表面充分吻合的共形天线技术日益受到重视。共形阵的结构特性使其方向图综合非常困难,而传统的阵列综合方法和局部优化方法应用受到了很大限制,所以高效的DE算法成为了共形阵方向图综合的有效手段。无线局域网(WLAN)及全球微波互联接入(WiMAX)的发展使得能满足多种通信标准的高性能、小型化的多频天线成为现代无线通信系统中的迫切需求。传统天线设计过程中的试错法非常依赖设计者的经验枚举可能的参数组合,使得设计过程冗长繁琐。随着高性能计算机的普及,利用差分进化算法和电磁计算方法的结合实现天线的全局优化设计,成为了天线设计者们所期望的设计方式。
     本论文以DE算法为基础,对算法性能的改进及其在共形阵设计和多频天线优化中的应用等方面展开研究,论文的主要内容可以概括为以下几个方面:
     1.改进DE算法研究。通过在标准DE算法中引入随机最佳变异和随机局部寻优策略,提出了一种改进型的差分进化算法(MDE),在取得收敛速度和种群多样性之间相对平衡的同时增强了算法的局部寻优能力,从而提高了算法的整体性能。然后对7个标准测试函数进行优化并综合了一个直线阵的宽零陷低副瓣方向图,将优化结果与其它算法进行了对比,证明了提出的MDE算法的优越性。
     2.共形阵优化设计研究。首先,分析并研究了共形阵中的极化问题,给出了阵列有源区的选择方法。其次,设计了8×12元的圆柱共形阵,用MDE算法综合了三种不同扫描角度下的低副瓣方向图。在设计过程中采用单元的有源方向图,计入了阵元及载体的互耦对阵列方向图的影响;通过改进的Bernstein多项式对阵元幅度进行约束,克服了幅度高度振荡对方向图综合带来的危害并有效地减少了优化变量数目。最后,设计了半球面覆盖的球面共形阵。在选定阵列有源区的范围之后通过调节双极化阵元的馈电改善了阵列的极化状况,采用MDE算法综合了阵列的低副瓣方向图,实现了阵列的大范围扫描。
     3.多目标DE算法及多目标方向图综合研究。首先,在广义多目标DE算法(GDE3)的基础上,通过引入新的变异算子和个体保留机制,提出一种改进型的多目标DE算法(IGDE)。5个标准测试函数的优化结果表明该算法得到的Pareto解集收敛性更好,分布更均匀。然后,将该算法应用于两个不同的阵列方向图综合中,有效地克服了单目标算法处理此类问题时的缺陷,得到了波束宽度和副瓣电平的Pareto前沿面,一次性优化出了满足约束条件的所有可能的阵列优化设计形式。
     4.平面印刷多频天线优化设计研究。依照试错法分别研究并设计了三种不同工作机理的印刷多频天线。首先,在矩形环上延伸出相应的枝节形成新的谐振多枝节结构,设计了一种多枝节矩形环天线,设计思路简单、模型调节方便。其次,利用叉子形馈线结构激励微带宽缝隙,在不需改变缝隙外形和引入寄生单元的情况下,设计了一种工作于WLAN/WiMAX系统的多频天线;再次,利用宽带加陷波的形式设计了一种小型化的多频天线。通过新颖的加载缝隙和非对称馈电结构使天线尺寸减少了约二分之一。最后,将MDE算法和商用电磁仿真软件相结合对一款工作于WLAN/WiMAX系统的双频天线进行了优化设计。
As an important part of the modern electromagnetic research field, the optimaldesign in electromagnetic research is being paid more and more attention by researchers.The cost functions in the optimization of electromagnetic problems are always highlynonlinear, nondifferentiable and have multiple peaks, which bring many challenges tothe classical optimization methods in solving the practical problems. As a simple andefficient global search algorithm, differential evolution algorithm (DE) is very suitablefor dealing with the complex optimization problems in the electromagnetic field. Evenso, because of the complexity in the practical electromagnetic applications, thecomputation of the object functions needs noticeable amount of time. How to acceleratethe convergence speed of the algorithm and reduce the total time consumption of theoptimization process is a key problem requiring to be solved at present. As the greatachievements in microwave integrated circuit and the growing demands for the spacetechnology, the conformal array antennas which fully conform to the surfaces of thecarriers have attracted more and more attentions. Since the structure of a conformalarray makes it difficult to synthesize the pattern of the array, the traditional synthesismethods and the local optimization techniques are not applicable anymore, but the highefficient DE algorithm becomes a very effective method for the synthesis of conformalarrays. The development of Wireless Local Area Networks (WLAN) and WorldwideInteroperability for Microwave Access (WiMAX) makes the antennas which satisfyseveral kinds of communication standards with high performance and compact sizegreatly demanded. The trial-and-error procedure in the traditional antenna designprocess is very dependent on the enumeration of possible parameter combinations bythe experience of designers, which makes the design process very complex and timeconsuming. As previously unimaginable computational resources become commonplace,the optimization of antenna design by the combination of DE and computationalelectromagnetism method is imminently desired by the antenna designers.
     Based on the DE algorithm, this dissertation is mainly concerned with theimprovements of DE and its applications in synthesis of conformal arrays and optimaldesign of multiband antennas. The author’s major contributions can be summarized asfollows:
     1. The study of DE algorithm. A modified DE (MDE) algorithm is proposed by introducing the strategies of random best mutation and random local search in thestandard DE algorithm. The proposed algorithm can make a relative balance betweenthe convergence speed and the diversity of the population as well as enhance the localsearch ability, and then improves the overall performance. After that, seven standardbenchmark functions are optimized and a linear array with wide null and low sidelobelevel pattern is synthesized, the optimization results are compared with several otherevolution algorithms, which demonstrate the superiority of the proposed MDEalgorithm.
     2. The study of optimal design and synthesis of conformal arrays. Firstly, thepolarization problem in conformal arrays is analyzed and studied, and the selectionmethod of active region is given. Secondly, a cylindrical conformal array with8×12elements is designed, and its patterns with low sidelobe levels when the main beamscans to three different directions are synthesized by the MDE. During this process, theapplication of active-element-pattern can take the influence of mutual coupling betweenthe elements and carrier to the array pattern into consideration. The modified Bernsteinpolynomial is employed to obtain the excitation amplitudes of the cylindrical conformalarray, which can overcome the drawbacks of high oscillation of amplitude weightsacross the phased array and significantly reduce the optimization variables in thesynthesis process. Finally, a hemispherically covered sphere conformal array is designed.The dual polarized array elements are adjusted to improve the polarization of the arrayafter the selection of the active region, and then the proposed MDE is applied tosynthesize the array patterns for low sidelobe levels, which can scan over a wide scope.
     3. The study of multi-objective DE and array synthesis. Firstly, an improvedmulti-objective differential evolution algorithm (IGDE) is proposed by introducingnovel mutation strategies and individual preservation mechanism in the GeneralizedDifferential Evolution (GDE3). The optimal results of five standard benchmarkfunctions demonstrate that the obtained Pareto solutions by the proposed algorithm arebetter than the original algorithm both in convergence and diversity. Then, the proposedIGDE is applied in two different synthesis problems, which effectively overcome thedefects in single objective evolution algorithm, the Pareto front of the beamwidths andsidelobe levels are obtained, and all the possible optimal results satisfied the constraintsare optimized at once.
     4. The study of optimal design in planar printed multiband antennas. Threeprinted multiband antennas with different work mechanisms are studied and designedby the trial-and-error procedure. Firstly, by extending strips from the rectangular ring, a rectangular ring monopole antenna with multiple resonation strips is designed, thisdesign is simple and easy to tune. Secondly, a wide slot is excited by a fork-shaped strip,then a multiband antenna for WLAN/WiMAX applications is designed withoutchanging the shape of slot or introducing coupling strips. Thirdly, a compact multibandantenna is designed by introducing several notches in a wide frequency band, the noveletched slots and the asymmetric coplanar strip (ACS) fed structure used in this designcan reduce the overall antenna size to only one half of the original design. Finally, theMDE and the commercial electromagnetic simulation software are combined to design adual band printed antenna for WLAN/WiMAX applications.
引文
[1]孙文瑜,徐成贤,朱德通,最优化方法.高等教育出版社,2004:
    [2] Leardi R., Genetic algorithms in chemometrics and chemistry: a review. Journalof Chemometrics,2001,15(7):559-569.
    [3] Kikuchi S., Tominaga D. and Arita M. et. al., Dynamic modeling of geneticnetworks using genetic algorithm and s-system. Bioinformatics,2003,19(5):643-650.
    [4] Baker B. M. and Ayechew M. A., A genetic algorithm for the vehicle routingproblem. Computers&Operations Research,2003,30(5):787-800.
    [5] Hertz H., Electric waves macmillan and company Ltd. London, L893,1893:177.
    [6] Mailloux R. J., Phased array antenna handbook. Artech House Boston, MA,2005.
    [7] Josefsson L. and Persson P., Conformal array antenna theory and design.Wiley-IEEE Press,2006.
    [8] Dolph C. L., A current distribution for broadside arrays which optimizes therelationship between beam width and side-lobe level. Proceedings of the IRE,1946,34(6):335-348.
    [9] Taylor T. T., Design of line-source antennas for narrow beamwidth and low sidelobes. IEEE Transactions On Antennas and Propagation,1955,3(1):16-28.
    [10] Skolnik M., Nemhauser G. and Sherman III J., Dynamic programming applied tounequally spaced arrays. IEEE Transactions On Antennas and Propagation,1964,12(1):35-43.
    [11] Perini J. and Idselis M., Note on antenna pattern synthesis using numericaliterative methods. IEEE Transactions On Antennas and Propagation,1971,19(2):284-286.
    [12] Richie J. E. and Kritikos H. N., Linear program synthesis for direct broadcastsatellite phased arrays. IEEE Transactions On Antennas and Propagation,1988,36(3):345-348.
    [13] Rizk M., Morris G. and Clifton M. P., Projected aperture synthesis method for thedesign of conformal array antennas.4th International Conference on Antennas andPropagation (ICAP85),1985,48-52.
    [14] Chiba I., Hariu K. and Sato S. et. al., A projection method providing low sidelobepattern in conformal array antennas. IEEE Antennas and Propagation SocietyInternational Symposium,1989. AP-S. Digest,1989,130-133.
    [15] Poulton G. T., Antenna power pattern synthesis using method of successiveprojections. Electronics Letters,1986,22(20):1042-1043.
    [16] Sarkar T. K. and Sangruji N., An adaptive nulling system for a narrow-band signalwith a look-direction constraint utilizing the conjugate gradient method. IEEETransactions On Antennas and Propagation,1989,37(7):940-944.
    [17] Kurup D. G., Himdi M. and Rydberg A., Synthesis of uniform amplitudeunequally spaced antenna arrays using the differential evolution algorithm. IEEETransactions On Antennas and Propagation,2003,51(9):2210-2217.
    [18] Tennant A., Dawoud M. M. and Anderson A. P., Array pattern nulling by elementposition perturbations using a genetic algorithm. Electronics Letters,1994,30(3):174-176.
    [19] Lu Z., Zhang A. and Hou X., Pattern synthesis of cylindrical conformal array bythe modified particle swarm optimization algorithm. Progress in ElectromagneticsResearch,2008,79:415-426.
    [20] Basu B. and Mahanti G. K., Fire fly and artificial bees colony algorithm forsynthesis of scanned and broadside linear array antenna. Progress inElectromagnetics Research B,2011,32:169-190.
    [21]张立,基于差分进化算法的天线优化设计技术.博士学位论文.西安:西安电子科技大学,2011.
    [22] Price K. and Storn R., Differential evolution-a simple and efficient adaptivescheme for global optimization over continous spaces.Technical Report,International Computer Science Institue, Berkley,1995.
    [23] Storn R. and Price K., Differential evolution–a simple and efficient heuristic forglobal optimization over continuous spaces. Journal of Global Optimization,1997,11(4):341-359.
    [24] Price K. V., Storn R. M. and Lampinen J. A., Differential evolution-a practicalapproach to global optimization.2005.
    [25] Chakraborty U. K., Advances in differential evolution. Springer-Verlag New YorkIncorporated,2008.
    [26] Qing A., Differential evolution: fundamentals and applications in electricalengineering. Wiley-IEEE Press,2009.
    [27] Krink T., Paterlini S. and Resti A., Using differential evolution to improve theaccuracy of bank rating systems. Computational Statistics&Data Analysis,2007,52(1):68-87.
    [28] Bakare G. A., Krost G. and Venayagamoorthy G. K. et. al., Comparativeapplication of differential evolution and particle swarm techniques to reactivepower and voltage control. International Conference on Intelligent SystemsApplications to Power Systems,2007. ISAP2007.,2007,1-6.
    [29] Vesterstrom J. and Thomsen R., A comparative study of differential evolution,particle swarm optimization, and evolutionary algorithms on numericalbenchmark problems. Congress on Evolutionary Computation,2004. CEC2004.,2004,1980-1987.
    [30] G mperle R., Müller S. D. and Koumoutsakos P., A parameter study fordifferential evolution. Advances in Intelligent Systems, Fuzzy Systems,Evolutionary Computation,2002,10:293-298.
    [31] Das S., Konar A. and Chakraborty U. K., Two improved differential evolutionschemes for faster global search. Proceedings of the2005conference on Geneticand evolutionary computation,2005,991-998.
    [32] Ali M. M. and T rn A., Population set-based global optimization algorithms:some modifications and numerical studies. Computers&Operations Research,2004,31(10):1703-1725.
    [33] Liu J. and Lampinen J., A fuzzy adaptive differential evolution algorithm. SoftComputing,2005,9(6):448-462.
    [34] Brest J., Greiner S. and Boskovic B. et. al., Self-adapting control parameters indifferential evolution: a comparative study on numerical benchmark problems.IEEE Transactions On Evolutionary Computation,2006,10(6):646-657.
    [35] Kim H., Chong J. and Park K. et. al., Differential evolution strategy forconstrained global optimization and application to practical engineering problems.IEEE Transactions On Magnetics,2007,43(4):1565-1568.
    [36] Qin A. K. and Suganthan P. N., Self-adaptive differential evolution algorithm fornumerical optimization. IEEE Congress on Evolutionary Computation,2005,1785-1791.
    [37] Qin A. K., Huang V. L. and Suganthan P. N., Differential evolution algorithmwith strategy adaptation for global numerical optimization. IEEE Transactions OnEvolutionary Computation,2009,13(2):398-417.
    [38]高岳林,刘俊芳,自适应差分进化算法.河北工程大学学报(自然科学版) Istic,2008.25(4).
    [39] Qing A., Dynamic differential evolution strategy and applications inelectromagnetic inverse scattering problems. IEEE Transactions On Geoscienceand Remote Sensing,2006,44(1):116-125.
    [40] Li R., Xu L. and Shi X. et. al., Improved differential evolution strategy forantenna array pattern synthesis problems. Progress in Electromagnetics Research,2011,113:429-441.
    [41] Mallipeddi R. and Suganthan P. N., Empirical study on the effect of populationsize on differential evolution algorithm. IEEE Congress on EvolutionaryComputation, CEC2008.(IEEE World Congress on Computational Intelligence),2008,3663-3670.
    [42] Mallipeddi R. and Suganthan P. N., Differential evolution algorithm withensemble of populations for global numerical optimization. Opsearch,2009,46(2):184-213.
    [43] Chiou J. and Wang F., A hybrid method of differential evolution with applicationto optimal control problems of a bioprocess system. The1998IEEE InternationalConference on Evolutionary Computation Proceedings, IEEE World Congress onComputational Intelligence,1998,627-632.
    [44] Fan H. and Lampinen J., A trigonometric mutation operation to differentialevolution. Journal of Global Optimization,2003,27(1):105-129.
    [45] Noman N. and Iba H., Accelerating differential evolution using an adaptive localsearch. Evolutionary Computation, IEEE Transactions On,2008,12(1):107-125.
    [46] Zhang L., Jiao Y. C. and Li H. et. al., Hybrid differential evolution and thesimplified quadratic interpolation for global optimization. Proceedings of the firstACM/SIGEVO Summit on Genetic and Evolutionary Computation,2009,1049-1052.
    [47] Coelho L. S. and Mariani V. C., Combining of chaotic differential evolution andquadratic programming for economic dispatch optimization with valve-pointeffect. IEEE Transactions On Power Systems,2006,21(2):989-996.
    [48] Rahnamayan S., Tizhoosh H. R. and Salama M. M., Opposition-based differentialevolution. IEEE Transactions On Evolutionary Computation,2008,12(1):64-79.
    [49] Sun J., Zhang Q. and Tsang E. P., DE/EDA: a new evolutionary algorithm forglobal optimization. Information Sciences,2005,169(3):249-262.
    [50] Das S., Abraham A. and Chakraborty U. K. et. al., Differential evolution using aneighborhood-based mutation operator. IEEE Transactions On EvolutionaryComputation,2009,13(3):526-553.
    [51] Zhang W. and Xie X., DEPSO: hybrid particle swarm with differential evolutionoperator. IEEE International Conference on Systems, Man and Cybernetics,2003,3816-3821.
    [52] He D., Wang F. and Mao Z., A hybrid genetic algorithm approach based ondifferential evolution for economic dispatch with valve-point effect. InternationalJournal of Electrical Power&Energy Systems,2008,30(1):31-38.
    [53] Zhang C., Ning J. and Lu S. et. al., A novel hybrid differential evolution andparticle swarm optimization algorithm for unconstrained optimization. OperationsResearch Letters,2009,37(2):117-122.
    [54] Abbass H. A., Sarker R. and Newton C., PDE: a pareto-frontier differentialevolution approach for multi-objective optimization problems. Proceedings of the2001Congress on Evolutionary Computation,2001,971-978.
    [55] Madavan N. K., Multiobjective optimization using a pareto differential evolutionapproach. Proceedings of the2002Congress on Evolutionary Computation,CEC'02.,2002,1145-1150.
    [56] Robi T. and Filipi B., DEMO: differential evolution for multiobjectiveoptimization. Evolutionary Multi-Criterion Optimization,2005,520-533.
    [57] Kukkonen S. and Lampinen J., GDE3: the third evolution step of generalizeddifferential evolution. The2005IEEE Congress on Evolutionary Computation,2005,443-450.
    [58] Wu L., Wang Y. and Yuan X. et. al., Multiobjective optimization of hev fueleconomy and emissions using the self-adaptive differential evolution algorithm.IEEE Transactions On Vehicular Technology,2011,60(6):2458-2470.
    [59] Montano A. A., Coello C. A. C. and Mezura-Montes E., PMODE-LD+SS: aneffective and efficient parallel differential evolution algorithm for multi-objectiveoptimization[M]//Parallel Problem Solving from Nature, PPSN XI. Springer,2010:21-30.
    [60] Haupt R. L., Thinned arrays using genetic algorithms. IEEE Transactions OnAntennas and Propagation,1994,42(7):993-999.
    [61] Caorsi S., Massa A. and Pastorino M. et. al., Optimization of the differencepatterns for monopulse antennas by a hybrid real/integer-coded differentialevolution method. IEEE Transactions On Antennas and Propagation,2005,53(1):372-376.
    [62] Massa A., Pastorino M. and Randazzo A., Optimization of the directivity of amonopulse antenna with a subarray weighting by a hybrid differential evolutionmethod. IEEE Antennas and Wireless Propagation Letters,2006,5(1):155-158.
    [63] Kurup D. G., Himdi M. and Rydberg A., Design of an unequally spacedreflectarray. IEEE Antennas and Wireless Propagation Letters,2003,2(1):33-35.
    [64] Chen Y., Yang S. and Nie Z., Synthesis of uniform amplitude thinned linearphased arrays using the differential evolution algorithm. Electromagnetics,2007,27(5):287-297.
    [65] Li F., Jiao Y. and Ren L. et. al., Pattern synthesis of concentric ring arrayantennas by differential evolution algorithm. Journal of Electromagnetic Wavesand Applications,2011,25(2-3):421-430.
    [66] Zhong M., Yang S. and Nie Z., Optimization of a luneberg lens antenna using thedifferential evolution algorithm. IEEE Antennas and Propagation SocietyInternational Symposium, AP-S2008,2008,1-4.
    [67] Yang S., Nie Z. and Wu Y., A practical array pattern synthesis approach includingmutual coupling effects. Electromagnetics,2007,27(1):53-63.
    [68] Yang S., Gan Y. B. and Peng Khiang T., A new technique for power-patternsynthesis in time-modulated linear arrays. IEEE Antennas and WirelessPropagation Letters,2003,2(1):285-287.
    [69] Yang S., Gan Y. B. and Qing A. et. al., Design of a uniform amplitude timemodulated linear array with optimized time sequences. IEEE Transactions OnAntennas and Propagation,2005,53(7):2337-2339.
    [70] Chen Y., Yang S. and Nie Z., Synthesis of optimal sum and difference patternsfrom time modulated hexagonal planar arrays. International Journal of Infraredand Millimeter Waves,2008,29(10):933-945.
    [71] Li G., Yang S. and Nie Z., A study on the application of time modulated antennaarrays to airborne pulsed doppler radar. IEEE Transactions On Antennas andPropagation,2009,57(5):1579-1583.
    [72] Luo X. F., Qing A. and Lee C. K., Application of the differential‐evolutionstrategy to the design of frequency‐selective surfaces. International Journal of Rfand Microwave Computer‐Aided Engineering,2005,15(2):173-180.
    [73] Luo X. F., Teo P. T. and Qing A. et. al., Design of double‐square‐loopfrequency‐selective surfaces using differential evolution strategy coupled withequivalent‐circuit model. Microwave and Optical Technology Letters,2005,44(2):159-162.
    [74] Yan Y., Guang F. and Gong S. et. al., Wideband Yagi-Uda antenna design usingadaptive differential evolution algorithm. Journal of Electromagnetic Waves andApplications,2010,24(17-18):2523-2536.
    [75] Xie L., Jiao Y. and Wei Y. et. al., A compact band-notched UWB antennaoptimized by a novel self-adaptive differential evolution algorithm. Journal ofElectromagnetic Waves and Applications,2010,24(17-18):2353-2361.
    [76] Goudos S. K., Design of microwave broadband absorbers using a self‐adaptivedifferential evolution algorithm. International Journal of Rf and MicrowaveComputer‐Aided Engineering,2009,19(3):364-372.
    [77] Goudos S. K., Siakavara K. and Samaras T. et. al., Self-adaptive differentialevolution applied to real-valued antenna and microwave design problems. IEEETransactions On Antennas and Propagation,2011,59(4):1286-1298.
    [78] Goudos S. K., Siakavara K. and Vafiadis E. et. al., Pareto optimal Yagi-Udaantenna design using multi-objective differential evolution. Progress inElectromagnetics Research,2010,105:231-251.
    [79] Goudos S. K. and Sahalos J. N., Pareto optimal microwave filter design usingmultiobjective differential evolution. IEEE Transactions On Antennas andPropagation,2010,58(1):132-144.
    [80] Skolnik M. I., Radar handbook.1970.
    [81] Jelalian A. V., Laser radar systems. EASCON'80; Electronics and AerospaceSystems Conference,1980,546-554.
    [82]张光义,相控阵雷达系统.国防工业出版社,1994:
    [83] Liebman P. M., Schwartzman L. and Hylas A. E., Dome radar-a new phased arraysystem. International Radar Conference,1975,349-353.
    [84] Bucci O. M., Franceschetti G. and Mazzarella G. et. al., Intersection approach toarray pattern synthesis. IEE Proceedings of Microwaves, Antennas andPropagation,1990,349-357.
    [85] Botha E. and McNamara D. A., Conformal array synthesis using alternatingprojections, with maximal likelihood estimation used in one of the projectionoperators. Electronics Letters,1993,29(20):1733-1734.
    [86] Mazzarella G. and Panariello G., Pattern synthesis of conformal arrays. Antennasand Propagation Society International Symposium,1993. AP-S. Digest,1993,1054-1057.
    [87] Tennant A., Numerical pattern synthesis of difference beams in conformal arrays.Electronics Letters,1995,31(12):938-939.
    [88] Fletcher P. N. and Dean M., Least squares pattern synthesis for conformal arrays.Electronics Letters,1998,34(25):2363-2365.
    [89] Vaskelainen L. I., Phase synthesis of conformal array antennas. IEEETransactions On Antennas and Propagation,2000,48(6):987-991.
    [90] Vaskelainen L. I., Constrained least-squares optimization in conformal arrayantenna synthesis. IEEE Transactions On Antennas and Propagation,2007,55(3):859-867.
    [91] Xu Z., Li H. and Liu Q. et. al., Pattern synthesis of conformal antenna array by thehybrid genetic algorithm. Progress in Electromagnetics Research,2008,79:75-90.
    [92] Boeringer D. W. and Werner D. H., Efficiency-constrained particle swarmoptimization of a modified bernstein polynomial for conformal array excitationamplitude synthesis. IEEE Transactions On Antennas and Propagation,2005,53(8):2662-2673.
    [93] Guo J. and Li J., Pattern synthesis of conformal array antenna in the presence ofplatform using differential evolution algorithm. IEEE Transactions On Antennasand Propagation,2009,57(9):2615-2621.
    [94] Li W. T., Shi X. W. and Hei Y. Q. et. al., A hybrid optimization algorithm and itsapplication for conformal array pattern synthesis. IEEE Transactions On Antennasand Propagation,2010,58(10):3401-3406.
    [95] Yang J. O., Yuan Q. R. and Yang F. et. al., Synthesis of conformal phased arraywith improved NSGA-II algorithm. IEEE Transactions On Antennas andPropagation,2009,57(12):4006-4009.
    [96]朱松,共形天线的发展及其电子战应用.中国电子科学研究院学报,2007.2(6).
    [97] Steyskal H., Pattern synthesis for a conformal wing array. IEEE AerospaceConference Proceedings,2002,2-819.
    [98] Choi S. H., Park J. K. and Kim S. K. et. al., A new ultra‐wideband antenna forUWB applications. Microwave and Optical Technology Letters,2004,40(5):399-401.
    [99] Kim K., Cho Y. and Hwang S. et. al., Band-notched UWB planar monopoleantenna with two parasitic patches. Electronics Letters,2005,41(14):783-785.
    [100] Hood A. Z., Karacolak T. and Topsakal E., A small antipodal vivaldi antenna forultrawide-band applications. IEEE Antennas and Wireless Propagation Letters,2008,7:656-660.
    [101] Yang Y., Zhang C. and Lin S. et. al., Development of an ultra wideband vivaldiantenna array. IEEE Antennas and Propagation Society International Symposium,2005,606-609.
    [102] Yeo J., Lee Y. J. and Mittra R., A novel dual-band WLAN antenna for notebookplatforms. IEEE Antennas and Propagation Society International Symposium,2004,1439-1442.
    [103] Sim D., Moon J. and Park S., An internal triple-band antenna forPCS/IMT-2000/Bluetooth applications. IEEE Antennas and Wireless PropagationLetters,2004,3(1):23-25.
    [104] Jan J. and Hsiang C., Wideband CPW-fed slot antenna for DCS, PCS,3G andBluetooth bands. Electronics Letters,2006,42(24):1377-1378.
    [105] Crow B. P., Widjaja I. and Kim L. G. et. al., IEEE802.11wireless local areanetworks. IEEE Communications Magazine,1997,35(9):116-126.
    [106] Lorincz J. and Begusic D., Physical layer analysis of emerging IEEE802.11nWLAN standard. The8th International Conference on Advanced CommunicationTechnology, ICACT2006,2006,6-194.
    [107] Peters S. W. and Heath R. W., The future of WiMAX: multihop relaying withIEEE802.16j. IEEE Communications Magazine,2009,47(1):104-111.
    [108] Pan C., Horng T. and Chen W. et. al., Dual wideband printed monopole antennafor WLAN/WiMAX applications. IEEE Antennas and Wireless PropagationLetters,2007,6:149-151.
    [109] Krishna D. D., Gopikrishna M. and Anandan C. K. et. al., CPW-fed koch fractalslot antenna for WLAN/WiMAX applications. IEEE Antennas and WirelessPropagation Letters,2008,7:389-392.
    [110] Su C., Chen H. and Wong K., Printed dual-band dipole antenna with U-slottedarms for2.4/5.2GHz WLAN operation. Electronics Letters,2002,38(22):1308-1309.
    [111] Nashaat D., Elsadek H. A. and Ghali H., Dual-band reduced size PIFA antennawith U-slot for Bluetooth and WLAN applications. IEEE Antennas andPropagation Society International Symposium,2003,962-965.
    [112] Ang B. and Chung B., A wideband e-shaped microstrip patch antenna for5-6GHz wireless communications. Progress in Electromagnetics Research,2007,75:397-407.
    [113] Kuo Y. and Wong K., Printed double-T monopole antenna for2.4/5.2GHzdual-band WLAN operations. IEEE Transactions On Antennas and Propagation,2003,51(9):2187-2192.
    [114] Wu J. W., Wang Y. D. and Hsiao H. M. et. al., T‐shaped monopole antenna withshorted L‐shaped strip‐sleeves for WLAN2.4/5.8‐GHz operation.Microwave and Optical Technology Letters,2005,46(1):65-69.
    [115] Huang C. and Chiu P., Dual-band monopole antenna with shorted parasiticelement. Electronics Letters,2005,41(21):1154-1155.
    [116] Lu J. and Lee Y., Planar C-shaped monopole antenna with multi-band operationfor WiMAX system.2010IEEE Antennas and Propagation Society InternationalSymposium (APSURSI),2010,1-4.
    [117] Rao Q. and Denidni T. A., New broadband dual‐printed inverted L‐shapedmonopole antenna for tri‐band wireless applications. Microwave and OpticalTechnology Letters,2007,49(2):278-280.
    [118] Lu J. and Huang B., Planar multi-band monopole antenna with L-shaped parasiticstrip for WiMAX application. Electronics Letters,2010,46(10):671-672.
    [119] Yeh S. and Wong K., Dual-band F-shaped monopole antenna for2.4/5.2GHzWLAN application. IEEE Antennas and Propagation Society InternationalSymposium,2002,72-75.
    [120] Lu J. and Chou W., Planar dual U-shaped monopole antenna with multibandoperation for IEEE802.16e. IEEE Antennas and Wireless Propagation Letters,2010,9:1006-1009.
    [121] Hsiao H. M., Lu J. H. and Wu J. W., Y‐shaped monopole antenna with dual‐broadband operation for WLAN. Microwave and Optical Technology Letters,2006,48(8):1476-1480.
    [122] Anantrasirichai N., Charkrit P. and Narkcharoen K. et. al., Application of FDTDmethod for dielectrics substrate of U-shaped slot antenna fed by microstrip line.The25th International Telecommunications Energy Conference, INTELEC'03,2003,598-601.
    [123] Tangjitjesada M., Nakasuwan J. and Kaewarsa C. et. al., U-shaped slot antennafor triple-frequency. International Conference on Communications, Circuits andSystems Proceedings,2006,1434-1437.
    [124] Liu W., Wu C. and Chu N., A compact CPW-fed slotted patch antenna fordual-band operation. IEEE Antennas and Wireless Propagation Letters,2010,9:110-113.
    [125] Dang L., Lei Z. Y. and Xie Y. J. et. al., A compact microstrip slot triple-bandantenna for WLAN/WiMAX applications. IEEE Antennas and WirelessPropagation Letters,2010,9:1178-1181.
    [126] Chen W. and Ku K., Band-rejected design of the printed open slot antenna forWLAN/WiMAX operation. IEEE Transactions On Antennas and Propagation,2008,56(4):1163-1169.
    [127] Fan S., Yin Y. and Li H. et. al., A novel tri-band printed monopole antenna withan etched∩-shaped slot and a parasitic ring resonator for WLAN and WiMAXapplications. Progress in Electromagnetics Research Letters,2010,16:61-68.
    [128] Krishna D. D., Gopikrishna M. and Anandan C. K. et. al., CPW-fed koch fractalslot antenna for WLAN/WiMAX applications. Antennas and WirelessPropagation Letters, IEEE,2008,7:389-392.
    [129] Lee J. N., Kim J. H. and Park J. K. et. al., Design of dual‐band antenna with U‐shaped open stub for WLAN/UWB applications. Microwave and OpticalTechnology Letters,2009,51(2):284-289.
    [130] Liu Z., Yin Y. and Zheng S. et. al., A compact CPW-fed monopole antenna with aU-shaped strip and a pair of L-slits ground for WLAN and WiMAX applications.Progress in Electromagnetics Research Letters,2010,16:11-19.
    [131] Gai S., Jiao Y. and Yang Y. et. al., Design of a novel microstrip-fed dual-bandslot antenna for WLAN applications. Progress in Electromagnetics ResearchLetters,2010,13:75-81.
    [132] Antoniades M. A. and Eleftheriades G. V., A broadband dual-mode monopoleantenna using NRI-TL metamaterial loading. IEEE Antennas and WirelessPropagation Letters,2009,8:258-261.
    [133] Anagnostou D. E. and Gheethan A. A., A coplanar reconfigurable folded slotantenna without bias network for WLAN applications. IEEE Antennas andWireless Propagation Letters,2009,8:1057-1060.
    [134] Johnson J. M. and Rahmat-Samii Y., Genetic algorithms and method of moments(GA/MOM) for the design of integrated antennas. IEEE Transactions OnAntennas and Propagation,1999,47(10):1606-1614.
    [135] Villegas F. J., Cwik T. and Rahmat-Samii Y. et. al., A parallel electromagneticgenetic-algorithm optimization (EGO) application for patch antenna design. IEEETransactions On Antennas and Propagation,2004,52(9):2424-2435.
    [136] Soontornpipit P., Furse C. M. and Chung Y. C., Miniaturized biocompatiblemicrostrip antenna using genetic algorithm. IEEE Transactions On Antennas andPropagation,2005,53(6):1939-1945.
    [137] Liu W., Design of a multiband CPW-fed monopole antenna using a particleswarm optimization approach. IEEE Transactions On Antennas and Propagation,2005,53(10):3273-3279.
    [138] Namkung J., Hines E. L. and Green R. J. et. al., Probe‐fed microstrip antennafeed point optimization using a genetic algorithm and the method of moments.Microwave and Optical Technology Letters,2007,49(2):325-329.
    [139] Yilmaz A. E. and Kuzuoglu M., Calculation of optimized parameters ofrectangular microstrip patch antenna using particle swarm optimization.Microwave and Optical Technology Letters,2007,49(12):2905-2907.
    [140] John M. and Ammann M. J., Wideband printed monopole design using a geneticalgorithm. IEEE Antennas and Wireless Propagation Letters,2007,6:447-449.
    [141] Wu H., Geng J. and Jin R. et. al., An improved comprehensive learning particleswarm optimization and its application to the semiautomatic design of antennas.IEEE Transactions On Antennas and Propagation,2009,57(10):3018-3028.
    [142] Jin N. and Rahmat-Samii Y., Parallel particle swarm optimization andfinite-difference time-domain (PSO/FDTD) algorithm for multiband andwide-band patch antenna designs. IEEE Transactions On Antennas andPropagation,2005,53(11):3459-3468.
    [143] Mandal A., Zafar H. and Das S. et. al., A modified differential evolutionalgorithm for shaped beam linear array antenna design. Progress inElectromagnetics Research,2012,125:439-457.
    [144] Chowdhury A., Ghosh A. and Giri R. et. al., Optimization of antennaconfiguration with a fitness-adaptive differential evolution algorithm. Progress inElectromagnetics Research B,2010,26:291-319.
    [145] Goudos S. K., Zaharis Z. D. and Yioultsis T. V., Application of a differentialevolution algorithm with strategy adaptation to the design of multi-bandmicrowave filters for wireless communications. Progress in ElectromagneticsResearch,2010,109:123-137.
    [146] Xie L. and Jiao Y., Design of an ultra-wideband antenna using booleandifferential evolution algorithm. Progress in Electromagnetics Research Letters,2011,26:135-141.
    [147] Yang S., Gan Y. B. and Qing A., Antenna‐array pattern nulling using adifferential evolution algorithm. International Journal of Rf and MicrowaveComputer‐Aided Engineering,2004,14(1):57-63.
    [148] Lin C., Qing A. and Feng Q., Synthesis of unequally spaced antenna arrays byusing differential evolution. IEEE Transactions On Antennas and Propagation,2010,58(8):2553-2561.
    [149] Ishibuchi H., Yoshida T. and Murata T., Balance between genetic search and localsearch in memetic algorithms for multiobjective permutation flowshop scheduling.IEEE Transactions On Evolutionary Computation,2003,7(2):204-223.
    [150] Noman N. and Iba H., Accelerating differential evolution using an adaptive localsearch. IEEE Transactions On Evolutionary Computation,2008,12(1):107-125.
    [151] Karaboga D. and Akay B., A comparative study of artificial bee colony algorithm.Applied Mathematics and Computation,2009,214(1):108-132.
    [152] Khodier M. M. and Christodoulou C. G., Linear array geometry synthesis withminimum sidelobe level and null control using particle swarm optimization. IEEETransactions On Antennas and Propagation,2005,53(8):2674-2679.
    [153] Yan K. and Lu Y., Sidelobe reduction in array-pattern synthesis using geneticalgorithm. IEEE Transactions On Antennas and Propagation,1997,45(7):1117-1122.
    [154] Trucco A., Thinning and weighting of large planar arrays by simulated annealing.IEEE Transactions On Ultrasonics, Ferroelectrics and Frequency Control,1999,46(2):347-355.
    [155] Xie P., Chen K. and He Z., Synthesis of sparse cylindrical arrays using simulatedannealing algorithm. Progress in Electromagnetics Research Letters,2009,9:147-156.
    [156] Boeringer D. W. and Werner D. H., Particle swarm optimization versus geneticalgorithms for phased array synthesis. IEEE Transactions On Antennas andPropagation,2004,52(3):771-779.
    [157] Wang W., Feng Q. and Liu D., Application of chaotic particle swarm optimizationalgorithm to pattern synthesis of antenna arrays. Progress in ElectromagneticsResearch,2011,115:173-189.
    [158] Selleri S., Mussetta M. and Pirinoli P. et. al., Differentiated meta-PSO methodsfor array optimization. IEEE Transactions On Antennas and Propagation,2008,56(1):67-75.
    [159] Chen Y., Yang S. and Nie Z., The application of a modified differential evolutionstrategy to some array pattern synthesis problems. IEEE Transactions OnAntennas and Propagation,2008,56(7):1919-1927.
    [160] Basu B. and Mahanti G. K., Fire fly and artificial bees colony algorithm forsynthesis of scanned and broadside linear array antenna. Progress inElectromagnetics Research B,2011,32:169-190.
    [161]李存龙,微带共形天线阵面设计.硕士学位论文.西安:西安电子科技大学,2011.
    [162]李文涛,超宽带天线设计及共形阵列综合研究.博士学位论文.西安:西安电子科技大学,2010.
    [163] Dohmen C., Odendaal J. W. and Joubert J., Synthesis of conformal arrays withoptimized polarization. IEEE Transactions On Antennas and Propagation,2007,55(10):2922-2925.
    [164] He Q., Wang B. and Shao W., Radiation pattern calculation for arbitraryconformal arrays that include mutual-coupling effects. IEEE Antennas andPropagation Magazine,2010,52(2):57-63.
    [165] Boeringer D. W. and Werner D. H., A comparison of particle swarm optimizationand genetic algorithms for a phased array synthesis problem. Antennas andPropagation Society International Symposium,2003. IEEE,2003,181-184.
    [166]高媛,非支配排序遗传算法(NSGA)的研究与应用.硕士学位论文.杭州:浙江大学,2006.
    [167] Fonseca C. M. and Fleming P. J., Genetic algorithms for multiobjectiveoptimization: formulation, discussion and generalization. Proceedings of the FifthInternational Conference on Genetic Algorithms,1993,416-423.
    [168] Srinivas N. and Deb K., Muiltiobjective optimization using nondominated sortingin genetic algorithms. Evolutionary Computation,1994,2(3):221-248.
    [169] Deb K., Pratap A. and Agarwal S. et. al., A fast and elitist multiobjective geneticalgorithm: NSGA-II. IEEE Transactions On Evolutionary Computation,2002,6(2):182-197.
    [170] Deb K., Agrawal S. and Pratap A. et. al., A fast elitist non-dominated sortinggenetic algorithm for multi-objective optimization: NSGA-II. Lecture Notes inComputer Science,2000,1917:849-858.
    [171] Kukkonen S. and Lampinen J., An extension of generalized differential evolutionfor multi-objective optimization with constraints. Parallel Problem Solving fromNature-PPSN VIII,2004,752-761.
    [172] Hu X. and Eberhart R., Multiobjective optimization using dynamic neighborhoodparticle swarm optimization. Evolutionary Computation,2002. CEC'02.Proceedings of the2002Congress on,2002,1677-1681.
    [173] Goudos S. K. and Sahalos J. N., Microwave absorber optimal design usingmulti‐objective particle swarm optimization. Microwave and OpticalTechnology Letters,2006,48(8):1553-1558.
    [174] Suman B. and Kumar P., A survey of simulated annealing as a tool for single andmultiobjective optimization. Journal of the Operational Research Society,2005,57(10):1143-1160.
    [175]公茂果,焦李成,杨咚咚等,进化多目标优化算法研究.软件学报,2009.20(2):271-289.
    [176] Joines J. A., Gupta D. and Gokce M. A. et. al., Supply chain multi-objectivesimulation optimization. Proceedings of the Winter Simulation Conference,2002,1306-1314.
    [177] Kukkonen S. and Lampinen J., Performance assessment of generalized differentialevolution3(GDE3) with a given set of problems. IEEE Congress on EvolutionaryComputation, CEC2007,2007,3593-3600.
    [178]解磊,基于差分进化算法的天线及定向耦合器优化设计技术.硕士学位论文.西安:西安电子科技大学,2012.
    [179] Deb K., Pratap A. and Meyarivan T., Constrained test problems formulti-objective evolutionary optimization. Evolutionary Multi-CriterionOptimization,2001,284-298.
    [180] Deb K., Thiele L. and Laumanns M. et. al., Scalable multi-objective optimizationtest problems. Proceedings of the Congress on Evolutionary Computation(CEC-2002),(Honolulu, USA),2002,825-830.
    [181] Wang Y., Wu L. and Yuan X., Multi-objective self-adaptive differential evolutionwith elitist archive and crowding entropy-based diversity measure. SoftComputing,2010,14(3):193-209.
    [182] Barott W. C. and Steffes P. G., Grating lobe reduction in aperiodic linear arrays ofphysically large antennas. IEEE Antennas and Wireless Propagation Letters,2009,8:406-408.
    [183] Li F., Jiao Y. and Ren L. et. al., Pattern synthesis of concentric ring arrayantennas by differential evolution algorithm. Journal of Electromagnetic Wavesand Applications,2011,25(2-3):421-430.
    [184] Deb K., Multi-objective optimization using evolutionary algorithms. Chichester:Wiley,2001.
    [185] Liu H., Ku C. and Yang C., Novel CPW-fed planar monopole antenna forWiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters,2010,9:240-243.
    [186] Deepu V., Raj R. K. and Joseph M. et. al., Compact asymmetric coplanar strip fedmonopole antenna for multiband applications. IEEE Transactions On Antennasand Propagation,2007,55(8):2351-2357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700