水稻种子耐干性机理和超干种子贮藏稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.选用两个耐干性不同的水稻品种中组1号和春江15,对发育过程中的种子耐脱水性进行了研究。结果表明:水稻种子的耐脱水性是在种子发育过程中逐渐形成的,种子耐脱水性获得的时期早于新鲜种子发芽率获得的时期,而且施加缓慢脱水处理有利于种子脱水耐性的形成;两个水稻品种发育过程中的耐脱水性一样,但成熟后进一步超干处理则表现出很大的差异,这意味着水稻种子的耐超干性与耐脱水性不完全相同。
     2.对不同水稻品种种子耐干性差异作了比较,并从热稳定蛋白的角度分析了产生这种差异的可能原因。结果表明:水稻种子耐超干性相关的热稳定蛋白至少有两类。一类是非LEA热稳定蛋白,它广泛存在于整粒种子中;一类是仅存在于胚中的类LEA蛋白,它们在种子脱水之后产生。
     3.对耐干性不同的水稻品种种子发育过程和新鲜成熟种子脱水过程中可溶性糖的组分进行了比较分析。结果表明:种子成熟和脱水过程都伴随着蔗糖的积累和还原性糖含量的降低,与种子的耐脱水性表现出密切的相关性;水稻种子的耐超干能力与种胚中棉子糖的积累并在超干过程中保持较高水平密切相关。
     4.以水稻品种中组1号为材料,对14DAP后不同发育时期的水稻种子脱水后种胚的玻璃化转变行为作了分析。结果表明:高温DSC扫描过程对Tg没有明显影响,但是却导致种胚玻璃化行为的一次性不可逆变化;14DAP之后各发育时期种胚的玻璃化转变行为相差不大,与相同时期种子脱水后糖组分和发芽率的变化结果基本吻合,这意味着玻璃化转变行为与种子耐脱水性的获得有关。
     5.以不同含水量的花生种子为材料,采用人工老化的方法使各种子老化相同时间具不同发芽率和老化不同时间但达到相同的发芽率(约50%),然后对其抗氧化酶系统作了研究。结果表明:超干处理能提高种子的贮藏稳定性,但超干贮藏存在着最适含水量;超干提高种子贮藏稳定性的原因之一是超干种子内抗氧化酶系统保持完好,当种子吸涨萌动时,这些酶迅速表现出活性,清除种子内的活性氧和自由基等有害物质,防止氧化和过氧化伤害,保证种子能够正常萌发。
1. Desiccation tolerance of rice seed in two cultivars (Zhongzu 1 and Chunjiang 15) was studied during seed developing. The results showed that the desiccation tolerance of rice seed was acquired during seed developing, which is earlier than acquiring the germination ability of fresh seed. Dehydrating slowly benefit seeds' obtain desiccation tolerance. Although there are no difference on desiccation tolerance between two developing cultivar rice seeds when their moisture content fell to ten percent of that before, distinct diversity appeared after ultra drying mature seeds, which suggested that the desiccation tolerance differed from the ultra-drying tolerance of rice seeds.
    2. After comparing the ultra-drying tolerance and heat-stable proteins of several cultivar rice seeds, and analyzing the possible reasons of their difference, we concluded that there were at least two kinds of heat-stable proteins which are related to the ultra-drying tolerance of rice seeds, one is not LEA protein existing in whole rice seed, the other is similar-LEA protein existing in embryo and only accumulating after seed's dehydration.
    3. The soluble sugars of two cultivar rice seeds with different ultra-drying tolerance were analyzed during seed developing and fresh mature seed dehydrating, respectively. The result showed that the accumulation of saccharose and the decrease of reducing sugars during the period of seed maturation and dehydration were highly related to the desiccation tolerance of rice seeds. Furthermore, this ultra-drying tolerance of rice seed was related to the accumulation and keep high content of raffinose in embryo during dehydration and ultra-drying.
    4. The glass transition of dehydrated rice embryo was analyzed by studying the rice seeds (Zhongzu 1) within different developing periods after 14 DAP. The results indicated that the action of glass transition was related to the desiccation tolerance of rice seed, and that high temperature DSC scanning did not affect the Tg, but led to the non-reversed change of glass transition in embryo. The actions of glass transition had no distinction among dehydrated embryos of rice seeds within different developing period after 14 DAP, which corresponded with the changes of sugars and germination ability. It could be deduced that the glass transition related to the acquiring of desiccation tolerance of rice seed.
    5. Using artificial methods to age the peanut seeds with different WC same time and to age them until they have the same germination rate, respectively, then analyzing the activities of anti- oxidases in these seeds, we found that the stability of peanut seeds treated with ultra-drying were enhanced during storing, but there was a moderate WC in ultra-drying. Keeping the integrity of anti-oxidases in ultra-dried seeds plays a role in enhancing the storing stability of the seeds. When the seeds sopped and germinated, these anti-oxidases rapidly activated, and then functioned in removing active oxygen and free radicals to prevent the seed from injured by peroxidatibn and to maintain the seed's vigor.
引文
1.程红焱,郑光华,陶嘉龄.超干处理对几种芸苔属植物种子生理生化和细胞超微结构的效应。植物生理学报,1991,17(3):273~284
    2.傅家瑞,宋松泉.种子耐脱水性的研究。热带亚热带植物学报,2001,9(4):345~354
    3.国际种子检验协会(ISTA),国际种子,检验规程.上海科学技术出版,1996
    4.景新明,陶嘉龄,超干的榆树种子在加速老化过程中活力变化与染色体变异,植物学报:增刊,1994,(0).73~78
    5.中国科学院上海植物生理研究所和上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999
    6.胡家恕,朱成,曾广文,郑光华.超干红花种子抗老化作用及其机理。植物生理学报,1999,25(2):171~177.
    7.胡家恕,曾广文.超干红花种子耐藏性及抗老化作用。浙江大学学报(农业与生命科学版),2000,26(6):653~656
    8.黄上志,王冬梅,卢春斌,傅家瑞.萌发中花生胚轴的耐干与热稳定蛋白。植物生理学报,1999,25(2):193~198
    9.洪也民,朱诚.种子人工老化处理时有机自由基与种子活力的关系。浙江农业大学学报,1988,14(2):181~183
    10.林坚,郑光华,超干贮藏杜仲种子的研究,植物学通报,1996,13(A00).58~62
    11.林坚,郑光华,张庆昌.回湿预处理防护超低含水量花生种子吸涨损伤的效果。植物学集刊,1994,7:294~298
    12.林坚,郑光华.高梁种子的超干研究。植物生理学报,1993,29(6):435~436
    13.林坚,汪晓峰,景新明,郑光华.超干小麦种子抗脂质过氧化的效果。种子,2002,121(2):4~6
    14.[美]J.萨姆布鲁克,E.E弗里奇,T.曼尼阿蒂斯:分子克隆实验指南,第二版,科学出版社,1992.10
    15.任晓米,种子超干耐性及其延长贮藏寿命的研究,硕士论文,2001
    16.宋松泉,陈玲,傅家瑞.种子脱水耐性与LEA蛋白。植物生理学通讯,1999,35(5):424-432
    17.宋凤鸣,郑重,葛秀春.棉花感染枯萎病后糖含量及蔗糖酶活性的变化及其抗病性的关系。浙江农业大学学报,1996,8(2):91~95
    18.史密斯,H.[英].植物细胞分子生物学。科学出版社,1986,P35
    19.汪晓峰,景新明,郑光华.含水量对种子贮藏寿命的影响。植物学报,2001,43(6):551~557
    20.汪晓峰,郑光华,杨世杰,景新明.超干贮藏种子质膜流动性。科学通报,1999,44(4):733~739
    21.许申鸿,杭瑚.二苯代若味肼基自由基分光测定法及其应用的初步研究。植物生理学通讯,1999,35(6):474-477
    22.杨晓泉,姜孝成,傅家瑞.花生种子耐脱水力的形成与可溶性糖累积的关系。植物生理学报,1998,24(2):165~170
    23.王爱国,罗广华.植物的超氧物自山基与羟胺反应的定量关系。植物生理学通讯,1990,26:55
    24.郑光华.控制柑橘种子生命力的研究。中国农业科学,1980,2:12~14
    
    
    25.张明方.洋葱和苋菜种子超干保存及其生理生化基础研究.浙江大学,博士论文 1999a
    26.张明方,朱诚,胡家恕等.洋葱种子种质超干保存的效果及其对膜系统的影响。浙江农业大学学报,1999b,25(3):252~254
    27.周祥胜,毕辛华.超低水分贮藏对几种高油分种子生理特性的影响种子。1993,5:12~15
    28.曾广文,朱诚,胡家恕,郑光华,景新民.红花种子超干期间自由基和水分状态的研究。浙江农业大学学报,1998,2(2):111~115
    29.傅家瑞,宋松泉.种子耐耐水性的研究。热带亚热带植物学报,2001,009(004).-345-354
    30.朱诚,陶月良,曾广文,郑光华.油料种子超干处理与种子活力及脂质过氧化的关系。中国油料,1994,16(4):9
    31.朱诚,曾广文,郑光华.超干花生种子耐藏性与脂质过氧化作用。作物学报,2000,26(2):235~338
    32.朱诚,曾广文,胡家恕,张明方,景新民 超干洋葱种子抗老化作用及其自由基的 清除(英文)。浙江大学学报(农业与生命科学版)2001,27(2):139~144
    33. Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower drv-seed-stored low molecular-weight heat shock protein and Lea mRNAs. Plant Mol Biol, 1992,19:781
    34. Arakawa T. et al. Protein-solvent interactions in pharmaceutical formulations. Pharm. Res, 1991, 8:285~291
    35. Barlow, E.W.R. et al. Water relations of the developing wheat grain. Aust. J. Plant Physiol. 1980,7, 519~525
    36. Baud S, Boutin JP, Miquel M, Lepiniec L. Rochat C An integrated overview of seed development in Arabidopsis thaliana ecotype. Plant Physioloy and Biochemistry, 2002, 40(2): 151-160 FEB
    37. Black M, Corbineau F, Grzesik M, Guy P, Come D. Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance. Journal of Experimental Botany, 1996, 47:161~169
    38. Blackman SA, Obendorf RL, Leopold AC. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol, 1992, 100:225~230
    39. Bradford KJ, Chabdler PM. Expression of dehydrin-like proteins in embryos and seedling of zizinia palustris and oryza sativa during dehydration. Plant Physiol, 1992, 99:484~494
    40. Buitink J. et al. Calorimetric properties of dehydrating pollen: Analysis of a desiccation -tolerant and an intolerant species. Plant Physiol., 1996, 111: 235~242
    41. Buitink J.,Waters C.,Hoekstra F A.,Crane J. Storage behavior of typha latifolia pollen at low water contents:imterpretation on the basis of water activity and glass concepts. Physiol Plant, 1998, 103:145-153
    42. Buitink J., Hemminga M.A. Hoekstra F.A.Character- ization of molecular mobility in seed tissues:an electron paramagnetic resonance spin probe study. Biophys. J. 1999, 76.. 3315~3322.
    43. Buitink J., Leprince O. Hoekstra F.A. Dehydration-induced redistribution of
    
    amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds. Plant Physiol. 2000a, 124:1413~1425
    44. Buitink J. et al. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol, 2000b, 122:1217~1224
    45. Burke MJ. The glassy state and survival of anhydrous biological systems. In: AC Leopold, ed, Membranes, Metabolism and Dry Organisms. Cornell University Press, Ithaca, NY, 1986, pp:358~363
    46. Chen YG, Burris JS. Role of Carbohydrates in Desiccation Tolerance and Membrane Beharior in Maturing Maize Seed. Crop Sci, 1990, 30:971~975
    47. Close T J. Dehydrins: Acommonalty in the response of plants to dehydration and low temperature. Physiologia Plantarum, 1997, 100:291~296
    48. Close T.J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 1996, 97:795~803
    49. Crowe J.H, Crowe L.M, Carpenter J.F. Interaction of sugars with membranes. Biochim Biophys Acta, 1988, 947:367~384
    50. Crowe J.H., Leslie S.B., Crowe L.M. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology, 1994, 31: 355~366
    51. Crowe J.H., Crowe L.M., Carpenter J.F., Petrelski S., Hoekstra F.A., de Araujo P., Panek A.D. Anhydrobiosis: cellular adaptation to extreme dehydration. In:Dantzler W.H.(Ed.), Handbook of Physiology, Vol.Ⅱ, Oxford University Press,Oxford, 1997a, pp.1445~1477
    52. Crowe J.H., Oliver A.E. et al. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose:the role of vitrification. Cryobiology, 1997b, 35: 20~30
    53. Crowe J.H. et al. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology, 1990, 27:219~231
    54. Crowe J.H., Hoekstra F.A., Crowe L.M. Anhydrobiosis. Annu.Rev.Physiol. 1992,54:579~599
    55. Crowe J.H., Carpenter J.F., Crowe L.M. The role of verification in anhydrobiosis. Annu.Rev.Physiol. 1998, 60: 73~103
    56. Crowe L.M., Crowe J.H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim.Biophys., Acta, 1988, 946:193~201
    57. Crowe J.H. et al. Stabilization of dry phospholipid bilayers and proteins by sugars.Biochem. J., 1987, 242:1~10
    58. Cuming A.C. LEA Proteins.In: Shewry ER., Casey R. (Eds.) , Seed Proteins, Kluwer Academic Publishers, Dordrecht, Boston, 1999, pp.753~780
    59. Dure L, Greenway SC, Galu GA. Developmental biochemistry of cotton seed embryogenesis and germination: Changing messenger ribonucleic acid Populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20:4162~4168
    60. Dure L. Ⅲ Lea proteins and the desiccation tolerance of seeds. In Advances in Cellular and Molecular Biology in Plants:Cellular and Molecular Biology of Plant Seed Development, (Larkins B.A., Vasil I.K., eds), Kluwer Academic
    
    Publishers, 1997, 4, pp. 525~543
    61. Elena A.Golovina,Folkert A. Hoekstra,Adriaan C.Van Aelst. The competence to acquire cellular desiccation tolerance is independent of seed morphological development. Journal of Experiment Botany, 2001,52(358): 1015~1027
    62. Ellis RH, Hong TD, Roberts EH. Longarithmic relationaship between moisture content and longevity in sesae seeds. Ann Bot, 1986, 57:499~503
    63. Ellis R H, Hong T D, Robert E H. A low-moisture-content limit to logarithmic relation between seed moisture content and longevity in sesame seeds. Ann Bot, 1988,61:405~408
    64. Ellis RH, Hong TD, Roberts EH et al. Low moisture content limits to relations between seed, longevity and moisture. Ann Bot, 1990, 65:493~504
    65. Ellis RH, Hong TD. Survival of dry and ultra-dry seeds of carrot, groundnut, lettuce, oilluce rape, and onion during five year's hermetic storage at two temperatures, Seed Sci & Technol, 1996.24:347~358
    66. Ellis RH, Hong TD, Roberts EH, Tao KL. Acomparison of the low-moistuer content limit to the logarithmic relationship between seed moisture and longevity in twelve species. Annals of Botany, 1989.63:601~611
    67. Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61: 243~282
    68. Finch-Savage WE, Pramanil SK, Bewley JD. The expression of dehydrin protein in desiccation-sensitive (recalcitrant) seeds of temperate trees. Planta, 1994, 1993:478-485
    69. Fu JR, Huang SZ, Yang XQ et al. Heat-stable proteins associated with seed desiccation tolerance. In: Tay61or AG, Huang XL(eds), 1997. Progress in Seed Research (Proceedings of The Second Intemational Coference on Seed Science and Technology). Comell University, 101-108
    70. Folkert A. Hoekstra, Elena A. Golovina and Julia Buitink. Mechanisms of plant desiccation tolerance. TRENDS in Plant Science, 2001,6 (9): 431~438
    71. Folkert A.Hoekstra, Elena A.Golovina. The role of amphiphiles Comparative Biochemistry and Physiology, Part A, 2002, 131:527~533
    72. Goday A, Jensen AB, Culianez-Macia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M. The maize abscisic acid-responisve protein Rab 17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell, 1994, 6:351~360
    73. Golovina E.A., Hoekstra F.A., Hemminga M.A. Drying increases intracellular partitioning of amphiphilic substances into the lipid phase: impact on membrane permeability and significance for desiccation tolerance. Plant Physiol, 1998, 118: 975~986
    74. Golovina E.A., Hoekstra F.A. Membrane behavior as influenced by partitioning of amphiphiles during drying: a comparative study in anhydrobiotic plant systems. Comp, Biochem. Physiol, 2002, 131: 545~558
    75. Green JL. Angell CA Phase relations and vitrification insaccharide-water solutions and the trehalose anomaly. J. PhysChem Solids, 1989, 93:2880~2882
    
    
    76. Harrigan P.R., Madden T.D., Cullis P.R. Protection of liposomes during dehydration or freezing. Chem. Phys. Lipids, 1990, 52:139~149
    77. Hifza Mazhar, Sheikh M. Basha. Effects of desiccation on peanut (Arachis hypogaea L.) seed protein composition. Environmental and Experimental Botany, 2002, 47:67~75
    78. Hoekstra F.A., Crowe J.H., Crowe L.M., van Roekel T., Vermeer E. Do phospholipids and sucrose determine membrane phase transitions in dehydrating pollen species? Plant,Cell Environ., 1992, 15:601~606
    79. Hoekstra F.A., Golovina E.A., van Aelst A.C.Hemminga M.A. Imbibitional leakage from anhydrobiotes revisited. Plant Cell Environ. 1999a, 22:1121~1131
    80. Hoekstra F.A., Wolkers W.F., Golovina E.A. Protein stability and desiccation tolerance. In: Marzalina M., Khoo K.C., Jayanthi N., Tsan F.Y., Krishnapillay B. (Eds.). Recalcitrant Seeds, Forest Research Institute Malaysia, Kuala Lumpur, 1999b, pp:188~207
    81. Hoekstra F.A., Golovina E.A. Impact of amphiphile partitioning on desiccation tolerance. In: Black M., Bradford K.J., Vasques-Ramos J. (Eds.) Seed Biology: Advances and Applications, CAB International, Wallingford, 2000, pp.43~55
    82. Hoekstra FA., Golovina EA. The role of amphiphiles. Comparative Biochemistry And Physiology A-molecular And Integrative Physiology. 2002, 131(3): 527~533
    83. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Mol Biol, 1996, 377~403
    84. Iturriaga G, Schneider K, Salamini F, Bartels D. Expression of desiccationrelated proteins from the resurrection plant Craterostigma Pluntagineum in transgenic tobacco. Plant Molecular Biology, 1992, 20:555~558
    85. Kermode A D. Approaches to elucidate the basis of desiccation-toerance in seeds. Seed Sci Res, 1997, 7(2):75~95
    86. Koster K L. Glass formation and desiccation tolerance in seeds. Plant Physiology, 1991,96:302~304
    87. Koster K.L., Lei Y.P., Anderson M., Martin S., Bryant G. Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophys. J., 2000,78:1932~1946
    88. Kuo TM, VanMiddlesworth JF, Wolf WJ. Content of Raffinose Oligosaccharides and Sucrose in various plant seeds. Journal of Agricultural and Food Chemistry, 1988, 36:32~36
    89. Larson R.A. The antioxidants of higher plants. Phytochemistry, 1988, 27:969~978.
    90. Leibovitz BE, Siegel V. Aspects of free radical reactions in biological systems: aging. J Gerontol, 1980, 35:45~56
    91. Leprince O, Deltour R, Thorpe PC et al. The role of free radicals and radical processing systems in loss of desiccation tolerance in germination maize (Zea mays L.). New Phytol, 1990, 116:573
    92. Leslie S.B., Teter S.A., Crowe L.M., Crowe J.H. Trehalose lowers membrane phase transitions in dry yeast cells. Biochim. Biophys. Acta, 1994, 1192:7~13
    93. Leslie S.B., Israeli E., Lighthart B., Crowe J.H., Crowe L.M. Trehalose and
    
    sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol., 1995, 61:3592~3597
    94. Marie-Aude 1992. Identification and characterization of lipoxygenase isoforms in senescing carnation petals. Plant Physiol,98:971~978
    95. Meurs C, Basra AS, Karssen CM, et al. Role of abscisicacid in dthe induction of desiccation tolerance in developing seeds of Arabidopsis ghaliana. Plant Physiology, 1992, 98:1484~1493
    96. Nkang A Carbohydrate composition during seed development and germination in two sub-tropical rainforest tree species JOURNAL OF PLANT PHYSIOLOGY159(5): 473-483 MAY 2002
    97. Oliver M.J., Bewley J.D. Desiccation-tolerance of plant tissues: a mechanistic overview. Hort. Rev., 1996, 18: 171~213
    98. Olivier Leprince, Christina Walters Vertuci. A calorimetric study of the glass transition behaviors in axes of bean seeds with relevance to storage stability. Plant physiol, 1995, 109:1471~1481
    99. Oliver AE, Hincha DK, Crowe JH, Looking beyond sugars: The role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents. Comparative Biochemistry And Physiology A-Molecular And Integrative Physiology, 2002, 131(3): 515~525
    100.Oliver A.E., Hincha D.K., Crowe L.M., Crowe J.H. Interactions of arbutin with dry and hydrated bilayers. Biochim. Biophys. Acta, 1998, 1370:87~97
    101.Priestley DA, Wether GB, Leopold AC et al. Organic free radical levels in seeds and pollen: The effects of hydration and aging. Plant Physiol, 1985, 64:88~94
    102.Roberts J K, Desimone N A, Lingle W L, Dure L S. Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. Plant Cell, 1993, 5:769~780
    103.Roberts E H, Ellis R H. Water and seed survived. Ann Bot, 1989, 63:39~52
    104.Sales K. et al. The LEA-like protein HSP12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim. Biophys. Acta, 2000: 1463:267~278
    105.Schneider K, et al. Desiccation Leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigna Plantagineum Hochst. Planta, 1993, 189:120~131
    106.Shirley B.W. Flavonoids in seeds and grains:physio-logical function,agronomic importance and the genetics of biosynthesis. Seed Sci.Res. 1998, 8: 415~422.
    107.Sun W.Q., Leopold AC. Acquisition of desiccation tolerance in soybeans. Physiol Planta, 1993,87:403
    108.Sun W.Q. et al. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiol. Plant, 1994, 90:621~628
    109.Thomann E B, Sollinger J, White C, Rivin C J. Accumulation of grop3 Late embryogenesis abundant proteins in Zea mays embryos. Plant Phsiol, 1992, 99:607~614
    110.Tsvetkova N.M., Phillips B.L., Crowe L.M., Crowe J.H., Risbud S.H. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine
    
    bilayers:solid-state 31P NMR and FTIR studies. Biophys. J, 1998, 75:2947~2955
    111.Trk Z., Horvath I., Goloubinoff P., et al..Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc.Natl.Acad. Sci. USA., 1997, 94: 2192~2197
    112.Vertucci CW, Roos EE. Theroretical basis of protocols for seed storage. Plant Physiol, 1990, 94:1019~10237
    113.Vigh L. et al. Does the membrane's physical state control the expression of heat shock and other genes? Trends Biochem. Sci., 1998, 23:369~374
    114.Wehmeyer N., Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol, 2000, 122:1099~1108
    115.Wehmeyer N., et al. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 1996, 112: 747~757
    116.Wolfe J., Bryant G. Freezing,drying and/or vitrification of membrane-solute-water systems. Cryobiology, 1999, 39:103~129.
    117.Wolkers W.F. et al. Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol, 1999, 120:153~163
    118.Wolkers W.F. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim. Biophys. Acta, 2001, 1544:196~206
    119.Wood AJ, Goldsbrough PB. Characterization and expression of dehydrins in water-stresses sorghum bicolor. Physiologia Planlarum, 1997, 99:144~152
    120.Woodstock LWm Simkin J, Schroeder E. Freeze-drying to improve seed storability. Seed Sci & Technol, 1976, 4:301~311
    121.Williams RJ, Hirsh AG, Takahashi TA, Meryman HT. What is vitrification and how can it extend life? Japanese Journal of Freeze Drying, 1993, 39:3~12
    122.Zeng XY, Chen RZ, Fu JR et al. The effects of water content during storage on physiological activity of cucumber seeds. Seed Sci Res, 1998, 8(1): 65~68
    123.Zheng Guang-Hua, Jing xin-Ming, Tao Kar-lling. Ultradry seed storage cuts cost of gene bank. Nature, 1998, 393:223~224
    124.Zhu Cheng, Liu Xin et al. Difference of Ultra-drying Tolerance and Heat-stable Proteins in Seeds of Different Rice Cultivars. Chinese Journal of Rice Science, 2001, 15(4): 287~290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700