微波混沌电路及在测距技术中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带混沌由于具有宽频带、类噪声、δ型相关曲线等特性,在进行测距技术研究时,具有极高的空间分辨率和良好的抗干扰能力。宽带混沌信号主要有光、电两种产生方式,其中光混沌系统集成度低、价格昂贵、稳定性差,无法广泛的适用于测距领域。电混沌系统由于克服了上述缺点,在测距领域中显示出潜在的优势。
     本论文围绕微波混沌电路及在测距技术中的应用这一研究课题,完成了如下的研究工作:
     1.对Colpitts电路进行了数值研究,了解了电路的工作原理,以及各参数对电路混沌状态的影响,为进一步电路设计奠定了基础。
     2.设计了基于标准型的Colpitts混沌电路,得到了基频频率不同的微波混沌信号。同时,通过调节电路中电压值,观察到一系列丰富的非线性动力学现象。
     3.设计了改进型Colpitts混沌电路,利用BFG520XR和BFG425W微波三极管,实现了最高基频频率至2GHz的混沌信号。同时,对其非线性特性进行了实验和理论研究,得到了电路状态演变过程的分岔图,实验结果与数值模拟结果一致。
     4.利用改进型Colpitts电路产生的混沌信号作为探测源,基于混沌信号相关法进行了电缆故障的检测。实现了传输线开路点、阻抗失配以及实际破损等故障检测,并验证了该方法应用于电缆故障在线检测的可行性。实验中,我们采用多次平均和离散消除算法降低了背景噪声,改善了测量结果的信噪比。
     5.提出了基于改进型的Colpitts混沌电路的空间测距雷达系统的实验方案。将改进型Colpitts电路产生的混沌信号作为探测源,结合相关法测量技术,获得了最远探测距离为7.3m,测量空间分辨率为8cm的空间雷达测距的实验结果。
In the ranging technology, wideband chaotic signal possess the advantages of high precision and good antijamming property for its broad spectrum, noise-like waveforms, and delt-like correlation properties. There have been two main methods of wideband chaotic signal generation:photonics or electronic technologies. However, these photonics-based methods are so costly, incompact, and sensitive to environmental fluctuations, which are not suitable for widely application in the ranging detection. Electronic chaotic systems can overcome these shortages above and thus more desirable in practice.
     Focusing on the research project of microwave chaotic circuit and its applications in ranging technology, this thesis is mainly summarized in the following:
     1. Numerical study of the principle and the dependence of chaotic oscillation on the circuit parameters are presented, which build the theoretical basis for designing the microwave chaotic circuit.
     2. We implement the generation of chaos in a classical Colpitts chaotic oscillator. And Chaos with different fundamental frequencies are observed. Moreover, By tuning of the supply voltages, we observe a series of complex nonlinear dynamics.
     3. We report an experimental study of the ultrahigh frequency chaotic dynamics in an improved Colpitts oscillator. Reliable and reproducible chaos can be generated at the fundamental frequency up to2GHz using two types of broadband bipolar junction transistors, namely BFG520XR and BFG425W. Furthermore, we experimentally and numerically study the nonlinear dynamical characteristics of the circuit. The bifurcations diagram and some of the typical dynamic states are obtained. The simulation results are consistent well with the experimental results.
     4. Experimental study of the testing wire fault using electronic chaotic signal is performed. Using chaotic signal generated by the Colpitts oscillator as a probe signal, and the correlation technique as measurement method, we achieve detection of the cable faults such as open circuit, impedance mismatch and real damage. We also demonstrate the ability for testing live cable using this method. Background noise of the measure correlation trace is compressed by using the average method and discrete elimination method, and the signal to noise ratio is improved.
     5. A novel chaotic radar system based on improved Colpitts oscillator is proposed and studied. By using the chaotic signal as the probe signal, and correlation technique as the measurement method, we achieve a8cm range resolution and a7.3m detection range.
引文
[1]Van der Pol B, Van der Mark J. Frequency demultiplication[J]. Nature,1927,120: 363-364.
    [2]Kennedy M, Chua L. Van der Pol and chaos[J]. Circuits and Systems, IEEE Transactions on,1986,33(10):974-980.
    [3]Ueda Y. Randomly transitional phenomena in the system governed by Duffing's equation[J]. Journal of Statistical Physics,1979,20(2):181-196.
    [4]Bulsara A R, Lindenberg K, Shuler K E. Spectral analysis of a nonlinear oscillator driven by random and periodic forces. Ⅰ. Linearized theory [J]. Journal of Statistical Physics, 1982,27(4):787-808.
    [5]Linsay P S. Period doubling and chaotic behavior in a driven anharmonic oscillator[J]. Physical Review Letters,1981,47(19):1349-1352.
    [6]Chua L O. Chua's circuit 10 years later[J]. International Journal of Circuit Theory and Applications,1994,22(4):279-305.
    [7]Chua L O. The genesis of Chua's circuit[M]. Electronics Research Laboratory, College of Engineering, University of California,1992.
    [8]Eckmann J, Ruelle D. Ergodic theory of chaos and strange attractors[J]. Reviews of modern physics,1985,57(3):617.
    [9]Chua L, Komuro M, Matsumoto T. The double scroll family [J]. Circuits and Systems, IEEE Transactions on,1986,33(11):1072-1118.
    [10]Mees A, Chua L. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems[J]. Circuits and Systems, IEEE Transactions on,1979, 26(4):235-254.
    [11]丘水生.混沌吸引子周期轨道理论研究(Ⅰ)[J].电路与系统学报,2003,8(6):1-5.
    [12]Stojanovski T, Pihl J, Kocarev L. Chaos-based random number generators. Part II: practical realization[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,2001,48(3):382-385.
    [13]Shi Z, Qiao S, Chen K S, et al. Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator[J]. Progress In Electromagnetics Research,2007, 77:1-14.
    [14]Dmitriev A S, Kletsov A V, Laktyushkin A M, et al. Ultrawideband wireless communications based on dynamic chaos[J]. Journal of Communications Technology and Electronics,2006,51(10):1126-1140.
    [15]Furse C, Chung Y C, Lo C, et al. A critical comparison of reflectometry methods for location of wiring faults[J]. Smart Structures and Systems,2006,2(1):25-46.
    [16]Paulter N G. An assessment on the accuracy of time-domain reflectometry for measuring the characteristic impedance of transmission lines[J]. Instrumentation and Measurement, IEEE Transactions on,2001,50(5):1381-1388.
    [17]Paulter N G. Long-term repeatability of a TDR-based printed wiring board dielectric constant measurement system[J]. Instrumentation and Measurement, IEEE Transactions on,1998,47(6):1469-1473.
    [18]Galli S, Kerpez K J. Single-ended loop make-up identification-part I:a method of analyzing TDR measurements[J]. Instrumentation and Measurement, IEEE Transactions on,2006,55(2):528-537.
    [19]Chung Y C, Furse C, Pruitt J. Application of phase detection frequency domain reflectometry for locating faults in an F-18 flight control harness[J]. Electromagnetic Compatibility, IEEE Transactions on,2005,47(2):327-334.
    [20]Furse C, Chung Y C, Dangol R, et al. Frequency-domain reflectometry for on-board testing of aging aircraft wiring[J]. Electromagnetic Compatibility, IEEE Transactions on, 2003,45(2):306-315.
    [21]Tsai P, Lo C, Chung Y C, et al. Mixed-signal reflectometer for location of faults on aging wiring[J]. Sensors Journal, IEEE,2005,5(6):1479-1482.
    [22]Naik S, Furse C M, Farhang-Boroujeny B. Multicarrier reflectometry [J]. Sensors Journal, IEEE,2006,6(3):812-818.
    [23]Shin Y, Powers E J, Choe T, et al. Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable[J]. Instrumentation and Measurement, IEEE Transactions on,2005,54(6):2493-2500.
    [24]Choe T, Hong C, Song E, et al. Detection and estimation of a fault on coaxial cable via time-frequency domain reffectometry:Instrumentation and Measurement Technology Conference,2003. IMTC' 03. Proceedings of the 20th IEEE,2003 [C]. IEEE.
    [25]Song E, Shin Y, Stone P E, et al. Detection and location of multiple wiring faults via time-frequency-domain reflectometry [J]. Electromagnetic Compatibility, IEEE Transactions on,2009,51(1):131-138.
    [26]Wang J, Crapse P, Abrams J, et al. Diagnostics and prognostics of wiring integrity via joint time-frequency domain reflectometry:10th Joint FAA/DoD/NASA Conference on Aging Aircraft,2007[C].
    [27]Furse C, Smith P, Safavi M, et al. Feasibility of spread spectrum sensors for location of arcs on live wires[J]. Sensors Journal, IEEE,2005,5(6):1445-1450.
    [28]Kuhn P K, Furse C, Smith P. Locating hidden hazards in electrical wiring:Aged Electrical Systems Research Application Symposium,2006[C].
    [29]Furse C, Smith P, Lo C, et al. Spread spectrum sensors for critical fault location on live wire networks [J]. Structural Control and Health Monitoring,2005,12(3-4):257-267.
    [30]Smith P, Furse C, Gunther J. Analysis of spread spectrum time domain reflectometry for wire fault location[J]. Sensors Journal, IEEE,2005,5(6):1469-1478.
    [31]Sharma C R, Furse C, Harrison R R. Low-power STDR CMOS sensor for locating faults in aging aircraft wiring[J]. Sensors Journal, IEEE,2007,7(1):43-50.
    [32]Wu S, Furse C, Lo C. Noncontact Probes for Wire FaultLocation With Reflectometry[J]. Sensors Journal, IEEE,2006,6(6):1716-1721.
    [33]Lo C, Furse C. Noise-domain reflectometry for locating wiring faults[J]. Electromagnetic Compatibility, IEEE Transactions on,2005,47(1):97-104.
    [34]Skolnik M I. Radar handbook,1990[Z]. McGraw-Hill.
    [35]Guosui L, Hong G, Weimin S. Development of random signal radars[J]. Aerospace and Electronic Systems, IEEE Transactions on,1999,35(3):770-777.
    [36]Guosui L, Hong G, Weimin S. Development of random signal radars[J]. Aerospace and Electronic Systems, IEEE Transactions on,1999,35(3):770-777.
    [37]Horton B M. Noise-modulated distance measuring systems[J]. Proceedings of the IRE, 1959,47(5):821-828.
    [38]Cooper G R, McGillem C D, Smith J I, et al. Random signal radar[J].1967.
    [39]McGillem C D, Cooper G R, Waltman W B. An experimental random signal radar': Proceedings of national electrical conference,1967[C].
    [40]Goudet G. Radars-Theories modernes[J]. Proceedings of the IEEE,1963,51(10):1383.
    [41]Smit J A, Kneefel W. RUDAR-an experimental noise radar system[J]. De Ingenieur, 1971,83(32):99-110.
    [42]Kaveh M, Cooper G R. Average ambiguity function for a randomly staggered pulse sequence[J]. Aerospace and Electronic Systems, IEEE Transactions on,1976(3): 410-413.
    [43]Adrian D J. FM Autocorrelation fuze system[Z]. Google Patents,1980.
    [44]Adrian D J. RANGE IN FEET[Z]. Google Patents,1975.
    [45]Forrest J R, Meeson J P. Solid state microwave noise radar: Radar-77,1977[C].
    [46]刘国岁,孙泓波,顾红,等.随机信号雷达的发展[J].数据采集与处理,2001,16(1):5-9.
    [47]Narayanan R M, Xu Y, Hoffmeyer P D, et al. Design, performance, and applications of a coherent ultra-wideband random noise radar[J]. Optical Engineering,1998,37(6): 1855-1869.
    [48]Walker W T. Chaotic pseudorandom sequences and radar.[J].1993.
    [49]Bauer A. Utilisation of chaotic signals for radar and sonar purposes:Norsig,1996[C].
    [50]Bauer A. Chaotic signals for CW-ranging systems. A baseband system model for distance and bearing estimation: Circuits and Systems,1998. ISCAS' 98. Proceedings of the 1998 IEEE International Symposium on,1998[C]. IEEE.
    [51]Bauer A. Generation and processing of chaotic signals in range measurement systems: AIP Conference Proceedings,1997[C].
    [52]Ying S, Weihua S, Guosui L. Ambiguity function of chaotic phase modulated radar signals:Signal Processing Proceedings,1998. ICSP'98.1998 Fourth International Conference on,1998[C]. IEEE.
    [53]袁永斌.一种混沌雷达波形的模糊函数[J].电子科学学刊,1998,20(5):641-647.
    [54]Lin F, Liu J. Chaotic lidar[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2004,10(5):991-997.
    [55]Venkatasubramanian V, Leung H. A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging[J]. Signal Processing Letters, IEEE,2005,12(7):528-531.
    [56]Weinberg G V, Alexopoulos A. Examples of a class of chaotic radar signals[R].DTIC Document,2005.
    [57]Curry G R. Radar system performance modeling[M]. Artech House,2005.
    [58]Willsey M S, Cuomo K M, Oppenheim A V. Quasi-orthogonal wideband radar waveforms based on chaotic systems [J]. Aerospace and Electronic Systems, IEEE Transactions on,2011,47(3):1974-1984.
    [59]Shaobin X, Zishu H, Lidong L, et al. Antinoise and ECCM performances of Multi-Segment chaos-based FM radar signals:Electrical and Control Engineering (ICECE),2011 International Conference on,2011 [C]. IEEE.
    [60]乔闪. Colpitts微波混沌及其雷达应用[D].浙江大学,2007.
    [61]Jiang T, Long J, Wang Z, et al. Experimental investigation of a direct chaotic signal radar with colpitts oscillator [J]. Journal of Electromagnetic Waves and Applications, 2010,24(8-9):1229-1239.
    [62]王冰洁,钱建军,赵彤,等.混沌激光雷达抗干扰性能分析[J].中国激光,2011,38(5):514002.
    [63]刘培国,刘继斌,李高升,等.混沌信号在超宽带穿墙成像雷达中的应用[J].国防科技大学学报,2007,29(3):67-70.
    [64]蒋飞,刘中,胡文,等.连续混沌调频雷达信号分析[J].电子与信息学报,2010,32(3):559-563.
    [65]龚天安,王云才,孔令琴,等.面向汽车防撞的混沌激光雷达[J].中国激光,2009,36(9):2426-2430.
    [66]Slater J, Maunupau K, Paras P. A chaotic radar demonstration system:Workshop on Transmission of Chaotic Signals, Univeristy of Bristol,2006[C].
    [67]方锦清.驾驭混沌与发展高新技术[M].原子能出版社,2002.
    [68]方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74.
    [69]胡文.宽带混沌信号产生,分析与处理[D].南京理工大学,2008.
    [70]张学义.混沌同步及其在通信中的应用研究[D].哈尔滨工程大学,2002.
    [71]吴祥兴,陈忠.混沌学导论[M].上海科学技术文献出版社,1996.
    [72]Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the atmospheric sciences, 1963,20(2):130-141.
    [73]方锦清.非线性系统中混沌控制方法,同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202.
    [74]安鸿伟.混沌动力学与地震油储信息检测方法[D].成都理工大学,2002.
    [75]王钟.宽带微波混沌振荡器的研究与设计[D].南京大学,2012.
    [76]Lindberg E, Murali K, Tamasevidius A. Chaotic oscillators-design principles[J]. Chaos in Circuits and Systems, eds. G. Chen and T. Ueta. World Scientific,2002:1-21.
    [77]史治国.微波混沌电路及其在通信中的应用[D][D].浙江大学,2006.
    [78]Moreno U F, Peres P, Bonatti I S. Analysis of piecewise-linear oscillators with hysteresis[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,2003,50(8):1120-1124.
    [79]Harb B A, Harb A M. Chaos and bifurcation in a third-order phase locked loop[J]. Chaos, Solitons & Fractals,2004,19(3):667-672.
    [80]Dudek P, Juncu V D. Compact discrete-time chaos generator circuit[J]. Electronics Letters,2003,39(20):1431-1432.
    [81]禹思敏.一种新型混沌产生器[J].物理学报,2005,53(12):4111-4119.
    [82]Tang K, Man K F, Zhong G, et al. Generating chaos via x| x|[J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on,2001,48(5):636-641.
    [83]Salama K N, Ozoguz S, Elwakil A S. Generation of n-scroll chaos using nonlinear transconductors:Circuits and Systems,2003. ISCAS'03. Proceedings of the 2003 International Symposium on,2003 [C]. IEEE.
    [84]Cenys A, Tamasevicius A, Baziliauskas A, et al. Hyperchaos in coupled Colpitts oscillators[J]. Chaos, Solitons & Fractals,2003,17(2):349-353.
    [85]禹思敏.用三角波序列产生三维多涡卷混沌吸引子的电路实验[J].物理学报,2005,54(4):1500-1509.
    [86]Wierzbowski M, Jankowski S, Pleskacz W, et al. Eigenvalues of Wien-bridge chaos generator:CAD Systems in Microelectronics,2001. CADSM 2001. Proceedings of the 6th International Conference. The Experience of Designing and Application of, 2001 [C]. IEEE.
    [87]Namajunas A, Tamasevicius A. Modified Wien-bridge oscillator for chaos[J]. Electronics letters,1995,31(5):335-336.
    [88]Kennedy M P. Three steps to chaos. Ⅱ. A Chua's circuit primer[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,1993,40(10):657-674.
    [89]Yang X, Li Q. Chaos generator via Wien-bridge oscillator[J]. Electronics Letters,2002, 38(13):623-625.
    [90]Elwakil A S, Kennedy M P. High frequency Wien-type chaotic oscillator[J]. Electronics Letters,1998,34(12):1161-1162.
    [91]Namajunas A, Tamasevicius A. Simple RC chaotic oscillator[J]. Electronics Letters, 1996,32(11):945-946.
    [92]Morgul O. Wien bridge based RC chaos generator [J]. Electronics letters,1995,31(24): 2058-2059.
    [93]Rubezic V, Djurovic I, Dakovic M. Time-frequency representations-based detector of chaos in oscillatory circuits[J]. Signal Processing,2006,86(9):2255-2270.
    [94]冉立新,陈抗生.蔡氏电路混沌信号频谱分布特征及其在电路设计中的应用[J].电路与系统学报,1998,3(1):8-13.
    [95]Hosny E A, Sobhy M I. Analysis of chaotic behavior in lumped-distributed circuits applied to the time-delayed Chua's circuit[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,1994,41(12):915-918.
    [96]Kawata J, Nishio Y, Ushida A. Analysis of Chua's circuit with transmission line[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on, 1997,44(6):556-558.
    [97]Sharkovsky A N. Chaos from a time-delayed Chua's circuit[J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on,1993,40(10):781-783.
    [98]Chang F. Transient analysis of lossy transmission lines with arbitrary initial potential and current distributions[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,1992,39(3):180-198.
    [99]Elwakil A S, Kennedy M P. Improved implementation of Chua's chaotic oscillator using current feedback op amp[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,2000,47(1):76-79.
    [100]Abdomerovic I, Lozowski A G, Aronhime P B. High-frequency Chua's circuit: Circuits and Systems,2000. Proceedings of the 43rd IEEE Midwest Symposium on, 2000[C]. IEEE.
    [101]Shi Z, Ran L. Tunnel diode based Chua's circuit: Emerging Technologies: Frontiers of Mobile and Wireless Communication,2004. Proceedings of the IEEE 6th Circuits and Systems Symposium on,2004[C]. IEEE.
    [102]Silva C P, Young A M. Progress towards a microwave chaotic communications system:triumphs and tribulations in realizing broadband high-frequency chaotic oscillators: Electronics, Circuits and Systems,1998 IEEE International Conference on, 1998[C]. IEEE.
    [103]Kennedy M P. Chaos in the Colpitts oscillator[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,1994,41(11):771-774.
    [104]Tamasevicius A, Mykolaitis G, Bumeliene S, et al. Chaotic Colpitts oscillator for the ultrahigh frequency range[J]. Nonlinear Dynamics,2006,44(1-4):159-165.
    [105]Bumeliena S, Tamasevipius A, Mykolaitis G, et al. Hardware prototype of the two-stage chaotic Colpitts oscillator for the UHF range[J].2001.
    [106]Lindberg E, Murali K, Tamasevicius A. The colpitts oscillator family[J].2008.
    [107]Mykolaitis G, Tamasevicius A, Cenys A, et al. Very high and ultrahigh frequency hyperchaotic oscillators with delay line[J]. Chaos, Solitons & Fractals,2003,17(2): 343-347.
    [108]Illing L, Gauthier D J. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science,2006,16(3):33119.
    [109]Wegener C. RF chaotic Colpitts oscillator:Proc. NDES' 95,1995[C].
    [110]Tamasevicius A, Mykolaitis G, Bumeliene S, et al. Two-stage chaotic Colpitts oscillator[J]. Electronics Letters,2001,37(9):549-551.
    [111]Mykolaitis G, Tamasevicius A, Bumeliene S. Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF ranges [J]. Electronics letters,2004,40(2): 91-92.
    [112]Shi Z, Ran L, Chen K. Simulation and experimental study of chaos generation in microwave band using Colpitts circuit[J]. Journal of Electronics (China),2006,23(3): 433-436.
    [113]Sarafian G, Kaplan B Z. Is the Colpitts oscillator a relative of Chua's circuit?[J]. Circuits and Systems Ⅰ:Fundamental Theory and Applications, IEEE Transactions on, 1995,42(6):373-376.
    [114]Kennedy M P. On the relationship between the chaotic Colpitts oscillator and Chua's oscillator[J]. Circuits and Systems Ⅰ:Fundamental Theory and Applications, IEEE Transactions on,1995,42(6):376-379.
    [115]Shi Z, Ran L, Chen K. Chaos generation in microwave band using Colpitts circuit: Communications, Circuits and Systems,2005. Proceedings.2005 International Conference on,2005[C]. IEEE.
    [116]Tamasevipius A, Mykolaitis G, Bumeliena S, et al. VHF and UHF chaotic Colpitts oscillator: Proc. NDES' 2004,2004[C].
    [117]史治国,冉立新,陈抗生.基于预设定频率分布的Colpitts混沌电路设计[J].浙江大学学报(工学版),2005,3.
    [118]Abdomerovic I, Lozowski A G, Aronhime P B. High-frequency Chua's circuit: Circuits and Systems,2000. Proceedings of the 43rd IEEE Midwest Symposium on, 2000[C]. IEEE.
    [119]Tamasevicius A, Bumeliene S, Lindberg E. Improved chaotic Colpitts oscillator for ultrahigh frequencies[J]. Electronics Letters,2004,40(25):1569-1570.
    [120]Kengne J, Chedjou J C, Kenne G, et al. Dynamical properties and chaos synchronization of improved Colpitts oscillators[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(7):2914-2923.
    [121]Quyen N X, Quyet B T, Van Yem V, et al. Simulation and implementation of improved chaotic Colpitts circuit for UWB communications: Communications and Electronics (ICCE),2010 Third International Conference on,2010[C]. IEEE.
    [122]Bumeliene S, Tamasevicius A, Mykolaitis G, et al. Numerical investigation and experimental demonstration of chaos from two-stage Colpitts oscillator in the ultrahigh frequency range[J]. Nonlinear Dynamics,2006,44(1-4):167-172.
    [123]Bumelieno S, Tamasevipius A, Mykolaitis G, et al. Hardware prototype of the two-stage chaotic Colpitts oscillator for the UHF range[J].2001.
    [124]Mykolaitis G, Tamasevicius A, Bumeliene S, et al. Two-Stage Chaotic Colpitts Oscillator for the UHF Range[J]. Electronics and Electrical Engineering.-Kaunas: Technologija,2004(4):53.
    [125]Lindberg E, TAMASEVICIUS A, Mykolaitis G, et al. Towards threshold frequency in chaotic Colpitts oscillator[J]. International Journal of Bifurcation and Chaos,2007, 17(10):3449-3453.
    [126]Tsakiridis O, Zervas E, Syvridis D, et al. Design of a differential chaotic Colpitts oscillator: Electronics, Circuits and Systems,2004. ICECS 2004. Proceedings of the 200411th IEEE International Conference on,2004 [C]. IEEE.
    [127]Cenys A, Tamasevicius A, Baziliauskas A, et al. Hyperchaos in coupled Colpitts oscillators[J]. Chaos, Solitons & Fractals,2003,17(2):349-353.
    [128]杨琨,宋耀良.基于考毕兹振荡器的宽带混沌电路设计[J].现代电子技术,2011,34(23):81-84.
    [129]李辉.超宽带混沌通信技术的研究[D].南京理工大学,2008.
    [130]Elwakil A S, Kennedy M P.A family of Colpitts-like chaotic oscillators[J]. Journal of the Franklin Institute,1999,336(4):687-700.
    [131]O' Cairbre F, Maggio G M, Kennedy M P. Devaney chaos in an approximate one-dimensional model of the Colpitts oscillator[J]. International Journal of Bifurcation and Chaos,1997,7(11):2561-2568.
    [132]Zhang Y, Li C, Li Q, et al. Breaking a chaotic image encryption algorithm based on perceptron model[J]. Nonlinear Dynamics,2012,69(3):1091-1096.
    [133]Dmitriev A S, Panas A I, Starkov S O, et al. Experiments on RF band communications using chaos[J]. International Journal of Bifurcation and Chaos,1997,7(11):2511-2527.
    [134]Abarbanel H D, Kennel M B, Illing L, et al. Synchronization and communication using semiconductor lasers with optoelectronic feedback[J]. Quantum Electronics, IEEE Journal of, 2001,37(10):1301-1311.
    [135]Dmitriev A S, Kletsov A V, Laktyushkin A M, et al. Ultrawideband wireless communications based on dynamic chaos[J]. Journal of Communications Technology and Electronics,2006,51(10):1126-1140.
    [136]Gastaud N, Poinsot S, Larger L, et al. Electro-optical chaos for multi-10 Gbit/s optical transmissions[J]. Electronics letters,2004,40(14):898-899.
    [137]Blakely J N, Illing L, Gauthier D J. High-speed chaos in an optical feedback system with flexible timescales[J]. Quantum Electronics, IEEE Journal of, 2004,40(3): 299-305.
    [138]Fischer I, Liu Y, Davis P. Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication[J]. Physical Review A,2000,62(1):11801.
    [139]Blakely J N, Holder J D, Corron N J, et al. Simply folded band chaos in a VHF microstrip oscillator[J]. Physics Letters A,2005,346(1):111-114.
    [140]Mykolaitis G, Tamasevicius A, Cenys A, et al. Very high and ultrahigh frequency hyperchaotic oscillators with delay line[J]. Chaos, Solitons & Fractals,2003,17(2): 343-347.
    [141]朱仲英.传感网与物联网的进展与趋势[J].微型电脑应用,2010,26(1):1-3.
    [142]Mackay N A, Penstone S R. A high-sensitivity narrow-band time-domain reflectometer[J]. Instrumentation and Measurement, IEEE Transactions on,1974, 23(2):155-158.
    [143]Hartebrodt M, Kabitzsch K. Fault detection in fieldbuses with time domain reflectometry: AFRICON,2004.7th AFRICON Conference in Africa,2004[C]. IEEE.
    [144]Conroy G J. Cable fault locating by electronic means[J]. Proc. Mines Technology Transfer Semin, Mine Power Distribution,1995:104-114.
    [145]Amarnath N N. Capacitance and inductance sensors for the location of faults in wires[D]. Department of Electrical and Computer Engineering, University of Utah, 2004.
    [146]Furse C, Chung Y C, Lo C, et al. A critical comparison of reflectometry methods for location of wiring faults[J]. Smart Structures and Systems,2006,2(1):25-46.
    [147]荆涛,张璐,石旭东,等.一种新颖的飞机电缆故障类型诊断方法[J].自动化与仪表,2009,10.
    [148]Wang A, Zhang M, Xu H, et al. Location of wire faults using chaotic signal[J]. Electron Device Letters, IEEE,2011,32(3):372-374.
    [149]徐航,王安帮,韩晓红,等.混沌信号相关法测量电介质传输线的断点及阻抗失配[J].物理学报,2011,60(9):90503.
    [150]王冰洁,王云才.基于混沌激光的高速随机数产生与时域反射测量技术[J].太原理工大学学报,2012,43(3):276-282.
    [151]徐航.基于宽带混沌信号和高速随机序列检测传输电缆故障[D].太原理工大学,2012.
    [152]李静霞,徐航,马福昌.基于混沌电路的电介质传输线故障检测[J].太原理工大学学报,2013,44(3):341-343.
    [153]Takushima Y, Chung Y C. Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network[J]. Opt. Express,2007,15(9):5318-5326.
    [154]杨丛渊.混沌激光相关法光纤断点定位系统的信噪比改善[D].太原理工大学,2011.
    [155]王安帮,王云才.混沌激光相关法光时域反射测量技术[J].中国科学:信息科学,2010,43(3):512-518.
    [156]王云才,钱建军.激光混沌信号相关法测距研究[J].深圳大学学报:理工版,2010(004):379-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700