贵州碳酸盐岩红色风化壳稀土富集与分异的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近期对贵州碳酸盐岩红色风化壳研究发现,碳酸盐岩基岩中稀土含量一般为几十个μg/g,而在岩-土界面附近REE显示超常富集,REE总量最高可达31000μg/g以上,远高于碳酸盐岩基岩和一般风化壳REE含量。同时,稀土富集的部位是剖面底部,而在其它的风化壳中稀土往往在剖面中部即全风化层底部富集。REE超常富集的样品同时伴有Ce的强烈亏损,δCe值最低为0.007,这也是目前报道过的风化壳中的最低值。另外,风化前缘稀土相对于PAAS标准化后显示MREE富集的特征。弄清碳酸盐岩红色风化壳中稀土富集和分异的机理,有助于丰富稀土表生地球化学知识,同时也为喀斯特地区风化成土地球化学过程和土壤物质来源的示踪提供了重要依据。本文通过对稀土赋存状态的实验研究,结合稀土元素质量迁移系数,系统的分析了稀土元素在碳酸盐岩风化壳中的迁移、转化行为,探讨了稀土发生富集和分异的机理。本次研究取得了如下认识:
     1、通过对白云岩和灰岩风化壳稀土赋存状态的对比,发现在碳酸盐岩红色风化壳中稀土具有相同的赋存和转化规律。稀土富集层中稀土主要以专性吸附态和残渣态的形式存在,其次是有机质结合态。稀土的赋存状态说明粘土矿物对稀土的吸附是导致稀土在底部超常富集的主要原因。其次,次生稀土磷酸盐矿物,主要是La、Nd等的轻稀土磷酸盐矿物也是稀土富集的主要载体。此外,有机质和铁锰氧化物对稀土的迁移、富集也发挥着重要作用。非富集层主要以残渣态和铁锰氧化物结合态的形式存在,表明随着风化作用的增强,稀土越易进入稳定的相态中。
     2、元素质量迁移系数真实的反应了元素的迁入迁出情况。碳酸盐岩的非等体积风化使得稳定的微量元素相对基岩富集,也为风化壳稀土提供了基本的物质来源,但不是导致稀土超常富集的主要原因。稀土元素在风化壳上部表现出很强的活化迁移能力,几乎全部迁出,并且在底部显示明显的带入富集,上部淋漓的稀土为底部稀土的超常富集提供了稳定而充足的物质来源。
     3、风化壳底部狭窄的碱性障是稀土超常富集的主要制约因素。碳酸盐岩的酸不溶物含量低,碳酸盐矿物可溶性强,发育程度较高的风化壳剖面能够在垂向上很窄的范围内形成碱性障。7-9的pH值增大了粘土对稀土的吸附量,同时还提高了稀土与各种络阴离子络合的稳定性,有利于稀土沉淀。对于发育完整的碳酸盐岩红色风化壳,介质条件的改变是缓慢的,不能在剖面底部形成碱性障,因此,稀土在剖面上部迁出,下部迁入富集,富集层位往往和其它岩类风化壳
    
    中国科学院研究生院硕士学位论文
    一样在全风化层的底部。
    4、经页岩标准化的稀土分布模式在风化前缘显示MREE富集。导致这一现象
    的原因主要是风化壳中MREE的迁出程度大于HREE和LREE,风化流体显示
    MREE富集。在底部碱性障条件下,富MREE的风化流体沉淀、富集。风化流
    体向下渗透,水岩反应的结果是白云岩也显示MREE富集,灰岩由于岩一土界面
    的阻挡,水岩反应深度不大,基岩往往无明显的稀土分异。
    5、在碳酸盐岩红色风化壳上部Ce显示正异常,底部富集层显示强烈负异常。
    剖面仁部,ce“+氧化水解,氧化产物主要与铁锰氧化物共沉淀,少量的与粘土
    形成氢键或者与有机物络合沉淀,导致剖面上部正异常。Ce在剖面中的迁出量
    很少,在底部稀土富集层,沉淀富集时主要是La、Pr等LREE, Ce相对贫乏,
    因此,富集层;无显示强烈的负异常。与碳酸(氢)根或者磷酸根等络合物形式
    迁走的Ce很少,不是导致Ce强烈负异常的主要原因。
    6、基岩性质和良好的水热条件导致碳酸盐岩风化前缘形成特殊的微环境—碱
    性障,这是稀土在碳酸盐岩风化壳底部超常富集和分异的主要原因,也是碳酸
    盐岩红色风化壳稀上行为不同于其它岩类风化壳的主要原因。稀土元素在风化
    作用过程中发生明显的重组分配,其分布特征不能用以指示物源信息,只能反
    应风化作用过程信息。
Recently, many researches about the red residua on karst terrain of Guizhou province suggest that the superhigh concentration bed of REE, where the REE concentration can be up to about 31 000ug/gwhich more than the carbonate and other types of weathering profiles, are found at the weathering frontier of carbonate weathering profiles. At the same time, REE enriches at the bottom of the profile, not as the middle as in other type of weathering profile .The strong negative Ce anomalies are also found in those REE enrichment beds, whose 5Ce can be low to 0.0()7,which is lowest one of the values that have been reported. Moreover. PAAS-normalized REE distribution patterns for samples from the weathering frontier are characteristic of MREE enrichment. Studying the mechanism about the enrichment and fractionation of REE, will help to enrich the knowledge about the geochemistry and provide the important evidences about weathering and pedogenesis of carbonate rocks and the provenance of the red residue. This paper thr
    ough the studies about the combining states of REE and the mass transport coefficient, analyses the behavior of REE systematically and provides the mechanism about the enrichment and fractionation of REE. Some important conclusions have been summarized as follows.
    1. Through comparing the REE combining states between the dolomite and the limestone weathering profiles, we find that REE has the similar combing states and transformation characters. At the superhigh enrichment bed, the main states are bound o carbonates and adsorbed (II) and residual (VI), then is bound to organics. It Illustrates that the clay minerals adsorbing the REE is the main reason that caused the superhigh enrichment. Secondly the secondary LREE-bearing phosphate such as is the predominant factor leading the enrichment. Moreover, Fe-Mn oxides and organics also play an important role in migration and enrichment of REE. In the upper of the profile REE has the main formations as residue and bound to Fe-Mn oxides, it suggests that REE transforms into stable states with the intense weathering.
    2. The mass transport coefficient can truly reflect the net loss or gain of REE. Local isovolumetric weathering of carbonate, which leads to the enrichment of stable elements, is also provides the fundamental substance, but not the main factor that
    
    
    
    causes the superhigh enrichment of REE. REE that loses mostly in the upper profile contribute to the enrichment at the bottom steadily and in full, consequently REE gains at the bottom.
    3. At the bottom of the profile the alkali barrier is the predominant factor that results the enrichment of REE. The carbonate is easily soluble and the concentration of insoluble residues is very small, so the alkali barrier can form in the vertical profile with higher weathering degree. The value of pH from 7 to 9 does goods to the precipitation of REE through increasing the adsorbing ability and the stability of complexes with several ligands. As for the weathering crust containing full structure of mother rock, the changes of medium conditions is so slow that cannot come into being the alkali barrier at the bottom of profile.
    4. PAAS-normalized REE distribution patterns for samples from the weathering frontier are characteristic of MREE enrichment. This phenomenon is mainly due to MREE preferentially transports downward in the regolith, as a result the weathering fluid, which characterizes MREE enrichment, precipitates and enriches at the alkali barrier. As the fluid crossing the rock the dolomite has MREE enrichment because of water-rock reaction, but the limestone stops the fluid from the rock that has no REE fractionation.
    5. Ce shows positive anomalies in the upper and intense negative anomalies at the bottom. In the upper Ce3+ is oxidized to Ce + and hydrated, as a result Ce shows positive anomalies owing to mainly precipitating with Fe-Mn oxides and secondary being adsorbed to clay minerals or precipitating with organics. Consequently, the net loss of Ce is very small and at th
引文
1 Anderson M A, Rubin A J Ed. Adsorption of inorganics at solid-liquid interfaces. Ann Arbor Science Publishers Inc, 1982, 90-160
    2 Aubert D, St(?)lle P, Probst A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta, 2001, 65:387-406
    3 Awwiller D N. Geochronology and mass transfer in Gulf Coast mudrocks (south-central Texas, U.S.A.):Rb-Sr, Sm-Nd and REE systematics[J]. Chemical Geology, 1994, 116:61-84
    4 Balashov Y A, Ronov A B, Migdisov A, Turanskaya N V. The effects of climate and facies environment on the fractionation of rare earths during sedimentation. Geochem, 1964, 10:951-969
    5 Banfield J F and Eggleton R. Apatite replacement and rare earth mobilization, fractionation and fixation during weathering [J]. Clays and Clay Minerals, 1989, 37:113-127
    6 Bao Zhiwei. REE geochemistry of granite weathering crust, South China [J]. Geochimica, 1992, 21:166-174
    7 Bowles J F W. Morgan D J. The composition of rhabdophane [J]. Mineralogical Magazine, 1990, 48:146-148
    8 Braun J-J. Pagel M, Herbillon A. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study [J]. Geochimica et Cosmochimica Aota, 1993, 57: 4419-4434.
    9 Braun J-J, Pagel M, Muller J-J. Cerium anomalies in lateritic profiles [J]. Geochimica Cosmochimica Acta, 1990, 54: 781-789.
    10 Braun J-J, Viers J, Dupre B. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta, 1998, 62:273-299
    11 Brimhall G, Dietrich W E. Constitutive mass balance relation between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Result on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 1987, 51:567-587
    12 Brooking B G. Eh-pH diagrams for the rare earth elements at 25℃ and one bar pressure. Geochem Jour, 1983, 17:223-229
    13 Burkov v-v, Podporina, Y K. Rare earths in granitoid residuum. Doklady Akad. Nauk SSSR, 1967, 177:214-216
    14 Byrne R H, Kim K H. Rare earth precipitation and coprecipitation behaviour: The limiting role of PO_4~(3-) on dissolved rare earth concentrations in seawater. Geochim. Cosmochim. Acta, 1993, 57:519-526
    15 Cantrell K J and Byrne R H. Rare earth element complexation by cabonate and oxalate ions [J]. Geochimica et Cosmochimica Acta, 1987, 51:597-605
    16 Childs C W. Composition of iron-manganese concretions from some New Zealand soils [J]. Geoderma, 1975, 13:141-152
    17 Compton J S, White R A, Smith M. Rare earth element behavior in soils and salt pan sediments of a semi-arid gran(?)tic terrain in the Western Cape, South Africa. Chemical Geology, 2003, 201:239-255
    18 Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on
    
    granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 1995, 59(2): 279-294
    19 Coppin F, Berger G, Bauer A, Castet S, Loubert M. Sorption of lanthanides on smectite and kaolinite. Geol. 2002, 182:57-68
    20 Duddy I R. Retribution and fractionation of rare earth and other elements in a weathering profile. Chemical Geology, 1980, 30:363-381
    21 Gleyzes C, Tellier S, Astruc M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends In Analytical Chemistry, 2002, 21 (6): 451-467
    22 Gouveia M A, et al. Behavior of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal. Chem. Geol, 1993, 107:293-296
    23 Hannigan R E and Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chemical Geology, 2001, 175:495-508
    24 Johannesson K H and Lyons W B, Stetzenbach K J, Byrne R H. The solubility control of rare earth elements in natural terrestrial waters and the significance of PO_4~(3-) and CO_3~(2-) in limiting dissolved rare earth concentrations: a review of recent information. Aquat. Geochem. 1995b, 1:157-173
    25 Johannesson K H and Lyons W B. Rare earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heigerg lsland, Northwest Territories, Canada. Chemical Geology, 1995a, 119:209-223
    26 Johannesson K H, Lyons W B, Yelken M A. Geochemistry of the rare earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments. Chemical Geology, 1996, 133:125-144
    27 Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide retrad effect observed in pre-Cenozoic limestones. Geochemical Journal, 1991, 25:31-44
    28 Koeppenksstrop D, Carlo D. Uptake of rare earth elements from solution by metal oxides. Environ. Sci. Technol. 1993, 27:1796-1802
    29 Land M, Ohlander B, Ingri J, Thunberg J. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction. Chemical Geology, 1999,121-128
    30 Lottermoser B G. Rare earth elements mineralisation within the Mt. Weld carbonatite laterite, Western Australia Lithos, 1990, 24:151-167
    31 Maksimovic Z and Panto G Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma, 1991, 51:93-109
    32 Malpas J, Duzgoren-Aydin N S, Aydin A. Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong. Environment Intermational, 2001, 26:359-368
    33 Miekeley N, Coutinho de Jesus, H Proto da Silveira, Linsata P, Morse R. Rare-earth elements in groundwaters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de Caldas, Brazil. J. Geochem. 1992, 45:365-387
    34 Moller P and Bau M. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey[J]. Earth and Planrtary Science Letters, 1993, 117:671-676
    35 Mongclli G. REE and other trace clcmcnts in a granitic weathering profile from Serre, southern Italy. Chem. Geol. 1993, 103:17-25
    
    
    36 Morteani G, Preinfalk C. REE distribution and REE carriers in laterites formed on the alkaline complex of Araxa and Catalao (Brazil). In Rare earth minerals: Chemistry, origin and ore deposits, 1996, 227-255
    37 Nasraoui M, Toulkeridis T, Clauer N, Bilal E. Differentiated hydrothermal and meteoric alterations of the Lueshe carbonatite complex (Democratic Republic of Congo) identified by a REE study combined with a sequential acid-leaching experiment. Chemical Geology, 2000, 165:109-132
    38 Nesbitt H W. Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles and petrogenesis of siliciclastic sediments. Geochemica et Cosmochimica Acta, 1997, 61:1653-1670
    39 Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite, Nature, 1979, 279:206-210
    40 Nieuwenhuyse A and Breemen N V. Quantitative aspects of weathering and neoformation in selected Costa Rican volcanic soils [J]. Soil Science Society of American Journal, 1997, 61:1450-1458
    41 Oliveira S M B, Imbernon R A L. Weathering alteration and related REE concentration in the Catalao Ⅰ carbonatite complex, central Brazil. Journal of South American Earth Sciences, 1998, 11 (4): 379-388
    42 Qi Liang, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000 51:507-513
    43 Rankin P C and Childs C W. Rare-earth elements in iron-manganese concretions from some New Zealand soils [J]. Chemical Geology, 1976, 18:55-64
    44 Reedman J H. Resources of phosphate, niobium, iron, and other elements in residual soils over the Sukulu carbonatite complex, Southern Uganda. Geology, 1984, 79:716-724
    45 Salomons W. Adoption of common schemes for single and sequential extractions of trace-metal in soil and sediments. Int. J. Environ. Anal. Chem., 1993,51:3-4
    46 Schorin H, Puchelt H. Geochemistry of a ferruginous bauxite profile from southeast Venezuela. Chem. Geol. 1987, 64:127-142
    47 Sharma A, Rajamani V. Weathering of gneissic rocks in the upper reaches of Cauvery river, south India: implications to neotectonics of the region. Chemical Geology, 2000, 166:203-223
    48 Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta, 1994, 58:1567-1579
    49 Shuman L M. Fractionation method for soil microelements [J]. Soil Science, 1985, 140:11-22.
    50 Taunton A E, Welch S A, Bandfield J F. Microbial controls on the phosphate and lanthanide distributions during granite weathering and soil formation. Chem. Geol. 2000, 169:371-382
    51 Tessier A, Campbell P G C, Bisson M, Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem, 1979, 51:844-851
    52 Walter A V, Nahon D, Flicoteaux R, Girard J P, Melfi A J. Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatite-rich carbonatite from Brazil. Earth Plan. Sc. Rev. 1995, 136:591-602
    53 White R A. Behavior of the rare earth elements in ochreous mine drainage:a laboratory and field study. PhD thesis, Universtty of Wales, Aberystwth. 2000
    54 Wood S A. The aqueous geochemistry of the rare-earth elements and Yttrium: 1. Review of available low-
    
    temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 1990, 82: 159-186
    55 Zouping Z, Chuanxian L. The behaviour of rare earth elements (REE) during weathering of granites in Southern Guangxi, China. Chinese J. Geochem. 1996, 15:344-352
    56 陈志澄,陈达慧,俞受鋆,庄文明,洪华华,符群策.试论有机质在华南化岗岩风化壳中REE溶出和迁移富集中的作用.地球化学,1994,23(2):168-178
    57 陈志澄,俞受鋆,符群策,陈炳辉,张丽洁.风化壳稀土矿有机成矿机理研究.中国稀土学报,1997,15(3):244-251
    58 程忠富,李文达,王文斌,周汉民.华南玄武岩红土化过程中微量元素地球化学.火山地质与矿产1994,15(2):35-45
    59 池汝安,徐景明,何培炯,朱水濬.华南花岗岩风化壳中稀土元素地球化学及矿石性质研究.地球化学,1995,24(3),261-269
    60 冯志刚,王世杰,孙承兴,刘秀明.岩溶地区土状堆积物物质来源判别的实用指标——粒度分布特征.中国岩溶,2002,21(2):73-78
    61 高效江,章申,王立军,王玉琦.赣南富稀土景观中稀土元素的土壤地球化学特征[J].土壤学报,1999,36(4):492-498
    62 顾尚义.酸性火山岩风化壳氧化还原界面地球化学研究——以广西凭祥英安岩与蚀变流纹岩风化壳为例[D].贵阳:中国科学院地球化学研究所博士学位论文,2001,1-119
    63 韩贵琳,喀斯特环境质量变化的自然与人为过程特征.贵阳:中国科学院地球化学研究所博士学位论文,2002,1-159
    64 雷国良,王长生,钱志鑫等.贵州岩溶沉积物稀土地球化学研究[J].矿物学报,1994,14(3):298-308.
    65 雷国良,张忠敏.喀斯特粘土矿物的稀土元素实验研究.贵州科学,1995,13(3):12-15
    66 李瑞玲,王世杰,周德全等.贵州岩溶区土地石漠化与岩性的空间相关性研究[J].地理学报,2002
    67 林传仙,郑作平.风化壳淋积型稀土矿床成矿机理的实验研究.地球化学,1994,23(2):189-198
    68 刘从强,吴佳红,于文辉.氢氧化铁胶体/水界面作用与地表水中稀土元素的分异——pH控制机理的实验研究[J].中国科学,2001,31(10):873-880
    69 刘秀明.贵州碳酸盐岩风化壳形成地球化学过程、对比及年代学研究.中国科学院研究生院博士学位论文.2003,1-153
    70 马英军.化学风化作用中的微量元素和锶同位素地球化学[D].贵阳:中国科学院地球化学研究所博士学位论文,1999,1-107
    71 庞增铨,吴正裼,陈桂芳.乌江-赤水河水系稀土元素水环境地球化学特征[J].贵州工学院学报,1992,21(1):41-51
    72 宋云华,沈丽璞,王贤觉.某些岩石风化壳中稀土元素的初步探讨.科学通报,1987,No.9:695-698
    73 宋云华,沈丽璞.贵州水城二叠纪玄武岩风化壳中稀土元素的初步研究.1986b,115-116
    74 宋云华,沈丽璞.酸性火山岩类风化壳中稀土元素的地球化学实验研究.地球化学,1986a,3:201-212
    75 孙承兴,王世杰,季宏兵.碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理.地球化学,2002a,31(2):119-128
    76 孙承兴,王世杰,刘秀明.碳酸盐岩风化壳岩-土界面地球化学特征及其形成机理.矿物学报,2002b,
    
    22(2).
    77 孙承兴.贵州岩溶区红色风化壳物源及稀土元素地球化学研究.中国科学院研究生院博士学位论文 2002c,1-114
    78 王世杰,季宏兵,欧阳自远.碳酸盐岩风化成土作用的初步研究[J].中国科学(D),1999,42(5):482-490
    79 王世杰,季宏兵,孙承兴.贵州平坝县白云岩风化壳中稀土元素分布特征之初步研究.地质科学,2001,36:474-480
    80 王世杰,孙承兴,冯志刚,刘秀明.发育完整的灰岩风化壳及其矿物学与地球化学特征.矿物学报,2002,22(1):19-28
    81 王中刚,于学元,赵振华等.稀土元素地球化学.北京:科学出版社,1989,1-495
    82 杨元根,刘丛强,袁可能等.南方红土形成过程及其稀土元素地球化学.第四纪研究,2000,20(5):469-479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700