等效微波媒质的特殊色散及其人工调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁波在媒质中的传播完全取决于媒质的色散。本文研究微波频段等效媒质(Metamateiral)的特殊色散及其人工调控。
     本文首先研究了单轴人工媒质的色散,尤其是Plasma频率附近的特殊色散。通过理论分析、全波仿真和实验测量,本文在Plasma频率附近观察到了超快相速度,并首次报道了发生在非吸收谐振区域的、源于媒质色散曲面形变的负群速现象。本文同时测量得到了亚光速的电磁波波前速度(Front velocity)和包络畸变,验证了Sommerfeld和Brillouin关于电磁波波前速度在任何媒质中均不会超过自由空间中光速的论断。
     其次,本文研究了基于有源方法的等效媒质色散的人工调控。本文通过在坡印廷定理的自由电流项中引入由入射电磁波场强控制的电流源,导出了微波频段增益媒质(Gain media)的构造条件。通过在人工媒质基本构造单元中引入负阻元件,得到了满足因果律(?)Krammers-Kronig关系的“有源”色散。仿真和实验结果表明,上述有源媒质可以结合光学增益媒质和传统无源人工媒质的优点,在补偿、甚至过补偿无源人工媒质固有损耗的同时,具有可任意调控的等效介电常数和磁导率。基于无源人工媒质的工程应用主要受制于其固有损耗的事实,微波增益媒质的实现为完美透镜和电磁隐身等人工媒质的新奇应用提供了可能的实现方案。
     最后,本文研究了基于Kramers-Kronig关系的等效媒质色散的人工调控。以人工实现电磁波完美匹配层(PML:Perfectly matched layer)为例,本文通过引入集总元件和多重谐振,精确调控人工媒质的频率色散,使之部分满足计算电磁学中的单轴PML模型,物理实现了超薄、超宽带、全极化的PML吸收表面,其仿真和实测指标均接近Rozanov极限。此外,利用最新的3D打印技术,本文亦实现了接近无损的人工PML,得到了在设计频段内可等效为自由空间的人工微波媒质。对于TE入射的任意电磁波,该媒质呈现等于1的等效折射率和波阻抗,可用于实现材料的自我隐身、完美天线罩等诸多应用。此前,PML只能通过数学定义,本项研究展现了人工实现PML的良好前景。
     本文研究所得的呈现特殊色散的新型人工微波媒质,从原理上突破了自然媒质和传统人工媒质的局限,其理论和方法可以扩展到电磁波的其它频段,具有广泛的潜在应用前景。
The propagation of electromagnetic waves in a medium is dictated by material dispersion. This dissertation focuses on the special dispersion of metamaterials and its artificial control.
     The special dispersion of a uniaxial metamaterial is firstly investigated. The ultra-fost phase velocity and the negative group velocity are observed in the vicinity of plasma frequency. It is pointed out that the occurrence of the negative group velocity is due to the distortion of the dispersion surface, and its front velocity remains subluminal. This result validates the viewpoints of Sommerfeld and Brillouin, that the front velocity in any medium would never be faster than the speed of light in free space.
     Secondly, the artificial control of metamateiral dispersion based on active devices is investigated. By adding incidence-controlled source in the free current term of Poynting's theorem, the condition of constructing a microwave gain medium is described. By introducing negative resistance elements into metamaterial units, an experimental microwave gain medium combining features of optical gain media and negative indexed metamaterials is obtained. While its loss can be compensated or even over-compensated, the dispersion of such an active medium obeys the Krammers-Kronig relations. Considering that the inherent loss of metamaterials is the fundamental issue plaguing their realistic applications such as superlenses and invisibility cloaks, the proposed gain metamaterial provides a potential solution for the realistic realization of such applications in the future.
     Finally, the artificial control of metamaterial dispersion based on Krammers-Kronig relations is presented. Illustrating by the implementation of the perfectly matched layers (PML), the ultra-thin, ultra-wideband, polarization-independent PML absorbing surfaces that obey a modified model of PML are obtained by introducing lumped elements and multiple resonances in metamaterial units. Measured results show that the ultra-wideband PML-like absorption approaches the Rozanov limit. Moreover, a nearly lossless3D isotropic PML based on the3D printing technology, whose constitutive parameters are effectively the same as those in free space at designed frequencies is experimentally realized. Under an arbitrary TE incidence, this artificial PML behaves as a completely transparent object, which can be used to construct a perfect radome. Previously, these PML responses can only be found in theory and mathematically defined. This work demonstrates the potential of achieving a full-function PML.
     The obtained effective media with artificial dispersions fundamentally avoid the inherent limits of natural media and traditional metamaterials, showing a wide range of potential applications in the future.
引文
[1]J. A. Kong, Electromagnetic wave theory, Cambridge:E M W Pub,2000.
    [2]W. C. Chew, Waves and fields in inhomogeneous media, New York:Van Nostrand Reinhold,1990.
    [3]J. D. Jackson, Classical electrodynamics, New York:Wiley,1999.
    [4]L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, Oxford: Pergamon,1984.
    [5]M. Fox, Optical properties of solids. New York:Oxford University Press,2001.
    [6]J. C. M. Garnett, "Colours in metal glasses and in metallic films.," Philosophical Transactions Of the Royal Society Of London Series a-Containing Papers Of a Mathematical Or Physical Character, vol.203, pp.385-420, Sep,1904.
    [7]J. B. Pendry, A. J. Holden, W. J. Stewart et al., "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, vol.76, no.25, pp.4773-4776, Jun 17,1996.
    [8]S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity:A quasi-static model,'" Microwave And Optical Technology Letters, vol.35, no.1, pp.47-51, Oct 5,2002.
    [9]J. B. Pendry, A. J. Holden, D. J. Robbins et al., "Magnetism from conductors and enhanced nonlinear phenomena," leee Transactions on Microwave Theory And Techniques, vol.47, no.11, pp.2075-2084, Nov,1999.
    [10]J. M. Pitarke, F. J. Garcia-Vidal, and J. B. Pendry, "Effective electronic response of a system of metallic cylinders," Physical Review B, vol.57, no.24, pp. 15261-15266, Jun 15,1998.
    [11]G. Dolling, M. Wegener, C. M. Soukoulis et al., "Negative-index metamaterial at 780 nm wavelength," Optics Letters, vol.32, no.1, pp.53-55, Jan 1,2007.
    [12]A. N. Grigorenko, A. K. Geim, H. F. Gleeson et al., "Nanofabricated media with negative permeability at visible frequencies," Nature, vol.438, no.7066, pp. 335-338, Nov 17,2005.
    [13]T. F. Gundogdu, I. Tsiapa, A. Kostopoulos et al., "Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime," Applied Physics Letters, vol.89, no.8, Aug 21,2006.
    [14]V. M. Shalaev, W. S. Cai. U. K. Chettiar el al., "Negative index of refraction in optical metamaterials," Optics Letters, vol.30, no.24, pp.3356-3358, Dec 15, 2005.
    [15]H. S. Chen, L. X. Ran, J. T. Huangfu et al., "Negative refraction of a combined double S-shaped metamaterial," Applied Physics Letters, vol.86, no.15, Apr 11, 2005.
    [16]H. S. Chen, L. X. Ran, J. T. Huangfu el al., "Metamaterial exhibiting left-handed properties over multiple frequency bands," Journal Of Applied Physics, vol.96. no. 9, pp.5338-5340. Nov 1.2004.
    [17]H. S. Chen, L. X. Ran, J. T. Huangfu et al., "Left-handed materials composed of only S-shaped resonators," Physical Review E, vol.70, no.5, Nov,2004.
    [18]J. C. Bose, "On the Rotation of Plane of Polarisation of Electric Waves by a Twisted Structure.'" Proceedings of the Royal Society of London, vol.63. no.1898, pp. 146-152.1898.
    [19]H. C. Pocklington, "Growth of a wave group when the group velocity is negative.' Nature, vol.71,pp.607-608. Nov-Apr.1905.
    [20]W. E. Kock, "Metallic Delay Lenses," Bell System Technical Journal, vol.27. no.1. pp.58-82,1948.
    [21]V. G. Veselago, "Properties Of Materials Having Simultaneously Negative Values Of Dielectric (Xi) And Magnetic (Mu) Susceptibilities," Soviet Physics Solid State,Ussr, vol.8, no.12, pp.2854- &,1967.
    [22]V. G. Veselago, "Electrodynamics Of Substances with Simultaneously Negative Values Of Sigma And Mu," Soviet Physics Uspekhi-Ussr, vol.10, no.4, pp.509- &, 1968.
    [23]D. R. Smith, and N. Kroll. "Negative refractive index in left-handed materials,' Physical Review Letters, vol.85, no.14, pp.2933-2936, Oct 2,2000.
    [24]R. A. Shelby, D. R. Smith, and S. Schultz. "Experimental verification of a negative index of refraction," Science, vol.292, no.5514, pp.77-79. Apr 6.2001.
    [25]B. Edwards, A. Alu, M. E. Young el al., "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Physical Review Letters, vol.100, no.3, Jan 25,2008.
    [26]C. Helgert, E. Pshenay-Severin, M. Falkner et al., "Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,'" Nano Letters, vol.11. no.10. pp. 4400-4404. Oct.2011.
    [27]Z. Y. Ku. K. M. Dani, P. C. Upadhya et al., "Bianisotropic negative-index metamaterial embedded in a symmetric medium." Journal Of the Optical Society Of America B-Optical Physics, vol.26. no.12, pp. B34-B38, Dec,2009.
    [28]J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol.85, no.18, pp.3966-3969. Oct 30.2000.
    [29]Z. Y. Wang, Y. Luo, L. Peng et al., "Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial." Applied Physics Letters, vol.94, no.13. Mar 30.2009.
    [30]Z. Y. Wang, Z. Wang, J. Y Wang et al., "Gyrotropic response in the absence of a bias field." Proceedings Of the National Academy Of Sciences Of the United States Of America, vol.109. no.33. pp.13194-13197. Aug 14.2012.
    [31]D. X. Ye, Z. Wang. Z. Y. Wang et al.. "Towards Experimental Perfectly-Matched Layers With Ultra-Thin Metamaterial Surfaces." leee Transactions on Antennas And Propagation, vol.60. no.11, pp.5164-5172. Nov,2012.
    [32]X. Zhang, and Z. W. Liu, "Superlenses to overcome the diffraction limit." Nature Materials, vol.7, no.6. pp.435-441.Tun,2008.
    [33]Z. W. Liu. S. Durant, H. Lee et al., "Far-field optical superlens,"Nano Letters, vol. 7. no.2. pp.403-408. Feb.2007.
    [34]Z. Jacob. L. V. Alekseyev. and E. Narimanov. "Optical hyperlens:Far-field imaging beyond the diffraction limit." Optics Express, vol.14. no.18. pp.8247-8256. Sep 4. 2006.
    [35]D. Schurig, J. J. Mock, B. J. Justice et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol.314, no.5801, pp.977-980, Nov 10,2006.
    [36]A. Donald, "Throw off the cloak of invisibility," Nature, vol.490, no.7421, pp. 447-447, Oct 25,2012.
    [37]F. Gomory, M. Solovyov, J. Souc et al., "Experimental Realization of a Magnetic Cloak," Science, vol.335, no.6075, pp.1466-1468, Mar 23,2012.
    [38]A. L. Greer, "Materials Science a Cloak Of Liquidity," Nature, vol.464, no.7292, pp.1137-1138, Apr 22,2010.
    [39]J. M. Lukens, D. E. Leaird, and A. M. Weiner, "A temporal cloak at telecommunication data rate," Nature, vol.498, no.7453, pp.205-208, Jun 13, 2013.
    [40]N. Philip, and A. P. Waters, "Unveiling the Malaria Parasite's Cloak of Invisibility?," Science, vol.340, no.6135, pp.936-937, May 24,2013.
    [41]J. Valentine, J. S. Li, T. Zentgraf et al., "An optical cloak made of dielectrics," Nature Materials, vol.8, no.7, pp.568-571, Jul,2009.
    [42]N. I. Landy, S. Sajuyigbe, J. J. Mock et al., "Perfect metamaterial absorber," Physical Review Letters, vol.100, no.20, May 23,2008.
    [43]H. Jaradat, and A. Akyurtlu, "Broadband Infrared (IR) Metamaterial Absorber," 2012 Ieee Antennas And Propagation Society International Symposium (Apsursi), 2012.
    [44]H. Tao, C. M. Bingham, A. C. Strikwerda et al., "Highly flexible wide angle of incidence terahertz metamaterial absorber:Design, fabrication, and characterization," Physical Review B, vol.78, no.24, Dec,2008.
    [45]W. R. Zhu, X. P. Zhao, B. Y. Gong et al., "Optical metamaterial absorber based on leaf-shaped cells," Applied Physics a-Materials Science & Processing, vol.102, no. l,pp.147-151, Jan,2011.
    [46]S. Q. Chen, H. Cheng, and J. G. Tian, "Polarization insensitive and omnidirectional infrared broadband near perfect metamaterial absorber," Metamaterials: Fundamentals And Applications Iv, vol.8093,2011.
    [47]Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Physical Review B, vol.79, no.4, Jan, 2009.
    [48]N. Zhang, P. H. Zhou, D. M. Cheng et al., "Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers," Optics Letters, vol.38, no.7, pp.1125-1127, Apr 1,2013.
    [49]O. Reynet, and O. Acher, "Voltage controlled metamaterial," Applied Physics Letters, vol.84, no.7, pp.1198-1200, Feb 16,2004.
    [50]W. M. Zhu, H. Cai, T. Mei et al., "A Mems Tunable Metamaterial Filter," Mems 2010:23rd Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest, pp.196-199,2010.
    [51]T. Jiang, Z. Y. Wang, D. Li et al. "Low-DC Voltage-Controlled Steering-Antenna Radome Utilizing Tunable Active Metamaterial," Ieee Transactions on Microwave Theory And Techniques, vol.60. no.1, pp.170-178. Jan,2012.
    [52]H. T. Chen, W. J. Padilla, J. M. O. Zide et al, "Active terahertz metamaterial devices," Nature, vol.444, no.7119, pp.597-600. Nov 30,2006.
    [53]A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Optics Express, vol.15, no.3, pp.1115-1127, Feb 5,2007,
    [54]H. J. Zhao, J. Zhou, Q. Zhao et al., "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Applied Physics Letters, vol.91, no. 13, Sep 24,2007.
    [55]B. J. Arritt, D. R. Smith, and T. A. Khraishi, "Analytically describing the temperature-dependent constitutive parameters of an electromagnetic metamaterial,' Journal Of Intelligent Material Systems And Structures, vol.23, no.4, pp.463-471, Mar,2012.
    [56]H. Noh, M. Scharrer, M. A. Anderson et al., "Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal," Physical Review B, vol.77, no.11, Mar,2008.
    [57]A. M. Zhivkov, "Abnormal dispersion of refractive index of purple membranes in an aqueous medium," Applied Optics, vol.49, no.2, pp.272-274 Jan 10,2010.
    [58]L. Liu, and S. L. He, "Near-field optical storage system using a solid immersion lens with a left-handed material slab," Optics Express, vol.12; no.20, pp. 4835-4840, Oct 4,2004.
    [59]K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature, vol.450, no.7168, pp.397-401, Nov 15,2007.
    [60]N. Brunner, V. Scarani, M. Wegmuller et al., "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Physical Review Letters, vol. 93, no.20, Nov 12,2004.
    [61]G. Dolling, C. Enkrich, M. Wegener et al., "Simultaneous negative phase and group velocity of light in a metamaterial," Science, vol.312, no.5775, pp.892-894, May 12,2006.
    [62]G. M. Gehring, A. Schweinsberg, C. Barsi et al., "Observation of backward pulse propagation through a medium with a negative group velocity," Science, vol.312, no.5775, pp.895-897, May 12,2006.
    [63]L. M. Li, H. Guo, F. Xiao et al., "The control of superluminal group velocity in a system equivalent to the Y-type four-level atomic system," Physics Letters A, vol. 334, no.2-3, pp.214-219, Jan 10,2005.
    [64]D. X. Ye, G. A. Zheng, J. Y. Wang et al., "Negative Group Velocity in the Absence of Absorption Resonance," Scientific Reports, vol.3, Apr 9,2013.
    [65]A. Capua, O. Karni, G. Eisenstein et al., "Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser," Optics Express, vol.20, no.6, pp.5987-5992, Mar 12,2012.
    [66]A. J. Kemp, A. J. Maclean, J. M. Hopkins et al., "Thermal management in disc lasers:doped-dielectric and semiconductor laser gain media in thin-disc and microchip formats," Journal Of Modern Optics, vol.54. no.12. pp.1669-1676. 2007.
    [67]R. Paschotta, "Laser Gain Media:A Diverse Family of Materials." Photonics Spectra, vol.47, no.5, pp.57-60, May,2013.
    [68]M. Tanaka, M. Nishikino, T. Kawachi et al., "X-ray laser beam with diffraction-limited divergence generated with two gain media," Optics Letters, vol. 28, no.18, pp.1680-1682, Sep,2003.
    [69]Y. Sivan, S. M. Xiao, U. K. Chettiar et al., "Frequency-domain simulations of a negative-index material with embedded gain," Optics Express, vol.17, no.26, pp. 24060-24074, Dec 21,2009.
    [70]J. M. Hamm, S. Wuestner, K. L. Tsakmakidis et al., "Theory of Light Amplification in Active Fishnet Metamaterials," Physical Review Letters, vol.107, no.16, pp. 167405-167409, Oct 13,2011.
    [71]S. Wuestner, A. Pusch, K. L. Tsakmakidis et al., "Overcoming Losses with Gain in a Negative Refractive Index Metamaterial," Physical Review Letters, vol.105, no.12, pp.127401-127404, Sep 14,2010.
    [72]L. Brillouin, "On the propagation of light in dispersing media," Annalen Der Physik, vol.44, no.10, pp.203-240, May,1914.
    [73]A. Sommerfeld, "The propagation of light in dispersing media," Annalen Der Physik, vol.44, no.10, pp.177-202, May,1914.
    [74]L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation (vol 406, pg 277,2000)," Nature, vol.411, no.6840, pp.974-974, Jun 21,2001.
    [75]F. L. Zhang, S. Potet, J. Carbonell et al., "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial," leee Transactions on Microwave Theory And Techniques, vol.56, no.11, pp.2566-2573, Nov,2008.
    [76]R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, vol.70, no.4, Oct,2004.
    [77]E. L. Bolda, R. Y. Chiao, and J. C. Garrison, "2 Theorems for the Group-Velocity In Dispersive Media," Physical Review A, vol.48, no.5, pp.3890-3894, Nov,1993.
    [78]E. L. Bolda, J. C. Garrison, and R. Y. Chiao, "Optical Pulse-Propagation at Negative Group Velocities Due To a Nearby Gain Line," Physical Review A, vol.49, no.4, pp. 2938-2947, Apr.1994.
    [79]L. Brillouin, Wave propagation and group velocity, New York:Academic Press, 1960.
    [80]Y. Yuan, L. F. Shen, L. X. Ran et al., "Directive emission based on anisotropic metamaterials," Physical Review A, vol.77, no.5, May,2008.
    [81]X. D. Chen, T. M. Grzegorczyk, B. I. Wu et al., "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, vol.70. no. 1. pp.016608-016614, Jul, 2004.
    [82]C. G. B. Garrett, and D. E. Mccumber, "Propagation Of a Gaussian Light Pulse Through an Anomalous Dispersion Medium," Physical Review A, vol.1, no.2, pp. 305- &,1970.
    [83]F. R. Faxvog, C. N. Y. Chow, T. Bieber et al., "Measured Pulse Velocity Greater Than C In a Neon Absorption Cell," Applied Physics Letters, vol.17. no.5, pp. 192- &.1970.
    [84]S. Chu. and S. Wong, "Linear Pulse-Propagation In an Absorbing Medium,' Physical Review Letters, vol.48, no.11, pp.738-741.1982.
    [85]H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov el al., "Topological Transitions in Metamaterials.'" Science, vol.336. no.6078. pp.205-209. Apr 13,2012.
    [86]M.I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Physical Review Letters, vol.98. no.17, Apr 27, 2007.
    [87]P. Kinsler, and M. W. McCall. "Causality-Based Criteria for a Negative Refractive Index Must Be Used With Care.'" Physical Review-Letters, vol.101. no.16, Oct 17, 2008.
    [88]S. M. Xiao, V. P. Drachev, A. V. Kildishev el al., "Loss-free and active optical negative-index metamaterials." Nature, vol.466. no.7307, pp.735-U6. Aug 5, 2010.
    [89]A. Fang, T. Koschny, and C. M. Soukoulis. "Self-consistent calculations of loss-compensated fishnet metamaterials," Physical Review B, vol.82, no.12, pp. 121102-121105. Sep 9,2010.
    [90]Y. Yuan, B. I. Popa. and S. A. Cummer, "Zero loss magnetic metamaterials using powered active unit cells.'" Optics Express, vol.17, no.18, pp.16135-16143, Aug 31,2009.
    [91]T. Jiang, K. H. Chang, L. M. Si et al., "Active Microwave Negative-Index Metamaterial Transmission Line with Gain," Physical Review Letters, vol.107, no. 20. pp.205503-205507, Nov 11,2011.
    [92]H. S. Chen, J. J. Zhang. Y. Bai et al., "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method." Optics Express, vol.14. no.26. pp.12944-12949. Dec 25.2006.
    [93]J. P. Berenger, "A Perfectly Matched Layer for the Absorption Of Electromagnetic-Waves," Journal Of Computational Physics, vol.114, no.2, pp. 185-200. Oct,1994.
    [94]J. P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems." Ieee Transactions on Antennas And Propagation, vol.44, no. l.pp.110-117. Jan,1996.
    [95]Z. S. Sacks, D. M. Kingsland. R. Lee et al., "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," Ieee Transactions on Antennas And Propagation, vol.43.no.12, pp.1460-1463. Dec,1995.
    [96]Y. Wang, T. Y. Sun, T. Paudel et al., "Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells,"Nano Letters, vol.12. no.1, pp.440-445, Jan,2012.
    [97]F. Ding. Y. X. Cui. X. C. Ge et al., "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, vol.100, no.10, Mar 5,2012.
    [98]J. Grant. Y. Ma, S. Saha et al., "Polarization insensitive terahertz metamaterial absorber," Optics Letters, vol.36, no.8, pp.1524-1526. Apr 15.2011.
    [99]M. P. Hokmabadi, D. S. Wilbert. P. Kung et al., "Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model." Optics Express, vol.21.no.14, pp.16455-16465. Jul 15.2013.
    [100]X. Y. Peng, B. Wang. S. M. Lai et al., "Ultrathin multi-band planar metamaterial absorber based on standing wave resonances," Optics Express, vol.20, no.25, pp. 27756-27765, Dec 3,2012.
    [101]D. Shrekenhamer, W. C. Chen, and W. J. Padilla, "Liquid Crystal Tunable Metamaterial Absorber," Physical Review Letters, vol.110, no.17, Apr 25,2013.
    [102]H. Tao, N. I. Landy, C. M. Bingham et al., "A metamaterial absorber for the terahertz regime:Design, fabrication and characterization," Optics Express, vol.16, no.10, pp.7181-7188, May 12,2008.
    [103]B. N. Wang, T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Physical Review B, vol.80, no.3, Jul,2009.
    [104]H. Zhang, and Y. J. Feng, "Bandwidth Enhanced Metamaterial Absorber at Terahertz Frequency," Proceedings Of the 2012 International Workshop on Metamaterials (Meta),2012.
    [105]T. Sekitani, M. Takamiya, Y. Noguchi et al., "A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches," Nature Materials, vol.6, no.6, pp.413-417, Jun,2007.
    [106]X. Chen, Y. Q. Li, Y. Q. Fu et al., "Design and analysis of lumped resistor loaded metamaterial absorber with transmission band," Optics Express, vol.20, no.27, pp. 28347-28352, Dec 17,2012.
    [107]L. Lu, S. B. Qu, J. F. Wang et al., "A three-dimensional wide-angle metamaterial absorber," Istm/2009:8th International Symposium on Test And Measurement, Vols 1-6, pp.611-614,2009.
    [108]Y. X. Cui, J. Xu, K. H. Fung et al., "A thin film broadband absorber based on multi-sized nanoantennas," Applied Physics Letters, vol.99, no.25, Dec 19,2011.
    [109]H, Wakatsuchi, S. Greedy, C. Christopoulos et al., "Customised broadband metamaterial absorbers for arbitrary polarisation," Optics Express, vol.18, no.21, pp.22187-22198, Oct 11,2010.
    [110]D. M. Kingsland, J. Gong, J. L. Volakis et al., "Performance of an anisotropic artificial absorber for truncating finite-element meshes," Ieee Transactions on Antennas And Propagation, vol.44, no.7, pp.975-982, Jul,1996.
    [111]K. N. Rozanov, "Ultimate thickness to bandwidth ratio of radar absorbers," Ieee Transactions on Antennas And Propagation, vol.48, no.8, pp.1230-1234, Aug, 2000.
    [112]Y. C. Chung, K. W. Lee, I. P. Hong et al., "Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model," leice Electronics Express, vol.8, no.2, pp.89-95, Jan 25,2011.
    [113]H. Zhou, S. B. Qu, B. Q. Lin et al., "Filter-Antenna Consisting of Conical FSS Radome and Monopole Antenna," Ieee Transactions on Antennas And Propagation, vol.60, no.6, pp.3040-3045, Jun,2012.
    [114]J. Shin, J. T. Shen, and S. H. Fan, "Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth," Physical Review Letters, vol.102, no.9, Mar 6,2009.
    [115]B. Wood, and J. B. Pendry, "Metamaterials at zero frequency." Journal Of Physics-Condensed Matter, vol.19, no.7, Feb 21,2007.
    [116]C. Rockstuhl, T. Paul. F. Lederer et al., "Transition from thin-film to bulk properties of metamaterials." Physical Review B, vol.77. no.3, Jan.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700