利用表面改型Si衬底制备氧化物薄膜及生长机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用化学湿法各向异性刻蚀技术对单晶Si(100)衬底进行表面改型处理;利用化学法—液相沉积技术以及物理法—射频磁控溅射技术在普通Si(100)衬底和经过表面改型处理的Si衬底上制备钛酸锶(STO)薄膜;采用溶胶—凝胶旋涂方法制备Bi-2212超导薄膜。主要研究内容如下:
     1.单晶Si(100)衬底表面“V”型沟槽结构的获得。使用KOH溶液和刻蚀速率缓和剂异丙醇(IPA)的混合溶液作为刻蚀剂,开创性地使用Ti02作为刻蚀掩模在单晶Si(100)衬底上获得了Si[010]方向平行排列侧壁为Si(110)面的“V”型沟槽结构。通过对不同的刻蚀时间和掩模厚度等刻蚀条件的研究得出:随着刻蚀时间的增加,“V”型沟槽的深度和宽度逐渐增加,掩模也不断被消耗,当掩模消耗殆尽后,已经形成的沟槽结构的顶端开始被腐蚀而导致结构恶化。掩模太厚则容易脱落,太薄则起不到保护衬底的作用。利用30分钟的刻蚀时间和200nm厚的Ti02掩模可以得到侧壁较光滑平整的“V”型沟槽结构。同时,基于各向异性刻蚀的同性刻蚀也可得到“V”型沟槽,但其质量有待提高。本章制备的“V”型沟槽衬底结构是以后工作的基础,为下步薄膜的制备提供了优异的衬底材料。
     2.采用液相沉淀法(LPD)和射频磁控溅射法制备STO薄膜。在已经获得表面为“V”型沟槽的Si(100)衬底上制备STO薄膜。经过实验和分析得出:衬底表面亲水性是液相沉积法能否进行的基础,对衬底亲水处理10分钟可以得到较好的亲水效果:在较低的沉积温度(40-C),650℃退火4小时后得到光滑平整的薄膜表面形貌,沉积温度升高则表面相貌变差。在溅射法制备STO薄膜的过程中,在衬底温度为300-C的条件下,经过700℃的后退火处理得到了[l00)]方向择优取向的STO过渡层,衬底温度和退火温度的升高及降低均使[l00)]方向择优取向趋势减弱,同时溅射功率和溅射气压的降低有利于薄膜[l00)]择优取向生长。
     3.溶胶—凝胶旋涂法制备Bi-2212薄膜。薄膜前驱液使用金属硝酸盐作为反应物,EDTA为络合剂,三乙醇胺作为聚合剂。实验结果表明:经过9小时水浴,黏度为55mPa.s的溶胶与衬底结合最好;通过对溶胶干燥工艺的摸索,得出在600℃下迅速干燥的工艺可以解决由于前驱膜聚集而导致的薄膜分块以及成分不均和表面形貌恶化的问题;通过对热处理工艺的探索,得出830℃是Bi-2212相的最佳生成温度,经过5小时的升温和3小时的保温得到了纯度最高的Bi-2212薄膜;通过对涂胶次数的研究,得出在保证Bi-2212相纯度的前提下,旋涂5次的薄膜具有较光滑的表面形貌和较好的超导转变特征。对在Si衬底上生长Bi-2212薄膜的研究中发现:在平的Si(100)衬底上获得了一定程度c轴外延的Bi-2212薄膜,但是杂相较多,由杂质引起的表面形貌不佳的情况需要改善;而在“V”型沟槽衬底上,Bi-2212薄膜呈现一定程度的a,b轴垂直衬底表面生长,该结果需要进一步的实验来确认。
In this dissertation, anisotropic wet etching method was used to modify the surface pattern of single Si(100) substrate; Liquid phase deposition and RF magnetron sputtering were adopted to obtain STO film; Spin-coating sol-gel method was employed to prepare Bi-2212 film. The main contents of the dissertation are as follows:
     1. The fabrication of V-grooves on single Si(100) substrate. In this paper, parallel and continuous V-grooves along the Si[010] direction with sidewalls of Si(110) were formed on Si(100) substrate using KOH/IPA solution as etchant, and the TiO2 film was deposited on the Si(100) as resist mask by RF-magnetron sputtering. The investigation on different etching time and thickness of mask showed that the depth and width of V-grooves decreased gradually with the increase of etching time, and the mask was also consumed continuously. Top of the grooves were corroded and the structure were deteriorated when the mask was exhausted. So the substrate cannot be well protected if the mask was too thin, while the mask tended to fall off from the substrate if the mask was too thick. V-grooves with smooth sidewalls were obtained when the etching time was 30 min and the thickness of TiO2 mask was 200 nm. In the meanwhile, V-grooves could also be obtained using isotropic wet etching method based on anisotropic etching method, while the quality is undesirable. The modified substrate with V-grooves is the base for the preparation of films with different orientation.
     2. Liquid phase deposition and RF magnetron sputtering were adopted to obtain STO film. STO film was deposited on Si(100) substrates with V-grooves. Results revealed that quality of STO films prepared via LPD depended on the wettability of substrate surface, and the wettability was desirable when the hydrophilic treatment for the substrates was 10 min. Smooth film was obtained when the deposition temperature was 40℃, followed by annealing at 650℃for 4 h, and large grains occurred when increasing the deposition temperature. STO film with [e00)] preferred orientation was obtained when the substrate temperature is 300℃via RF magnetron sputtering, followed by post annealing at 700℃. The increase and decrease of substrate temperature or annealing temperature would deteriorate the preferred orientation, while the decrease of sputtering power and pressure improved the degree of preferred orientation of STO film.
     3. Spin-coating sol-gel method was employed to prepare Bi-2212 film. Nitrates were used as the reactor, ethylenediaminetetracetic acid (EDTA) as chelating agent and triethanolamine (TEA) as polymerizing agent. Results revealed that the attachment of sol film and substrate is optimal when the time of water bath is 9h, which the viscosity of sol was 55mPa.s. In the meanwhile, the optimization of drying process showed that the rapid drying at 600℃can decrease both the partition of film brought by the assembling of precursor gel film and the ingredient segregation brought by the different dissolvability of every ingredient.In addition,830℃was the optimal heat treatment temperature to form Bi-2212 single phase, and Bi-2212 thin film with high quality can be obtained when the heating-up time and holding time are 5 h and 3 h, respectively. At last, the times for spin-coating were also investigated, and 5 times was desirable to obtain films with smooth surface and better superconductivity property. The Bi-2212 film was c-axis epitaxial on flat Si(100) substrate, but the impurity should be reduced, and the surface morphology need to be improved. For the film grown on modified substrate, the a, b-axis epitaxial film could be found on sidewall of V-grooves, but the result need to be confirmed.
引文
1. Meissner W, Ochsenfeld R. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit [J], Naturwissenschaften,1933,21:787-788.
    2. Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S. Flux quantization in a high-Tc superconductor [J], Nature,1987, 326:855-855.
    3. Anderson P W, Schrieffer R. A dialogue on the theory of high Tc [J], Physics Today,1991, 44:54-61.
    4.李如康.高TC超导体及相关化合物探索研究新进展[J],无机化学学报,14(1):1-10.
    5. Jin S, Mavoori H, Bower C, Van Dover R B. High critical currents in iron-clad superconducting MgB2 wires [J], Nature,2001,411:563-565.
    6. Glowacki B A, Majoros M, Vickers M, Evetts J E, Shi Y, McDougall I. Superconductivity of powder-in tube MgB2 Wires[J], Supercond. Sci. Technol.,2001,14:193-199.
    7. Torardi C C, Subramanian M A, Calabrese J C, Evetts J E, Shi Y, McDougall I. Structures of the superconducting oxides Tl2Ba2Cu06 and Bi2Sr2Cu06 [J], Phys. Rev. B,1988,38(1):225-235.
    8. Bordet P, Capponi J J, Chaillout C, Chenavas J, Hewat A W, Hewat E A, Hodeau J L, Marezio M, Tholence J L, Tranqui D. A note on the symmetry and Bi valence of the superconductor Bi2Sr2Ca,Cu208 [J], Physica C,1988,156 (1):189-192.
    9. Gammel P L, Bishop D J, Dolan G J, J R, Murray C A, Schneemeyer L F, Waszczak J V. Observation of hexagonally correlated flux quanta in YBa2Cu307[J], Phys. Rev. Lett.,1987,59(22): 2592-2595.
    10.章立源,张金龙,崔广霁.超导物理[M],北京:电子工业出版社,1995,9-16.
    11.李洁,高孝恢,蒋淑芬,汪浩,王小刚,高德.Bi系超导相形成的化学动力学研究[J],物理学报,1995,44(6):949-957.
    12.王文虎,郑萍,周玉琴,陈兆甲,樊占国,单玉桥. Bi2212超导化合物中碳含量及其影响[J],低温与超导,1999,27:12-14.
    13.张翠萍,汪京荣.高温超导块材的研究进展[J],稀有金属快报,2003,7:2-4.
    14. Josephson B D. Possible new effects in superconductive tunneling [J], Phys. Lett.,1962,1(7): 251-253.
    15. Bednorz J G. Muller K. A. Possible high Tc superconductivity in the Ba-La-Cu-O System [J], Z. Phys.B,1986,64:189-193.
    16.赵忠贤,陈立泉,杨乾声,黄玉珍,陈赓华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清.Ba-Y-Cu氧化物液氮温区的超导电性[J],科学通报,1987,32:412-414.
    17. Hazen R M, Finger L W, Angel R J, Prewitt C T, Ross N L, Mao H K, Hadidiacos C G, Hor P H, Meng R L, Chu C W. Crystallographic description of phases in the Y-Ba-Cu-O superconductor [J], Phys. Rev. B,1987,35:7238-7241.
    18. Grant P M, Beyers R B, Engler E M, Lim G, Parkin S S P, Ramirez M L, Lee V Y, Nazzal A, Vazquez J E, Savoy R J. Superconductivity above 90K in the compound YBa2Cu30x:tructural, transport, and magnetic properties [J], Phys. Rev. B,1987,35:7242-7244.
    19. Siegrist T, Sunshine S, Murphy D W, Cava R J, Zahurak S M. Crystal structure of the high-Tc superconductor Ba2YCu3O9-δ [J], Phys. Rev. B,1987,35:7137-7139.
    20. LePage Y, McKinnon W R, Tarascon J M, Greene L H, Hul 1 G W, Hwang D M. Room-temperature structure of the 90-K bulk superconductor YBa2Cu3O8-x[J], Phys. Rev. B,1987, 35:7245-7248.
    21. Qadri S B, Toth L E, Osofsky M, Lawrence S, Gubser D U, Wolf S A. X-ray identification of the superconducting high-Tc phase in the Y-Ba-Cu-O system [J], Phys. Rev. B,1987,35: 7235-7237.
    22. Michel C, Hervieu M, Grandin A. Superconductivity in the Bi-Sr-CuO system [J]. Phys B,1987, 68:421-423.
    23. Maeda H, Tanaka Y, Fukutomi M. A new high Tc oxide superconductor without a rare earth element [J]. JPn J Appl Phys,1987,26:L209-L211.
    24. Sheng Z Z, Hermnn A M. Bulk superconductivity at 120K in Ti-Ca-Ba-Cu-O system [J]. Nature, 1988,332:138139.
    25. Schilling A. superconductivity above 130K in the Hg-Ba-Ca-Cu-O system [J], Nature,1993, 363:56-58.
    26. Gao L. Study of superconductivity in the Hg-Ba-Ca-Cu-O system [J], Physica C,1993,213(3-4): 261-265.
    27. Meng R L, Beauvais L, Zhang X N, Huang Z J, Sun Y Y, Xue Y Y, Chu C W. Synthesis of the high-temperature superconductors HgBa2CaCu2O6+δ and HgBa2Ca2Cu3O8+δ [J], Physica C,1993, 216:21-28.
    28. Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K. Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+s (m=1,2,and 3) under quasihydrostatic pressures [J], Phys. Rev. B,1994,50:4260-4263.
    29. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39K in magnesium diboride [J], Nature,2001,410:63-64.
    30. Sebastian S E, Harrison N, Palm E, Murphy T P, Mielke C H, Liang R, Bonn D A, Hardy W N, Lonzarich G G. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor [J], Nature,2008,454:200-203.
    31. Balachandran U, Li M, Koritala R E, Fisher B F, Ma B. Development of YBCO-coated conductors for electric power applications [J], Physica C,2002,372-376:869-872.
    32. Chen M, Donzel L, Lakner M, Paul W. High temperature superconductors for power applications [J], Journal of the European Ceramic Society,2004,24:1815-1822.
    33. Cai X Y, Polyanskii A, Li Q, Riley G N, Laberlestier D C. Current-limiting mechanisms in individual filaments extracted from superconducting tapes [J], Nature,1998,392:906-909.
    34. Hakuraku Y, Mori Z. Rapid annealing effect in the superconducting 2223 Bi(Pb)SrCaCuO thin films prepared by sputtering [J], J. Appl. Phys.,1993,73:309-315.
    35. Wagner P, Frey U, Hillmer F and Adrian H. Evidence for a vortex-liquid-vortex-glass transition in epitaxial Bi2Ca2Cu3O10+δ thin films [J], Phys. Rev. B,1995,51:1206-1212.
    36.王志,陈历明,朱学武.高温超导体在小型储能装置中的应用[J],能源技术,2002,23(1):26-29.
    37.林良真,肖立业.高温超导输电电缆的现状与发展[J],电力设备,2007,8(1):1-4.
    38.侯炳林,朱学武.高温超导储能应用研究的新进展[J],低温与超导,2005,33(3):46-50.
    39. Hayashi H, Tsutsumi K, Funaki K, Iwakuma M, Tasaki K, Sumiyoshi Y, M Tezuka. Design study of a 1 GJ class HTS-SMES (1):Conceptual design of a magnet system [J], Physica C,2001, 357-360:1327-1331.
    40. Avenhaus B, Porch A, Lancaster M J, Hensen S, Lenkens M, Orbach-Werbig S, Muller E, Dahne U, Tellmann N, Klein N, Dubourdieu C, Senateur J P, Thomas O, Karl H, Stritzker B, Edwards J A, Humphreys R. Microwave properties of YBCO thin films [J], IEEE Transactions on Applied Superconductivity,1995,5(2):1737-1740.
    41. Lombardi F, Bauch T, Johansson J, Cedergren K, Lindstrom T, Tafuri F, Stepantsov E. Quantum properties of d-wave YBa2Cu307-δ Josephson junction [J], Physica C,2006,435(1-2):8-11.
    42. Park D G, Kim D W, Angani C S, Timofeev V P, Cheong Y M. Measurement of the magnetic moment in a cold worked 304 stainless steel using HTS SQUID [J], Journal of Magnetism and Magnetic Materials,2008,320(20):571-574.
    43. Altenburg H, Plewa J, Jaszczuk W, Itoh M, Brunets I, Buev A, Vilics T. Superconducting materials for electronic applications [J], Physica C,2002,372-376:1046-1050.
    44. Pfuch A, Schmidl F, Wiese A, Dorrer L, Hubner U, Seidel P. Several kinds of Josephson junctions based on BSCCO-2212 and TBCCO-2212 thin films [J], Cryogenics,1997,37:685-689.
    45. Khare, Gupta A K, Chaudhry S. Detection of small magnetic fields using thick BSCCO film RF squid operating at 77 K [J], Cryogenics,1993,33:926-927.
    46. Muller F J, Gallop J C, Caplin A D, Labdi S, Raffy H. A BSCCO(2223) thin film DC SQUID utilising natural grain boundary weak-links [J], Journal of Alloys and Compounds,1993, 195:703-706.
    47. Muller F J, Gallop J C, Caplin A D, Labdi S, Raffy H. A DC SQUID using natural grain boundaries in BSCCO [J], Physica C,1992,202:268-270.
    48. Gupta A K, Chaudhry Sangeeta, Khare Neeraj, Tomar V S. Observation of RF SQUID behaviour in BSCCO thick film upto 96K [J], Solid State Communications,1991,78:931-934.
    49. Hammond S G, Harrop S P, Muirhead C M, Gough C E, Alford N M, Button T W. Noise properties of bulk 2-hole SQUIDS of YBCO and BSCCO [J], Physica C,1989,162-164:395-396.
    50. Rayne R, Toth L, Bender B. Machining superconducting BSCCO devices [J], Physica C,1989, 162-164:879-880.
    51.周廉,甘子钊.中国高温超导材料及应用发展战略研究[M],北京:化学工业出版社,2007,106-110.
    52. Herrell D J. Fcmtojoule Josephson Tunneling Logic Gates [J], IEEE J. Solid-state Circuits,1974, 9:277-282.
    53. Tinkham M.超导电性导论[M].北京:科学出版社,1985,286.
    54.周午纵,梁维耀.高温超导基础研究[M],上海:上海科学出版社,1999,45.
    55. Alami H E, Rannou I, Cavellin C D. Influence of the bismuth deficit on the structuraland electric properties of the Bi2Sr2CaCu2Oy thin films synthesized by molecular beam epitaxy, Physica C,2004,406:131-136.
    56. Eckstein J N, Bozovic I, Schlom D G, Harris J S. Growth of superconducting Bi2Sr2Can-1CunOx thin films by atomically layered epitaxy [J], Journal of Crystal Growth 1991,111:973-977.
    57. Salvato M, Attanasio C, Carbone G, Di Luccio T, Prischepa S L, Russo L, Maritato L. Bi2Sr2CuO6+δ/ACuO2(A=Ca, Sr) superconducting multilayers obtained by Molecular Beam Epitaxy [J], Physica C,1999,316:215-223.
    58. Moussy J B, Laval J Y, Xu X Z, Beuran F C, Cavellin C D, Lagues M. Percolation behaviour in intergrowth BiSrCaCuO structures grown by molecular beam epitaxy [J], Physica C,2000,329: 231-242.
    59. Oh S, Eckstein J N. Infinite-layer (Ca1-xSrxCuO2) film growth by molecular beam epitaxy and effect of hole doping [J], Thin Solid Films,2005,483:301-305.
    60. Ochsenkuhn-Petropoulou M, Argyropoulou R, Tarantilis P, Vottea I, Ochsenkuhn K M, Parissakis G. Large area YBaCuO and BSCCO coatings produced on different substrates by an electrophoretic deposition technique [J], Journal of Materials Processing Technology,2001,18 (2): 179-184.
    61. Salamati H, Kameli P, Akhavan M. Fabrication of BSCCO thin films using sputtering technique [J], Phys. Stat. Sol.,2004,1(7):1895-1898.
    62. Gunji T, Unno M, Arimitsu K, Abe Y, Long N, Bubendorfer A. Preparation of YBCO and BSCCO superconducting thin films by a new chemical precursor method [J], Bull. Chem. Soc. Jph. 2005,78,187-191.
    63. Regnier P, Bifulco-Michon C, Poissonnet S, Martin H, Bonnaillie P, Giunchi G, Legendre F. Investigation of Ag buffered Ni and Ni-Cr alloys as substrates for the preparation of bismuth superconducting tapes [J], Super. Sci.& Tech.2002,15:1427-1435.
    64. Alarco J A, A. Ilushechkin, T. Yamashita, A. Bhargava, J. Barry, I. D. R. Mackinon. Microstructural investigation of Bi-Sr-Ca-Cu-oxide thick films on alumina substrates [J], Journal of materials science,1997,323,759-3764.
    65. Kobayashi T, Nomura K, Uchikawa F, Masumi T, Uehara Y. Superconducting Bi-Sr-Ca-Cu-O Thick Films by the Sol-Gel Method [J], J. J. Appl. Phys,1988,27(10):1880-1882.
    66.刘丽敏,李长江.BiSrCaCuO系超导膜的化学喷雾淀积法[J],北京化工学院学报,1991,18:100-120.
    67. Fujino H, Kume E, Sakai S. Face-to-face annealing of Bi2Sr2CaCu20x thin films for intrinsic Josephson junctions with uniform critical currents [J], Physica C,2005,426-431:1474-1478.
    68. Hitoshi. Phase formation of Bi-2212 ceramics [J],日本金属学会志,2002,66(7):723-727.
    69. Freamat M, Ng K W. Order parameter oscillations in Fe/Ag/Bi2Sr2CaCu2O8+δ tunnel junctions [J], Phys. Rev. B,2003,68:0605071-0605074.
    70. Seki M, Yasuike S, Tokuda T, Kishida S. Preparation of Bi2Can-1CunOy thick films by chemical solution deposition [J], Physica C,2004,412-414:1358-1361.
    71. Kaneko S, Shimizu Y, Yuasa H, Ohya S. Bi2Sr2Ca1Cu2Ox film prepared using 266 nm YAG laser [J], Physica C,2002,378-381:1270-1273.
    72. Amrein T, Schultz L, Urban K. Low-noise dc superconducting quantum interference devices in Bi2Sr2CaCu208+6 thin films [J], J. Appl. Phys.,1995,77(12):6703-6709.
    73. Ogura M, Matsumoto K, Katsurahara K, Kishida S, Yoshikawa H, Fukushima S. Preparation of Bi2Sr2Can-1CunOy superconducting films by a rf magnetron sputtering method with multi-targets [J], Physica C,2003,392-396:1306-1309.
    74. Matsumoto K, Ogura M, Katsurahara K, kishida S, Mizutani T, Yoshikawa H, Fukushima S, Tokutaka H. Phase control of Bi2Sr2Can-1CunOy superconducting sputtered films using He gas [J], Physica C,2002,378-381:1256-1259.
    75. Pavuna D, Abrecht M, Baudat P A, Margaritondo G, Ariosa D. Toward nano-technology of functional oxides:photoemission studies of in situ grown ultra-thin films of hig-Tc cuprates and related oxides [J], Current Applied Physics,2001,1:337-340.
    76. Abrecht M, Ariosa D, Saleh S A, Rast S, Margaritondo G, Onellion M, Pavuna D. On detection of the Fermi edge in in situ grown thin films of high-Tc oxides [J], Physica C,364-365:538-540.
    77. Zhang H, Tang X T, Zhang L, Han S H, Zhao Y. Similarity of crystalline structure of BSCCO single crystal and multi-layer film [J], Physica C,2001,357-360:190-193.
    78. Meng R L, Pham D, Wang Y Q, Cmaidalka J, Otto J, Hickey B R, Hidebrand J, Sun Y Y, Xue Y Y, Chu C W. Tape processing of HBCCO, BSCCO, and YBCO thick films on metallic substrates with high Jc by the spray/compress technique [J], Physica C,2000,341-348:2315-2318.
    79. Moriya M, Suzuki R, Kobayashi T, Goto T. Fabrication of NiO/Bi2Sr2CaCu2Ox, hetero-structure by a DC hollow cathode sputtering [J], Synthetic Metals,1995,71:1595-1596.
    80. Lee K, Iguchi I, Ishibashi T, Sato K. Crystallography and microwave properties of intrinsic Bi2Sr2CaCu2Oy Josephson junctions on off-axis substrates [J], Physica C,1997,293:212-215.
    81. Silva E, Lanucara M, Marcon R. Microwave surface resistance peaks in BSCCO thin films [J], Physica C,1997,282-287:1587-1588.
    82. Maritio A, Ichikawa F, Rodriguez H, and Rindererl L. Superconducting properties as a function of substrate type in BSCCO thin films [J], Physica C,1997,282-287:2277-2278.
    83. Kusevic I, Simundic P, Ivkov J, Babic E, Wang W G, Liu H K, Dou S X. Flux Pinning and Jc-B-T Surface in High-Jc BSCCO/Ag Tapes [J], Physica C,1997,282-287:2297-2298.
    84. Feng C, Yue J, Kumar D, Singh R K. Fabrication of Ag-sheathed Bi2Sr2CaCu20x tapes using a modified electrophoretic deposition method [J], Physica C,1997,279:197-202.
    85. Stambolova I, Konstantinov K, Kovacheva D, Khristov M, Peshev P, Donchev T. Spray pyrolysis deposition of polycrystalline magnesia films and their use as buffer layers in Bi(Pb)-Sr-Ca-Cu-O/MgO/Al2O3(or glass ceramics) structures [J], Materials Letters,1997,30:333-337.
    86. Migita S, Sakai K,Ota H, Mori Z, Aoki R. The influnce of Bi-sticking coefficient in the growth of Bi(2212) thin film by ion beam sputtering [J], Thin solid Films,1996,281-282:510-512.
    87. Mori Z, Ota H, Migita S, Sakai K, Aoki R. Comparison between Bi-superconductor thin films fabricated via co-deposition and layer-by-layer deposition by ion beam sputtering method [J], Thin Solid Films,1996,281-282:517-520.
    88. Dou S X, Liu H K, Ionescu M, Wang W G, Babic E, Kusevic I. Critical current density and pinning energy in Ag-clad BPSCCO tapes [J], Physica B,1996,216:255-257.
    89. Attanasio C, Coccorese C, Kushnir V N, Maritato L, Prischepa S L, Salvato M. Magnetic field dependence of pinning mechanisms in Bi2Sr2Ca1Cu2O8+x thin films [J], Physica C,1995,255: 239-246.
    90. Koelle D, Kleiner R, Ludwig F, Dantsker E, Clarke J. High-transition-temperature superconducting quantum interference devices [J], Rev. Mod. Phys.,1999,71,631-686.
    91. Yamada Y, Nakajima K, Nakajima K. RF impedance of intrinsic Josephson junction in flux-flow state with a periodic pinning potential [J]. Physica C,2008,468:1295-1297.
    92. Matsumoto H, Koyama T, Machida M, Tachiki M. Theory of THz emission from the intrinsic Josephson junction [J], Physica C,2008,468:1899-1902.
    93. Koyama T, Machida M. Macroscopic quantum effects in intrinsic Josephson junction stacks [J], Physica C,2008,468:1913-1915.
    94. Matsumoto T, Kashiwaya H, Shibata H, Eisaki H, Yoshida Y, Yamaguchi H, Kashiwaya S. Fabrication of intrinsic Josephson junction of bismuth-based cuprates [J], Physica C,2008,468: 1916-1918.
    95. Kashiwaya H, Matsumoto T, Kashiwaya S, Shibata H, Eisaki H, Yoshida Y, Kawabata S, Tanaka Y. Possible observation of energy level quantization in an intrinsic Josephson junction [J], Physica C, 2008,468:1919-1921.
    96. Abdel-Aty M. New features of total correlations in coupled Josephson charge qubits with intrinsic decoherence [J], Physics Letters A,2008,372:3719-3724.
    97. Tachiki M. Emission of terahertz electromagnetic waves driven by an external current in intrinsic Josephson junctions [J], Physica C,2008,468:631-633.
    98. Kadowaki K, Yamaguchi H, Kawamata K, Yamamoto T, Minami H, Kakeya I, Welp U, Ozyuzer L, Koshelev A, Kurter C, Gray K E, Kwok W K. Direct observation of tetrahertz electromagnetic waves emitted from intrinsic Josephson junctions in single crystalline Bi2Sr2CaCu208+δ [J], Physica C,2008,468:634-639.
    99. Nonomura Y. Effect of sample sizes in terahertz emission from intrinsic Josephson junctions in cuprate HTSC [J], Physica C,2008,468:644-648.
    100. Machida M, Koyama T. Theory for collective macroscopic tunneling in'high-Tc intrinsic Josephson junctions [J], Physica C,2007,463-465:84-88.
    101. Hirata K, Ooi S, Mochiku T, Gaifullin M. Josephson-vortex dynamics in intrinsic Josephson junctions [J], Physica C,2007,460-462:764-765.
    102. Gross R, Alff L, Beck A, Froehlich O M, Koelle D, Marx A. Physics and technology of high temperature superconducting Josephson junctions [J], IEEE Transactions on Applied Superconductivity,1997,7:2929-2935.
    103. Kawata T, Iwasaki H, Yufune S, Ishibashi T, Sato K. Patterning of Bi2Sr2CaCu208+x and SrTiO3 films using lift-off technique combined with MOD [J], Phys. C,2006,445-448:873-875.
    104. Kobel S, Schneider D, Sager D, Sutterlin P, Fall L, Gauckler L J. Gauckler. Processing and properties of Bi2Sr2CaCu2Ox thick films on polycrystalline magnesium oxide substrates [J], Phys. C, 2003,399:107-119.
    105. Eckstein J N, Bozovic I, Schlom D G, Harris J S. Growth of untwinned Bi2Sr2Ca2Cu3Ox thin films by atomically layered epitaxy [J], Appl. Phys. Lett.,1990,57(10):1049-1051.
    106. Rossler R, Pedarnig J D, Jooss C. Bi2Sr2Can-1CunO2(n+2)+x thin films on c-axis oriented and vicinal substrates [J], Phys. C,2001,361:13-21.
    107. Lubberts G. Transport critical current density and electrical characterization of patterned high-Tc superconducting thin films prepared by metallo-organic decomposition [J], J. Appl. Phys. 1990,68(2):688-694.
    108. Woodcock T G, Abell J S, Shields T C, Hall M G. The effect of different oxidation routines on the properties of surface oxidised epitaxial NiO layers on biaxially textured Ni tapes [J], Phys. C, 2002,372-376:863-865.
    109. shii A, Hatano T. Preparation of high quality Bi2Sr2CaCu2O8+δ thin films on a MgO substrate by pulsed laser ablation and post-annealing-recrystallization of films accompanying in-plane rotation of a and b axes [J], Physica C,2000,340:173-177.
    110. Girault C, Damiani D, Champearx C, Marchet P, Mercurio J P, Aubreton J. Characterization of the KrF laser-induced plasma plume created above a BiSrCaCuO target [J], Appl. Phys. Lett.,1990, 56(15):1472-1474.
    111. Shimoyama J, Murakami K, Shimizu K, Nakayama Y, Kishio K. Microstructure and critical current porperties of Bi(Pb)2212/metal tapes and single crystals [J], Physica C,2001,357-360: 1091-1097.
    112. Maxfield, Eckhardt H, Iqbal Z, Reidinger F, Baughman R H. Bi-Sr-Ca-Cu-O and Pb-Bi-Sr-Ca-Cu-O superconductor films via an electrodeposition process [J], Appl. Phys. Lett,1989, 54(19):1932-1933.
    113. Schwartzkopf L A, Jiang J, Cai X Y, Apodaca D, Larbalestier D C. The use of the in-field critical current density, Jc(0.1T), as a better descriptor of (Bi,Pb)2Sr2Ca2Cu3Ox/Ag tape performance [J], Applied Physics Letters,1999,75(20):3168-3170.
    114. Ota H, Sakai K, Mori Z, Aoki R. Formation of phase intergrowth in the syntheses of Bi-superconducting thin films [J], Appl. Phys. Lett.,1997,70(11):1471-1473.
    115. Zhang Y Z, Wang Z, Lu X F, Wen H H. Deviations from plastic barriers in Bi2Sr2CaCu2O8+δ thin films [J], Physical Review B,2005,71:052502-052506.
    116. Tonomura A, Kasai H, Kamimura o, Matsuda T, Harada K, Nakayama Y, Shimoyama J, Kishio K, hanaguri T, Kitazawa K, Sasase M, Okayasu S. Lorentz microscopy observation of vortices inside Bi-2212 thin films with columnar defects [J], Physics C,2002,369:68-76.
    117. Tokuda T, Hidaka K, Kishida S. Superconductin characterization of Ni/Bi2Sr2Ca2Cu3Oy superconductors [J], Physica C,2007,463-465:942-944.
    118. Contopanagos H, Nassiopoulou A G. Design and simulation of integrated inductors on porous silicon in CMOS-compatible processes [J], Solid-State Electronics,2006,50:1283-1290.
    119. Graaf H, GridPix. An integrated readout system for gaseous detectors with a pixel chip as anode [J], Nuclear Instruments and Methods in Physics Research A,2007,580:1023-1026.
    120.成步文,薛春来,罗丽萍,韩根全,曾玉刚,薛海韵,王启明.Si衬底上Ge材料的UHVCVD生长[J],材料科学与工程学报,2009,27(1):118-120.
    121.尹甲运,刘波,张森,冯志宏,冯震,蔡树军.Si(111)衬底上GaN外延材料的应力分析[J],2008,45(12):703-704.
    122.朱军山,徐岳生,郭宝平,刘彩池,冯玉春,胡加辉.Si(11 1)衬底上生长的Ga N的形貌与AlN缓冲层生长温度的关系[J],半导体学报,2005,26(8):1577-1580.
    123.刘峥嵘,谢家纯,郭俊福,李雪白,赵朝阳,刘文齐,傅竹西.不同衬底材料的ZnO/Si异质结I-V及光电特性[J],中国科学技术大学学报,2008,38(11):1262-1267.
    124.田焕芳,杨槐馨,虞红春,张怀若,李莹,周玉清,吕惠宾,李建奇.(001)Si衬底上La0.9Sr0.1Mn03/SrTi03外延生长薄膜的界面电子显微学研究[J].电子显微学报,2006,25(3):214-220.
    125.何萌,吕惠宾,黄延红,赵昆,田焕芳,相文峰,陈正豪,周岳亮,金奎娟,李建奇,杨国桢.用激光分子束外延在Si衬底上外延生长La1-xSrxMn03单晶薄膜[J],中国科学,2005,35(6):625-630.
    126.杜永胜,王波,许仕龙,于敦波,李彤,严辉,张深根.Si衬底上SrMnO3缓冲层对La0.8Sr0. 2MnO3薄膜择优取向生长的影响[J],稀有金属,28(6):963-966.
    127.朱红妹,熊文杰,高召顺,张义邴.电子束蒸发在Si衬底上制备MgB2超导薄膜[J],低温与超导,2004,32(2):51-52.
    128. Liang S, Islam R, Smith D J, Bennett P A, O'Brien J R, Taylor B. Magnetic iron silicide nanowires on Si (110) [J], Appl. Phys. Lett.,2006,88:113111-113113.
    129. Tambo T, Arakawa T, Shimizu A, Hori S, Tatsuyama C. Epitaxial growth of Bi2Sr2CuOx films onto Si(001) by molecular beam epitaxy [J], Applied Surface Science,2000,159-160:161-166.
    130.于宗光,钱文生.硅衬底上BSCCO高温超导体的制备[J],半导体技术,2000,25:40-46.
    131. Qiu C X, Shih I. Some properties of bulk Y-Ba-Cu-O compounds containing SiO2 [J], J. Appl. Phys.,1988,64:2234-2236.
    132. Campero A M. A review of high-temperature superconducting films on silicon [J], Supercond. Sci. Techol.,1990,3:155-158.
    133. Shin D S, Park S T, Choi H S, Choi I H, Lee J Y. Characteristics of Pt/SrTi03/Pb(Zro.52, Tio.4g)03/SrTi03/Si ferroelectric gate oxide structure [J], Thin Solid Films,1999,354:251-255.
    134. Wu F, Li X M, Yu W D, Gao X D, Cao X. Growth modes, strain states, and electrical transport properties of epitaxial La0.5Sr0.5Co03 thin films grown on buffered Si substrates [J], Solid State Communications,2008,145:178-181.
    135. Niu F, Wessels B W. Surface and interfacial structure of epitaxial SrTiO3 thin films on (001) Si grown by molecular beam epitaxy [J], Journal of Crystal Growth,2007,300:509-518.
    136. McKee R A, Walker F J, Chisholm M F. Crystalline Oxides on Silicon:The First Five Monolayers [J], Phys. Rev. Lett.,1998,81:3014-3017.
    137. Lettieri J, Haeni J H, Schlom D G. Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon [J], J. Vac. Sci. Technol. A,2002,20:1332-1340.
    138. Niu F, Wessels B W, Meier A R. Integration of BaTiO3 on Si (001) using MgO/STO buffer layers by molecular beam epitaxy [J], Journal of Crystal Growth,2006,294:401-406.
    139. Bhuiyan M N K, Matsuda A, Yasumura T, Tambo T, Tatsuyama C. Study of epitaxial SrTiO3 (STO) thin films grown on Si(001)-2×1 substrates by molecular beam epitaxy [J], Applied Surface Science,2003,216:590-595.
    140. Konofaos N, Evangelou E K, Wang Z C, Kugler V, Helmersson U. Electrical characterisation of SrTiO3/Si interfaces [J], Journal of Non-Crystalline Solids,2002,303:185-189.
    141. Tambo T, Maeda K, Shimizu A, Tatsuyama C. Improvement of electrical properties of epitaxial SrTiO3 films on Si(001)-2×1 by in situ annealing[J], Journal of Applied Physics,1999, 86:3213-3217.
    142, Franssila S.微加工导论[M],北京:电子工业出版社,2006,1.
    143. Brecht E, Traeholt C, Schneider R, Linker G. Transmission electron microscopy study of the interface of Bi2Sr2CaCu2O8+δ thin films on (110) oriented SrTiO3 substrates[J], Journal of Crystal Growth,1998,191:421-429.
    144.王艳华,马海阳,孙道恒.硅尖的制备及应用[J],微电子技术,2003,31:60-64.
    145.王维彪,金长春,梁静秋,姜锦秀,刘乃康,姚劲松,赵海峰,王永珍,范希武.一步湿法化学刻蚀硅微尖冷阴极[J],发光学报,1999,20:81-85.
    146. Franssila S.微加工导论[M],北京:电子工业出版社,2006,134.
    147.聂磊,史铁林,廖广兰,钟飞.Cr掩模在硅湿法刻蚀中的应用研究[J],半导体技术,2005,30:26-28.
    148. Powell O, Sweatman D, Harrison H B. The use of titanium and as masks for deep silicon [J], Smart Mater. Struct.,2006,15:S81-S86.
    149.刘宇,毛旭,岳萍,张福学.恒温磁力搅拌下KOH刻蚀Si的研究[J],电子元件与材料,2006,25,41-46.
    150.景玉鹏,前中一介,藤田孝之,高山洋一郎.碘过饱和KOH溶液对硅(110)晶面腐蚀的改善[J],微纳电子技术,2003,6:33-38.
    151. Chen J, Liu L, Li Z, Jiang Q S, Fang H J, Xu Y, Liu Y X. Study of anisotropic etching of (100) Si with ultrasonic agitation[J], Sens, and Actuators A,2002,96:152-156.
    152.孙洋,钱可元,韩彦军,蔡鹏飞,罗毅,雷建都,童爱军.硅基微结构制作及其在微分析芯片上的应用[J],半导体光电,2004,25:477-479.
    153.孔祥东,张玉林,宋会英,卢文娟.微机电系统的微细加工技术[J],微纳电子技术,2004,11:32-37.
    154. Cho W J, Chin W K, Kuo C T. Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions[J], Sens. Actuators A,2004,116:357-368.
    1.毛传斌,周廉,杜泽华,吴晓祖.溶液-溶胶-凝胶(SSG)法制备高均匀性Bi系超导体原始粉末的 SSG转变判据[J],化学通报,1996,9:54-57.
    2.李晓雷.La2Ni04系类钙钛矿薄膜的溶胶凝胶法制备及氧敏特性的研究[D],天津大学,2002.
    3.孙忠贤.电子化学品[M],北京:化学工业出版社,2001,6-21.
    4. Franssila S.微加工导论[M],北京:电子工业出版社,2006,130.
    5. Barycka I, Zubel I. Silicon anisotropic etching in KOH-isopropanol etchant [J], Sensors and Actuators A,1995,48:229-238.
    6. Cho W J, Chin W K, Kuo C T. Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions[J], Sensors and Actuators A,2004,116:357-368.
    7. Lwabuchi M, Kobayashi T, Growth and characterization of epitaxial SrTiO3 thin films with prominent polarizability [J], J. Appl. Phys.,1994,75:5295-5301.
    8. Hahn Y B, Kim D O. Structural and electrical properties of SrTiO3 thin films prepared by plasma enhanced metalorganic chemical vapor deposition [J], J. Vac. Sci. Technol.,1999, A17:1982-1986.
    9. Niu F, Wessels BW. Surface and interfacial structure of epitaxial SrTiO3 thin films on (001) Si grown by molecular beam epitaxy [J], Journal of Crystal Growth,2007,300:509-518.
    10. Tachiki M, Noda M, Yamada K, Kobayashi T. SrTiO3 films epitaxially grown by eclipse pulsed laser deposition and their electrical characterization [J], J. Appl. Phys.,1998,83:5351-5357.
    11. Nagayama H, Honda H, Kawahara H. A new process for silica coating [J], J. Electrochem. Soc.,1988, 135(8):2013-2016.
    12.李振辉.以液相沉积法制备钛酸锶薄膜之特性分析[D],国立中山大学,2006.
    13.郑伟涛.薄膜材料与薄膜技术[M],北京:化学工业出版社,2003,68-71.
    14.张有纲,张有祥,许恒生.电子材料现代分析概论[M],北京:国防工业出版社,1993,206.
    15.丛秋滋.多晶二维X射线衍射[M],北京:科学出版社,1997,36-37.
    16.周玉.材料分析方法[M],北京:机械工业出版社,2004,215-238.
    17.周玉.材料分析方法[M],北京:机械工业出版社,2004,238-245.
    18.王春梅,黄晓峰,杨家骥,陈志南.西安:第四军医大学出版社,2004,3-5
    1.郭宝增.0.13pm集成电路制造中的光刻技术研究现状与展望[J],固体电子学研究与进展,2000,20(3):281-290.
    2. Bao M H, Wang W Y. Future of microelectromechanical systems (MEMS) [J], Sensors and Actuators A, 1996,56:135-141.
    3. Jang W W, Yoon J B, Kim M S, Lee J M, Kim S M, Yoon E J, Cho K H, Lee S Y, Choi I H, Kim D W, Park D. NEMS switch with 30 nm-thick beam and 20 nm-thick air-gap for high density non-volatile memory application [J], Solid-State Electronics 2008,52:1578-1583.
    4. Yang Z X, Yu Y, Li X X, Bao H F. Nano-mechanical electro-thermal probe array used for high-density storage based on NEMS technology [J], Microelectronics Reliability,2006,46:805-810.
    5. Voigt A, Heinrich M, Martin C, Llobera A, Gruetzner G, Perez-Murano F, Improved properties of epoxy nanocomposites for specific application in the file of MEMS/NEMS [J], Microelectronic Engineering,2007,84:1075-1079.
    6. Aponte V M, Finch D S, Klaus D M. Considerations for non-invasive in-flight monitoring of astronaut immune status with potential use of MEMS and NEMS devices [J], Life Sciences,2006,79:1317-1333.
    7. Glembocki O J, Palik E D, de Guel G R, Kendall D L. Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydrosides [J], J. Electrochem. Soc.1991,138:1055-1063.
    8. Barycka I, Zubel I. Silicon anisotropic etching in KOH-isopropanol etchant [J], Sensors and Actuators A 1995,48:229-238.
    9. Zubel I. Silicon anisotropic etching in alkaline solutions Ⅲ:On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH+IPA solutions [J], Sensors and Actuators,2000,84:116-125.
    10. Cho W J, Chin W K, Kuo C T. Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions[J], Sensors and Actuators A 2004,116:357-368.
    11. Palik E D, Gray H F, Klein P B. A Raman study of etching silicon in aqueous KOH[J], J. Electrochem. Soc.1983,130:956-959.
    12.王文如,杨正兵.微细金属图形制作中的剥离技术[J],压电与声光,2001,23(1):68-73.
    13.张厥宗.硅单晶抛光片的加工技术[M],上海:化学工业出版社,2000,121-122.
    14. Kendall D L. Vertical etching of silicon at very high aspect ratios[J], Annual Review of Materials Science,1979,9:373-403.
    15.章小鸽.硅及其氧化物的电化学—表面反应、结构和微加工[M],北京:化学工业出版社,2004,285.
    16. Chandrasekaran S, Sundararajan S. Effect of microfabrication processes on surface roughness parameters of silicon surfaces[J], Surface & Coatings Technology,2004,188-189:581-587.
    17. Partridge J G, Brown S A, Siegert C, Dunbar A D F, Nielson R, Kaufmann M, Blaikie R J. Templated cluster assembly for production of metallic nanowires in passivated silicon V-grooves[J], Microelectronic Engineering,2004,73-74:583-587.
    18. Chandrasekaran S, Check J, Sundararajan S, Shrotriya P. The effect of anisotropic wet etching on the surface roughness parameters and micro/nanoscale friction behavior of Si(100) surfaces[J], Sensors and Actuators A,2005,121:121-130.
    19.高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京:化学工业出版社,2002,32-35.
    20. Franssila S.微加工导论[M],北京:电子工业出版社,2006,130.
    1. Lee D Y, Choi C H, Kim, Seon H. Growth and characterization of Zno film on Si(111) substrate by helicon wave Plasma-assisted evaporation [J], Journal of Cryst. Growth,2004,268(1-2):184-191.
    2. Kim S S, Lee B T. Effects of oxygen pressure on the growth of pulsed laser deposited ZnO film on Si(001) [J], Thin Solid Films,2004,446(2):307-312.
    3. Kim N H, Kin, H W. Room temperature growth of zinc oxide film on Si substrates by RF magnetron sputtering [J], Materials Letters,2004,58(6):938-943.
    4. Guha S, Bojarczuk N A. Ultraviolet and violet GaN light emitting diodes on silicon [J], Appl. Phys. Lett.,1998,72:415-417.
    5. Honda Y, Kuroiwa Y, Yamaguchi M, Sawaki N. Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy [J], Appl. Phys. Lett.,2002,80:222-224.
    6. Tran C A, Osinski A, Karlicek R F, Jr., Berishev I. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy [J], Appl. Phys. Lett.,1999,75:1494-1496.
    7. 邢益荣,Joyce T B, Kiely C J, Goodhew P J.利用CBE技术在si衬底上生长GaAs薄膜[J],半导体学报,1994,15(4):229-234.
    8. 高瑛,赵家龙,刘学彦,苏锡安,梁家昌,高鸿楷,龚平,王海滨.在Si衬底上异质外延GaAs薄膜变激发强度的近红外光致发光[J],光学学报,1994,15(4):468-472.
    9. 梁励芬,董树忠,顾志光,李炳宗.Si(100)上生长CoSi2薄膜的STM研究[J],半导体学报,1997,18(1):50-54.
    10. Tambo T, Arakawa T, Shimizu A, Hori S, Tatsuyama C. Epitaxial growth of Bi2Sr2CuOx films onto Si(001) by molecular beam epitaxy [J], Applied Surface Science,2000,159-160:161-166.
    11. Marino A, Ichikawa F, Rodriguez H, Rinderer L. Superconducting properties as a function of substrate type in BSCCO thin films [J], Physica C,1997,282-287:2277-2278.
    12. Yonemitsu K, Inagaki K, Ishibashi T, Kim S, Lee K, Sato K. Electrical properties of Bi2Sr2CaCu2Ox submicron structures grown on patterned substrates [J], Physica C,2002,367:414-418.
    13. Kawata T, Iwasaki H, Yufune S, Ishibashi T, Sato K. Patterning of Bi2Sr2CaCu2O8+x and SrTiO3 films using lift-off technique combined with MOD [J], Physica C,2006,445-448:873-875.
    14. Yufune S, Kawata T, Ishibashi T, Sato K. Magneto-optical properties of Y2BiFe5O12/Bi2 Sr2CaCu208+x/SrTi03 structures [J], Physica C,2006,445-448:869-872.
    15. Niratisairak S, Haugen (?), Johansen T H, Ishibashi T. Observation of hotspot in BSCCO thin film structure by fluorescent thermal imaging [J], Physica C,2008:468(6):442-446.
    16. Brecht E, Linker G, Kroner T, Schneider R, Geerk J, Meyer O, Tr(?)holt C. Growth phenomena of Bi2Sr2CaCu2O8+δ thin films deposited on (110) oriented SrTiO3 substrates [J], Thin Solid Films,1997, 304:212-221.
    17. Franssila S.微加工导论[M],北京:电子工业出版社,2006,143.
    18.赵策洲,高勇.半导体硅基材料及其光波导[M],北京:电子工业出版社,1997,54-58.
    19. Mechin L, Gerritsma G J, Garcia Lopez J. The direct growth of SrTiO3 (100) layers on silicon (100) substrates; application as a buffer layer for the growth of DyBa2Cu3O7-δ thin films [J], Physica C, 1999,324:47-56.
    20.刘超,李建平,曾一平.溶胶-凝胶工艺制备SrTiO3纳米薄膜的研究[J],2005,30(5):18-21.
    21. Gao Y F, Masuda Y, Yonezawa T, Koumoto K. Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled monolayers by the liquid phase deposition method [J], Chem. Mater.,2002,14:5006-5014.
    22. 余萍,陈善华.液相沉积发的应用及发展[J],广东微量元素科学,2006,13(3):12-16.
    23. 章小鸽.硅及其氧化物的电化学-表面反应、结构和微加工[M],北京:化学工业出版社,2004,47-50.
    24. Gao Y F, Masuda Y, Yonezawa T, Koumoto K. Preparation of SrTiO3 thin films by the liquid phase deposition method[J], Materials Science and Engineering B9,2003,9:290-293.
    25.王磷,余欧明,杭凌侠,赵保平,王忠厚.磁控溅射镀膜中工作气压对沉积速率的影响[J],真空,2004,41:9-12.
    1.尤立星,吴培亨,蔡卫星,杨森祖,王华兵,康琳.Bi2Sr2CaCu208+x单晶本征结制备及特性[J],科学通报,2003,48(1):15-18.
    2.毛传斌,周廉.Bi-Pb-Sr-Ca-Cu-O系相关系研究的最新进展[J],稀有金属材料与工程,1995,24(6):10-20.
    3.杜风贞,段镇忠,华志强.铋系超导前驱粉末的制备工艺评述[J],低温物理学报,2003,25:308-312.
    4.李洁,高孝恢,蒋淑芬,汪浩,王小刚,高德.Bi系超导相形成的化学动力学研究[J],物理学报,1995,44(6):949-957.
    5. Chong I, Hiroi Z, Izumi M, Shimoyama J, Nakayama Y, Kishio K, Terashima T, Bando Y, Takano M. High Critical-Current Density in the Heavily Pb-Doped Bi2Sr2CaCu2O8+δ superconductior:Generation of Efficient Pinning Centers [J], Science,1997,276(2):770-773.
    6. Nessler W, Ogawa S, Nagano H, Petek H, Shimoyama J, Nkayama Y, Kishio K. Energy relaxation and dephasing times of excited electrons in Bi2Sr2CaCu2O8+δ from interferometric 2-photon time-resolved photoemission [J], Journal of Electon Spectroscopy and Related Phenomena,1998,88-91:495-501.
    7. Valla T, Fedorov A V, Johnson P D, Wells B O, Hulbert S L, Li Q, Gu G D, Koshizuka N. Evidence for Quantum Critical Behavior in the Optimally Doped Cuprate Bi2Sr2CaCu2O8+δ [J], Science,1999,285: 2110-2113.
    8. Guilmeau E, Chateigner D, Noudem J G Sinter-forging of strongly textured Bi2223 discs with large Jcs:nucleation and growth of Bi2223 from Bi2212 crystallites [J], Superconductor Science and Technology, 2002,15:1436-1444.
    9. Li A H, Ionescu M, Wang X L, Dou S X, Wang H. RESrAlO4 (RE=Nd and La):a new type of perovskite ceramic substrate for Bi-Sr-Ca-Cu-O superconducting thick films [J], Journal of Alloys and Compounds,2002,333:179-183.
    10. Badica P, Togano K, Awaji S, Watanabe K, Iyo A, Kumakura H. Application of elevated magnetic fields during growth of BiSrCaCuO superconducting whiskers and studies of growth defects for better understanding of the growth mechanism [J], Journal of Crystal Growth,2004,269:518-534.
    11. Shigemori M, Okabe T, Uchida S, Sugioka T, Shimayama J, Horii S, Kishio k. Enhanced flux pinning properties of Bi(Pb)2212 single crystals [J], Physica C,2004,408-410:40-41.
    12. Seki M, Yasuike S, Tokuda T, Kishida S. Preparation of Bi2Sr2Can-1CunOy thick films by chemical solution deposition [J], Physica C,2004,412-414:1358-1361.
    13. Makarova M V, Kazin P E, Tretyakow Yu D, Jansen M, Reissner M, Steiner W. Zr, Hf, Mo and W-containing oxide phases as pinning additives in Bi-2212 superconductor [J], Physica C,2005,419: 61-69.
    14. Martin I, Balatsky A V, Zaanen J. Impurity States and Interlayer Tunneling in High Temperature Superconductors [J], Physical Review Letters,2002,88(9):097003-1-097003-4.
    15. Kinoda G, Nakao S, Motohashi T, Nakayama Y, Shimizu K, Shimoyama J, Kishio K, Hanaguri T, Kitazawa K, Hasegawa T. Inhomogeneous electronic structures in heavily Pb-doped Bi2Sr2CaCu2Oy single crystals porbed by low temperature STM/STS [J], Physica C,2003,388-389:273-274.
    16. Gimerez J M A, Grandini C R, Santos D I dos. Interstitial oxygen mobility in superconducting samples of Bi2Sr2CaCu2O8+y [J], Supercond. Sci. Technol,2006,19:813-816.
    17. Musolino N, Bals S, Tendeloo G, Clayton N, Walker E, Fliikiger R. Investigation of (Bi, Pb) 2212 crystals:observation of modulation-free phase [J], Physica C,2004,401:270-272.
    18. Ammor L, Pignon B, Ruyter A. Low-temperature vortex dynamics in (Bi, Pb)2212 single crystals with columnar defects aligned at 45°to the c-axis [J], Physica B,2004,349:24-29.
    19. Kleiner R, Steinmeyer F, Kunkel G, Muller P. Intrinsic Josephson effect in Bi2Sr2CaCu2O8+δ single crystals [J], Phys. Rev., Lett,1992,68:2394-2397.
    20. Yurgens A, Winkler D, Zavaritsky N V, Cleason T. Strong temperature dependence of c-axis gap parameter of Bi2Sr2CaCu208 intrinsic Josephson junctions [J], Phys. Rev. B.,1996,53:R8887-R8890.
    21. Lopera W, Girata D, Osorio J, Prieto P. Structural and electrical properties of grain boundary josephson junctions based on Bi2Sr2CaCu2O8+δ thin films [J], phys. stat. sol.,2000,220:483-487.
    22. Endo K, Sato H, Yamamoto K, Mizukoshi T, Yoshizawa T, Abe K, Badica P, Itoh J, Kajimura K, Akoh H. Fabrication of intrinsic Josephson junctions on BSCCO superconducting films grown by MOCVD [J], Physica C,2002,372-376:1075-1077.
    23. Endo K, Sato H, Akoh H. Intrinsic Josephson junctions on Bi-2223 superconducting films grown by MOCVD [J], Physica C,2002,378-381:1314-1317.
    24. Kakeya I, Yamzaki T, Kohri M, Yamamoto T, Kadowaki k. Periodic and non-periodic current steps in I-V characteristics in mesoscopic intrinsic Josephson junctions of Bi2212 [J], Physica C,2006,437-438: 118-121.
    25. Zhang Y Z, Qin Y L, Deltour R, Tao H J, Li L, Zhao Z X. Epitaxial growth of Bi2Sr2-xLaxCu1O6+δ thin films on vicinal SrTiO3 substrates [J], Physica C,1999,322:73-78.
    26. Abrecht M, Ariosa D, Onellion M, Margaritondo G, Pavuna D. Structural phase transition in early growth of Bi2Sr2CaCu2O8+x films on SrTiO3 substrates[J], Journal of applied physics,2002,91:1187-1190.
    27. Yonemitsu K, Inagaki K, Ishibashi T, Kim, Lee K, Sato K. Electrical properties of Bi2Sr2CaCu2O8 submicron structures grown on patterned substrates[J]. Physica C,2002,367:414-418.
    28. Mori Z, Doi T, Kawabata D, Ogata K, Takahashi K, Matsumoto A, Kitaguchi H, Hakuraku Y. Growth of bi-axially textured Bi2Sr2CaCu2O8+δ (2212) thin films on SrTiO3 substrate by sputtering method [J]. Physica C,2008,468:1060-1063.
    29. Beilin V, Schieber M, Yaroslavsky Y, Sosonkin I, Hermon H. Fabrication and characterization of HTSC Bi(Pb)SrCaCuO 2223 precursor powers, wires and tapes [J], IEEE transactions on applied superconductivity,1995,5:1263-1266.
    30. Kullberg M L, Lanagan M T, Wu W, Poeppel R B. A sol-gel method for preparing oriented YBa2Cu3O7-δ films on silver substrates [J]. Supercond. Sci. Technol.,1991,4:337-342.
    31. Ruiz M T. de la Fuente G F, Badia A, Blasco J, Castro M, Sotelo A, Larrea A, Lera F, Rillo C, Navarro R. Solution-Based Synthesis Route to (Bi1-xPbx)2Sr2Ca2Cu3O10+δ [J], J. Mater. Res.,1993,8(6):1268-1276.
    32. Flukiger R, Jeremie A, Hense B, Seibt E, Xu J Q, Yamada Y. The Influence of Carbon Impurities on Jc in Ag/Bi (2223) Tapes [J], Adv. Cryo. Eng.,1992,38:1073-1080.
    33. Chen F H, Koo H S, Tseng T Y. Synthesis of high-Tc Superconducting Bi-Pb-Sr-Ca-Cu-O Ceramics Prepared by an Ultrastructure Processing via the Oxalate Route[J], J. Mat. Sci.,1990,25:3338-3346.
    34.刘超,李建平,曾一平.溶胶-凝胶工艺制备SrTiO3纳米薄膜的研究[J],2005,30(5):18-21.
    35. Wagner P, Hillmer F, Frey U, Adrian H, Steinborn T, Ranno L, Elschner A, Heyvaert I, Bruynseraede Y Preparation and structural characterization of thin epitaxial Bi2Sr2CaCu208+δ films with Tc in the 90 K range [J]. Physica C,1993,215:123-131.
    36.尹邦跃,王零森,樊毅,张金生.乙二醇在络合物溶胶-凝胶法中的应用研究[J],硅酸盐学报,1999,27(3):337-341.
    37. Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixrures. i. matrix-flushing method for quantitative multicomponent analysis [J], J. Appl. Cryst.1974,7:519-525.
    38. Johnson Q, Zhou R S. Checking and estimating RIR values. International Centre for Diffraction Data 2000 [J], Advances in X-ray Analysis,2000,42:287-296.
    39.师昌绪,李恒德,周廉.材料科学与工程手册[M],北京:化学工业出版社,2003,11-127-11-12.
    40. Brecht E, Traeholt C, Schneider R, Linker G. Transmission electron microscopy study of the interface of Bi2Sr2CaCu208+δ thin films on (110) oriented SrTiO3 substrates [J], Journal of Crystal Growth,1998, 191:421-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700