Ni-W-P-SiC系列复合镀层脉冲电沉积工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了利用脉冲电源电沉积多元多功能复合镀层的工艺,获得了具有更优异的耐蚀、硬度、抗高温氧化和耐磨等性能的Ni-W-P-SiC、RE-Ni-W-P-SiC、RE-Ni-W-P-SiC-MoS_2和RE-Ni-W-P-PTFE等一系列的新型复合镀层、采用日本岛津EPMA-1600型电子探针、日本理学3015型X-射线衍射仪,光学显微镜、HX-1型显微硬度计、HDV-7晶体管恒电位仪、MM2000型磨损实验机和YWX-F型盐雾腐蚀试验箱等手段对各镀层的成分、性能和结构进行了测试。
     根据热力学数据,绘制了298K下Ni-P-H_2O系电位-pH图,利用电位-pH图从热力学上分析电沉积Ni-W-P-SiC系列复合镀层的形成机理,并从脉冲电沉积的机理及其影响因素分析了脉冲复合电沉积的可行性。
     试验研究了脉冲频率和占空比对Ni-W-P-SiC等四种复合镀层沉积速率和镀层成分的影响。不同的脉冲频率和占空比值使镀层沉积速率和镀层成分有很大的差异;在Ni-W-P-SiC和RE-Ni-W-P-SiC复合镀层的脉冲电沉积工艺中,当f=20~33Hz和r=0.4~0.8时,镀层的沉积速率较大;在RE-Ni-W-P-SiC-MoS_2和RE-Ni-W-P-SiC-PTFE复合电沉积工艺中,沉积速率在f=33Hz,r=0.8处最大;各种镀层中,Ni元素的含量最高,在RE-Ni-W-P-SiC-MoS_2和RE-Ni-W-P-SiC-PTFE镀层中,MoS_2和PTFE的含量很小,基本上都小于1%。
     试验研究了四种脉冲复合镀层在耐蚀性、硬度、抗高温氧化和耐磨性等方面的异同,以及脉冲电沉积镀层和直流电沉积镀层在性能上的差异。四种脉冲镀层在HCl、H_2SO_4、H_3PO_4、FeCl_3中的耐蚀性优于不锈钢(1Cr18Ni9Ti);脉冲镀层在腐蚀介质中的耐蚀性优于相应的直流镀层;除RE-Ni-W-P-SiC-PTFE脉冲复合镀层外,其余镀层在400℃热处理条件下的耐蚀性优于相应的镀态镀层;镀层在磷酸中的耐蚀性最好,在三氯化铁溶液中的耐蚀性最差;四种镀层的耐蚀性各有优劣,相对而言,Ni-W-P-SiC镀层具有较优异的耐蚀性。除RE-Ni-W-P-SiC-PTFE脉冲镀层外,其余三种脉冲复合镀层的硬度都比硬铬高;四种脉冲复合镀层在不同热处理温度下的硬度都比相应的直流镀层的硬度高;四种脉冲复合镀层中,RE-Ni-W-P-SiC镀层的硬度最高。四种脉冲复合镀层在镀态下的耐磨性都大大优于硬铬和相应的直流镀层;RE-Ni-W-P-SiC-MoS_2和RE-Ni-W-P-SiC-PTFE二脉冲镀层的耐磨性优于另外两种脉冲镀层。脉冲镀层的抗高温氧化性优于相应的直流镀层;Ni-W-P-SiC、RE-Ni-W-P-SiC二脉冲镀层具有更优异的抗高温氧化性。通过工
    
    昆明理工大学硕士学位论文摘要
    艺和性能研究,得出了各镀层性能较好时的脉冲参数。
     采用浸泡实验、绘制阳极极化曲线和中性盐雾试验三种方法研究脉冲频率和
    占空比对Ni一W-P一SIC复合镀层耐蚀性的影响表明:当脉冲参数在卜33一50Hz,
    r=o.4一0.名的范围内时,Ni一W-P一siC复合镀层的耐蚀性较好。Ni一W-P一SIC脉冲复合
    镀层腐蚀后的表面形貌表明,镀层在HCI溶液中的腐蚀属于点蚀,在玩504、H3PO4
    和FeC13溶液中的腐蚀属于缝隙腐蚀。
     对RE一Ni-V昨P一SIC脉冲复合镀层的硬度和抗高温氧化性研究表明:脉冲频率
    和占空比对镀层硬度和抗高温氧化性都有较大的影响。镀层获得较高硬度的脉冲
    条件为:f在SOHz左右,r在0.6一0.8之间;在卜33HZ,二0.4或拼0.6处镀层的抗
    高温氧化性较好。热处理温度和时间对各种脉冲参数条件下得到的镀层硬度和氧
    化增重率都有一定的影响,热处理温度在400一600℃范围内镀层获得较高的硬度,
    热处理温度小于800℃时,镀层的氧化增重不明显,但在大于800℃时,镀层增重
    迅速。
     研究脉冲参数对RE书i一w-P一SIC一MoS:脉冲复合镀层耐磨性的影响得出:脉冲
    频率和占空比的大小对镀层的耐磨性有较大的影响,当脉冲参数为卜20一50Hz,
    二0.7时,RE,Ni-W~P一siC一MOS:脉冲复合镀层有较好的耐磨性。
     对四种脉冲复合镀层的形貌和相结构研究表明:脉冲镀层表面比直流镀层光
    滑平整得多;脉冲镀层中的微粒比直流镀层中的微粒更多;脉冲电沉积工艺中,
    脉冲参数不同会得到表面平整程度和粒度不同的镀层。镀层截面的均匀程度从大
    到小依次为:RE一i一W-P一SIC一MoS:)RE一Ni一W-P一SIC一PTFE>RE一Ni一W-P一SIC>
    Ni一W-P。SIC。Ni一W-P一SIC、RE一Ni一W-P一SIC脉冲镀层在镀态时是非晶态结构,
    RE一Ni一W-P一siC一Mos:在镀态时是混晶结构,而RE一i一W-P一siC一PTFE脉冲镀层在
    镀态时是晶态结构;热处理温度对RE一Ni一W-P一SIC的相结构有较大的影响,随着
    热处理温度的升高和热处理时间的延长,镀层的非晶态逐渐减弱,镀层逐渐向晶
    态转变,并不断有新相的特征峰产生。
     N卜W-P一SIC、RE一i一W-P一SIC、.RE一i一W-P一SIC一MoSZ、RE一Ni-W‘P一SIC一PTFE
    脉冲复合镀层具有较优异的性能,其中Ni一W-P一SIC脉冲镀层的耐蚀性最好,
    RE一Ni--W-P一siC脉冲镀层的硬度和抗高温氧化性最好,而RE一Ni一w-P一SIC一MoSZ
    和RE一Ni一W-P一SIC一PTFE具有优异的耐磨性。
A series new Ni-W-P-SiC, RE-Ni-W-P-SiC, RE-Ni-W-P-SiC-MoS2 and RE-Ni-W-P-PTFE composite coatings with more excellent corrosion-resistance, hardness, oxidation-resistance and wear-resistance by pulse current were studied. The deposited composition, the properties and structure were tested by EPMA-1600 electron probe, 3015 X-ray diffraction patterns, optics microscope, HX-1 micro-hardness instrument, HDV-7 transistor permanent potential apparatus, MM2000 wear machine and YWX-F neutral salt-frog corrosion box, etc.
    The potential-pH diagram of Ni-P-H2O system at 298K was constructed by use of thermodynamic data. The formation mechanism of Ni-W-P-SiC system composite coatings was explained by means of potential-pH diagram, and the feasibility of pulse composite plating was analyzed by the mechanism and influence factors of pulse plating.
    The effects of pulse frequency and duty ratio values on the depositing rate and composition of the four composite coatings were studied and the results show that the influences were large. The depositing rate was high at f=20~33Hz, r=0. 4-0.8 in Ni-W-P-SiC and RE-Ni-W-P-SiC pulse electrodeposited processes; The depositing rate was high at f=33Hz, r=0.8 in RE-Ni-W-P-SiC-MoS2 and RE-Ni-W-P-SiC-PTFE electrodeposited processes. Content of Ni was highest in all coatings, Contents of MoS2 and PTFE were litter in RE-Ni-W-P-SiC-MoS2 and RE-Ni-W-P-SiC-PTFE composite coatings.
    The similarities and differences of the four composite coatings in corrosion-resistance, hardness, oxidation-resistance and wear-resistance and the divergences of properties between pulse deposited coatings and direct deposited coatings were studied. The corrosion-resistance of the four pulse deposited coatings was better than stainless steel(lCr18Ni9Ti) in HCl, H2SO4, H3PO4 and FeCl3 solutions; The deposited coatings by pulse current were better than that of by direct current in corrosion-resistance; The corrosion-resistance of composite coatings after heat-treatment at 400 C was better than plating coatings except RE-Ni-W-P-SiC-PTFE pulse deposited coatings; The corrosion-resistance of all pulse deposited coatings was
    
    
    
    
    the best in H3PO4 and the worst in FeCl3; Ni-W-P-SiC pulse composite coatings had better corrosion-resistance compared with the other three pulse composite coatings. The hardness of composite coatings was higher than hard chromium except RE-Ni-W-P-SiC-PTFE coatings; The deposited coatings by pulse current were better than that of by direct current in hardness; The hardness of RE-Ni-W-P-SiC composite coatings was the highest in the four pulse composite coatings. The hardness of the pulse composite coatings were much better than hard chromium and direct current coatings; The hardness of RE-Ni-W-P-SiC-MoS2 and RE-Ni-W-P-SiC-PTFE pulse composite coatings were better than the other pulse composite coatings. The oxidation-resistance of the pulse composite coatings were better than that of the direct current deposited coatings; Ni-W-P-SiC and RE-Ni-W-P-SiC pulse composite coatings had more better oxidation-resistance compared with the other composite coatings.
    The effects of pulse frequent and duty ratio value on corrosion-resistance of Ni-W-P-SiC composite coatings were studied by means of immerse experiments, drawing anodic polarization curves and neutral salt-frog corrosion test. The results indicated that Ni-W-P-SiC composite coatings had excellent corrosion-resistance at the range of f=33~50Hz, r=0.4~0.8. The surface morphologies of Ni-W-P-SiC composite coatings after corrosion indicated that the coating corrosion was dot corrosion in HC1 solution, but the coating corrosion were crack corrosion in H2SO4, H3PO4 and FeCl3 solutions.
    The studies on the hardness and oxidation-resistance of RE-Ni-W-P-SiC pulse current coatings indicated that pulse frequency and duty ratio value had a large influence on the hardness and oxidation-resistance. The coatings had high hardness at the range of f=50Hz, r=0.6~0.8 and the coatings had good oxidation-resistance at f=33Hz, r=0.4(or 0.6). Both heating temperature and he
引文
[1] 沈宁一,许强令,吴以南等.表面处理工艺手册[M].上海:上海科学技术出版社,1993.146-153
    [2] 曾华梁,吴仲达,陈均武等.电镀工艺手册tM].北京:机械工业出版社,1999.628-630.
    [3] Karthikeyan S, Srinivasan K N, Vasudevan T, et al. Characterisation of electroless nickel phosphorus silicon carbide composites[J]. Bull Electrochem, 2001,17(3): 127-130.
    [4] Cheng D H, Xu W Y, Hua L Q, et al. Electrochemical preparation & mechanical properties of amorphous Nickel-SiC composites[J]. Plating & Surface Finishing, 1998,2:61-64.
    [5] Wu Yu-cheng, Li Guanghai. Constitution of wear-resistant electroless nickel phosphorus composite with silicon carbide[J]. Z f Metallkunde, 2000, 91 (9):788-793.
    [6] Guo Zhong-cheng, Zhu Xiao-yun, Zhai Da-cheng, et al. Electrodeposition of Ni-W amorphous alloy and Ni-W-SiC composite deposits[J]. J Mater Sci Technol, 2000,16(3):323-326.
    [7] Guo Zhon-cheng, Liu Hong-kang, Wang Zhi-yin, et al. Properties of electrodeposited amorphous Ni-W-P-SiC composite coatings[J]. ACTA METALLURGICA SINICA, 1996,9(1):44-48.
    [8] Guo Zhong-cheng, Yang xian-wan, Liu Hong-kang. Microstructure of electrodeposited Ni-W-P-SiC composite coatings[J]. Trans Nonferrous Met Soc China, 1997,7(1):22-26.
    [9] 邓纶浩,何柳,郭忠诚等.Ni-W-B-SiC复合电镀中B的沉积机理及其对镀层硬度的影响[J].材料保护,1999,32(6):3-5.
    [10] Ma Ke-yi, Guo Zhong-cheng, Wen Ming-fen, et al. Combination strenthening process of Ni-W-Ti-SiC composite coating and nitrocarburization[J]. Trans Nonferrous Met Soc China, 1997,7(4):148-151.
    [11] 文明芬,郭忠诚,杨显万.电沉积Ni-Mo-P-SiC复合镀层[J].材料保护,1999,32(3):6
    
    
    [12] 张敬尧,李延祥.SiC表面活化对Ni-Co-P/SiC复合沉积层性能的影响[J].腐蚀与防护,2002,23(3):99-101.
    [13] 刘颖,陈家钊,涂铭旌.ZrO_2对Ni-P化学镀层抗高温氧化性影响[J].表面技术,1996,25(5):7-8.
    [14] 李爱昌.(Ni-W)-ZrO_2非晶复合镀层的制备及性能[J].材料保护,2000,33(7):11-12,54.
    [15] 刘善淑,成旦红,应太林等.电沉积Ni-P-ZrO_2复合电极析氢催化性能的研究[J].电镀与涂饰,2001,20(6):4-7.
    [16] 宋来州,李健,王福君.化学镀Ni-P合金/TiO_2复合膜的耐蚀性研究[J].材料科学与工艺,2002,10(2):148-150.
    [17] Osiewicz B. Ni-P composite coatings containing TiO_2 and PTFE[J]. Thin Solic Films, 1999,349(1):43-47.
    [18] Wang Y L, Wan Y Z, Zhao Sh M. Electrodeposition and characterization of Al_2O_3-Cu(Sn), CaF_2-Cu(Sn) and talc-Cu(Sn) electrocomposite coatings[J]. Surface and Coatings Technology, 1998,106:162-166.
    [19] 曲彦平,李德高,孙泰礼.铝合金Ni-P-Al_2O_3复合镀前处理工艺和耐蚀耐磨损性能的研究[J].表面技术,2001,30(1):3-5.
    [20] 曲彦平,李德高.化学镀Ni-P-Al_2O_3工艺及性能研究[J].表面技术,1999,28 (6):3-6.
    [21] 董允,林晓娉.Ni-W-Co/Al_2O_3复合电刷镀研究[J].表面技术,1997,26(6):14-16
    [22] 周白杨,高诚辉,李晓峰等.Ni-Fe-P/Al_2O_3复合镀层的硬度和耐磨性[J].电镀与环保,1998,18(3):6-9.
    [23] 谢凤宽.摩擦电喷镀Ni-Co-MoS_2复合镀层结构与摩擦学性能[J].中国表面工程,2002(2):27-29,32.
    [24] 肖秀峰,刘榕芳,赵崇涛等.Ni-W-WC复合镀层的研究[J]材料保护,1997,30(11):7-9.
    [25] 朱龙草,张庆元,陈宇飞等.电沉积镍-钴-碳化钨复合镀层的研究[J].电镀与涂饰,1999,18(1):4-7.
    [26] Guo Zhong-cheng, Zhu Cheng-yi, Zhai Da-cheng, et al. Microstructure of electrodeposited RE-Ni-W-P-SiC composite coating[J]. Trans Nonferrous Met Soc China, 2000,10(1):50-52.
    
    
    [27] Guo Zhong-cheng, Zhu Xiao-yun,Yang Xian-wan. Corrosion resistance of electrodeposited RE-Ni-W-P-SiC composite coatin[J]. Trans Nonferrous Met Soc China,2001,11 (3):413-416.
    [28] Guo Z C, Zhu X Y, Xu R D, et al. Cathodic process and wear resistance of electrodeposited RE-Ni-W-P-SiC composite coating[J]. ACTA METALLURGICA SINICA, 2002,15(4):369-374.
    [29] 郭忠诚,杨显万,翟大成等.电沉积RE-Ni-W-P-SiC多功能复合材料的抗高温氧化性研究[J].功能材料,2000,31(6):651-653.
    [30] 苏加国,郭忠诚,邓纶浩等.工艺条件对电沉积RE-Ni-W-P-SiC-PTFE复合镀层性能的影响[J].电镀与环保,2002,22(2):1-4.
    [31] 郭忠诚,邓纶浩,朱晓云等.RE-Ni-W-P-SiC-PTFE复合镀层的抗氧化性研究[J].机械工程材料,2001,25(4):26,36.
    [32] Chen Ling, Guo Zhong-cheng, Yang Xian-wan. Structure and characteristics of electrodeposited RE-Ni-W-P-B_4C-PTFE composite coating[J]. Trans Nonferrous Met Soc China, 2001,11(6):887-890.
    [33] 郭忠诚,朱晓云,翟大成等.电沉积KE-Ni-W-B-B_4C-MoS_2复合镀层的性能研究[J].中国电镀材料信息,2001,2:19-24.
    [34] Guo Zhong-cheng, Liu Hong-kang, Wang Zhi-yin, et al. Process and properties of electroless plating RE-Ni-B-SiC composite coatings[J]. ACTA METALLURGICA SINICA, 1995,8(2):118-122.
    [35] Guo Zhong-cheng, Zhai Da-cheng, Yang Xian-wan. Effects of addition of rare earth on properties and structures of Ni-W-B-SiC composite coatings[J]. Trans Nonferrous Met Soc China, 2000,10(4):538-541.
    [36] 尹邦跃.纳米时代[M].北京:中国轻工业出版社,2001.13.
    [37] 蒋斌,徐滨士,董世运等.纳米复合镀层的研究现状[J],材料保护.2002,35 (6):1-3.
    [38] 李声泽.纳米电沉积技术最新发展简介[J].中国电镀材料信息,2002,2(1):1-3.
    [39] 顾宝珊,纪晓春,张启富等.化学镀镍-磷-超微金刚石复合镀层初探[J].电镀与精饰,1999,21(5):9-11.
    [40] Mandich N V, Dennis J K. Codeposition of nano-diamonds with chromium[J]. Metal Finishing, 2001,99(6): 117-119.
    
    
    [41] Benea L, Bonora P L. Composite electrodeposition to obtain nanostructured coatings[J], J Electrochem Soc 2001,148(7),461-465.
    [42] Zimmerman A F. Coposite Ni-SiC nano-coating by electrodeposition[J]. AESF SUR/FIN, 2001,65-70.
    [43] 程森,王昆林,赵高敏.纳米SiC复合镀层制备工艺的研究[J].材料保护,2002,35(8):24-26.
    [44] Chen X H, Cheng F Q, Li S L. Electrodeposited nickel composites containing carbon nanotubes[J]. Surface and Coatings Technology, 155(2002) 274-278.
    [45] 王健雄,陈小华.碳纳米管镍基复合镀层材料耐腐蚀性的初步研究[J].腐蚀与防护,2002,23(1):6-9.
    [46] 张玉峰.复合刷镀纳米Ni-ZrO_2高温耐磨性的研究[J].电镀与涂饰,2002,19 (4):18-21.
    [47] 徐滨士,董世运,马世宁等.N-Al_2O_3~P/Ni复合刷镀层的组织和摩擦磨损特性[J].材料保护,2002,35(6):6-8.
    [48] 黄新民,谢跃勤,吴玉程等.Ni-P-纳米TiO_2微粒化学复合镀层的摩擦特性[J].电镀与精饰,2001,23(5):1-4.
    [49] 黄新民,吴玉程,郑玉春等.表面活性剂对复合镀层中TiO_2纳米颗粒分散性的影响[J].表面技术,1999,28(6):10-12.
    [50] 刘先黎.Ni-纳米FeS复合镀层耐磨性的研究[J].电刷镀技术,2001,1:9-11.
    [51] 张玉峰.Ni-P-纳米Si_3N_4微粒复合刷镀工艺研究[J].电镀与精饰,2001,23(6):5-7.
    [52] 专家访谈.徐滨士院士谈纳米表面工程[J].中国表面工程,2002,55(2):47.
    [53] 欧忠文.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2000,2:5-8.
    [54] 吴元康,余焜,熊晓辉等.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究[J].中国电镀材料信息,2002,2(6):64-68.
    [55] Gay Pierre-Antonine, Patrice Bercot,Jacques Pagetti. Electrodeposition and characterisation of Ag-ZrO_2 electroplated coatings[J]. Surface and Coatings Technology, 2001,140:147-154.
    [56] Sun Kyu Kim, Hong Jae Yoo. Formation of bilayer Ni-SiC composite coatings by electrodeposition[J]. Surface and Coatings Technology, 1998,108-109: 564-569.
    [57] Orlovskaya L, Medeliene V. Electrodeposition of multiplayer cobalt-sillicon
    
    carbide composite coatings from a single bath[J]. Bull Electrochem, 2001,17(8):371-377.
    [58] Zhao Q, Liu Y, Hu Müller-Steinhagen. Graded Ni-P-PTFE coatings and their potential applications[J]. Surface and Coatings Technology, 2002,155: 279-284.
    [59] 王宏智,张卫国,姚素薇.电沉积梯度功能材料的研究进展[J].电镀与环保,2001,21(3):1-4.
    [60] 文明芬,刘晓冰,张晶等.功能梯度材料的新型制备法——多层复合镀[J].电镀与涂饰.1999,18(1):44-46.
    [61] 向国朴.脉冲电镀发展概况[J].电镀与涂饰.2000,19(4):43-47.
    [62] 侯进,侯庆军.脉冲电镀的含义及常用形式[J].中国电镀材料信息.2002,2 (7)68~73
    [63] Colombini C. [J] Galvanotechnik, 1998,79(9):2869.
    [64] Colombini C. Anwendung eines pulse-gleichrichters mit periodischer polaritatsumkehrung[J] Galvanotechnik, 1989,80(5): 1555-1566.
    [65] Chai H J, Chang D Y, Kwon S C. The properties of chromium electroplated with pulsed current[J]. Plat & Sur Fin, 1989,76(6):80-89.
    [66] Krishnan R M, Sriveeraraghavan S, Natarajan S R. [J]. Plat Sur & Fin, 1993,91(10):65.
    [67] Han S H, Chang D Y, Kwon S C. Properties of pulse-plated hard chromium from a self-regulating bath[J]. Plat & Sur Fin, 1991,78(9):66-69.
    [68] Devaraj G; Seshadri S K. Pulsed electrodeposition of nickel[J]. Plat & Sur Fin, 1996,83(6):62-66.
    [69] 曾燕屏,李友国,唐庆云等.周期换向脉冲电流镀镍工艺研究[J].电镀与精饰,1992,14(3):22-24.
    [70] 向国朴,周恩彪.脉冲电镀Ni-Co合金研究[J].电镀与涂饰,1994,13(2):18-21.
    [71] Devaraj G, Seshadri S K. Pulsed electrodeposition of copper[J]. Plat & Sur Fin, 1992, 79(8): 72-78.
    [72] Stoychev D S, Aroyo m s. The influence of pulse frequency on the hardness of bright copper electrodeposits[J]. Plat & Sur Fin, 1997,84(8):26-28.
    [73] Holmbom L G, Jacoboson B E. [J]. J Electrochem Soc, 1988,135(11):2720.
    [74] Holmbom L G, Jacoboson B E. Effects of bath temperature and pulse-plating
    
    frequency on growth morphology of high purity gold[J]. Plat & Sur Fin, 1987,74(9):74-79.
    [75] 许维源.从氰柠檬酸盐溶液中周期换向脉冲镀金[J].电镀与精饰,1987,9(2):7-9.
    [76] 许赵武.脉冲吊镀银自动线工艺实践[J].电镀与精饰,1997,19(1):30-31.
    [77] Reksc W, Jurewicz K, Frackowiak E. Electroanalytical methods Ⅱ:polarography and voltammetry [J] Plat & Sur Fin, 1989,76(5): 14-15.
    [78] 向国朴编著.脉冲电镀的理论与应用[M].天津:科学技术出版社,1989:94-95.
    [79] Yoshimura S, Chida S, Sato E, Kubota N. Pulse current eletrodeposition of palladium[J]. Metal Finishing, 1986, 84(10):39-42.
    [80] 蒋宇侨.当前电镀热点[J].电镀与精饰.2003,25(5):13-15.
    [81] 王鸿建主编.电镀工艺学[M].哈尔滨:哈尔滨工业大学出版社,1995:154-164.
    [82] 邓纶浩.电沉积RE-Ni-W-P-SiC-PTFE复合镀层的工艺及结构性能研究[硕士学位论文.昆明理工大学.2000.19-23.
    [83] 张胜涛等编著.电镀工程.[M].北京:化学工业出版社,2002:308-312.
    [84] 张允诚等编著.电镀手册[M].北京:国防工业出版社,1997:622-635.
    [85] 曾华梁等编著.电镀工艺手册[M].北京:机械工业出版社,1997:645-647.
    [86] 李国英主编.表面工程手册[M].北京:机械工业出版社,1997:6-153~6-155.
    [87] 郭忠诚,杨显万著.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社:2002:130-131.
    [88] 郭忠诚,杨显万著.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社:2002:69-70.
    [89] 郭忠诚,杨显万著.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社:2002:800-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700