亚微米颗粒增强铝基复合材料的制备、组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文率先将高能球磨和半固态挤压技术相结合,形成亚微米颗粒增强铝基复合材料制备新技术。通过自行设计的半固态挤压装置,采用高能球磨—半固态挤压制备了亚微米SiCp/2014Al和SiCp/6066Al复合材料,利用金相显微镜、扫描电镜、万能电子拉伸机、热分析仪、维氏硬度计等手段系统研究了亚微米SiCp/Al复合材料的显微组织、力学和热物理性能。并通过对材料的组织性能分析,研究了不同有机溶剂对亚微米颗粒在基体中的分散效果,半固态挤压工艺参数对材料组织性能的影响,以及亚微米颗粒增强铝基复合材料的强化机制、断裂机制、时效硬化行为等。得出的主要结论如下:
     1.亚微米陶瓷颗粒有良好的增强效果。一定体积分数内,亚微米颗粒增强铝基复合材料的力学性能随增强体含量的增加而增加,但增强体含量过多时,复合材料中的增强体聚集区和增强体/增强体界面反而会恶化材料的力学性能。
     2.随着亚微米增强体含量的增加,复合材料的主要微观断裂机制沿“基体撕裂→增强体/基体界面开裂→增强体/增强体开裂”转变。
     3.复合材料的最佳半固态挤压温度为复合材料中液相体积分数为40%时基体所对应的温度;提高挤压比,有利于复合材料性能的提高。
     4.在丙酮、正丁醇、乙醇三种有机溶剂中,丙酮在混料时对0.13μm的SiC分散效果最好,采用其作为混料介质制各的复合材料性能最好。
     5.弥散分布的亚微米颗粒并未影响基体合金的时效动力学,复合材料的峰时效时间与基体合金相同,但颗粒含量过高时,复合材料中的大尺寸颗粒团聚体起到了微米级增强颗粒加速基体合金时效析出的作用。
     6.采用高能球磨—半固态挤压技术制备的亚微米SiCp/Al复合材料具有较好的颗粒分散性,材料具有良好的力学和热物理性能。
With the combination of high energy ball milling method and semi-solid extrusion method, in this paper the technique of preparing sub-micron particle strengthening aluminum matrix composite was developed firstly. Through the semi-solid instrument devised by ourselves, sub-micron SiCp/2014Al and SiCp/6066Al composites were prepared by the utilization of high energy ball milling- semi-solid extrusion method. Optical microscopy, scanning electron microscopy, universal material testing machine, thermal analyzer and Vickers hardness tester were used to study the microstructure, mechanical and thermal physical properties of sub-micron SiCp/Al composites. Through the analysis of microstructure and properties of materials, the influence of different solvents on dispersion effects of sub-micron particles in matrix, the influence of semi-solid extrusion parameters on microstructure and properties of materials, strengthening mechanism , fracture mechanism , aging hardening behavior of sub-micron particles strengthening
     aluminum matrix composites were studied in this paper. The main conclusions were as follows:
    1. Sub-micron ceramic particles owned the excellent strengthening effect. In a certain range of strengthening particles volume fraction, mechanical properties of sub-micron particle strengthening aluminum matrix composites increased with the increasing of the volume fraction of strengthening particles, however, when the volume fraction of strengthening particles was excessive, gathering area of strengthening particles and interface between strengthening particles in composites would worsen the mechanical properties of materials.
    2. With the increasing of volume fraction of sub-micron strengthening particles, the main microscopic fracture mechanism of composites changed as the following sequence: "fracture of matrix → fracture of interface between strengthening particles and matrix → fracture between strengthening particles".
    3. The optimal semi-solid extrusion temperature was the temperature of matrix when volume fraction of liquid phase reached 40% in
    
    
    Abstract
    composites; Increasing of extrusion ratio was beneficial to the improvement of mechanical properties of composites.
    4. For three organic solvents of acetone nor-butanol and ethanol, acetone owned the best dispersion effect on 0.1 3 [am SiC particles during the process of blending. Taking acetone as the blending medium the composites had the optimal properties.
    5. Dispersed sub-micron particles didn't influence the aging kinetics of matrix alloy, the peak aging time of composites was the same with that of matrix alloy. While the volume fraction of particles was excessive, large size particle aggregates played a role that micron strengthening particles accelerated the aging precipitation in matrix alloy.
    6. Sub-micron SiCp/Al composites prepared by high energy ball milling and semi-solid extrusion techniques owned excellent particle dispersion ability, and the materials owned excellent mechanical and thermal physical properties.
引文
[1]Eliasson J, Sandstrom R, Applications of aluminum matrix composites [J]. Key Engineering Materials, 1995, (104-107):3-35.
    [2]Warren H, Hunt Jr, Aluminum Metal matrix composites today [J]. Materials Science Forum, 2003, (331-337):71-84.
    [3]Liu Y B, himS C, Lu L, et al. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy technique [J]. Mater Sci., 1994,29:1999
    [4]S.V. Nair, J. K.Tien and R.C. Bates, SiC-Reinforced Aluminum Metal Matrix Compoxites. Int. Met. Rev., 1995,30(6):275-288
    [5]吴人洁.金属基复合材料的研究现状与展望.金属学报,1997,33(1):78-84
    [6]桂满昌等.颗粒增强金属基复合材料的制备及应用.材料导报.1996,(3):65-71
    [7]郝元恺.非连续增强轻金属复合材料研究现状及展望.材料导报.1994,(5):67-71
    [8]黄泽文.金属基复合材料的大规模生产和商品化发展.材料导报.1996,(增刊):18-25
    [9]V.K. Lindroos, M.J. Talvitie, Recent Advances in Metal Matrix Composites. J. Mater. Process. Tech.,1995, (53):273-284
    [10]张大童等.铝基复合材料研究进展.轻合金加工技术,2000,28:5-10
    [11]樊建中等.颗粒增强铝基复合材料研究进展.材料导报,1997,11(3):48-51
    [12]李成功.金属基复合材料的研究与发展.宇航材料工艺,1995,4:1-5
    [13]M. Van Den. Burg, et al. AI-SiC interface structure studied by HREM. [J].Acta Metal. Mater. 1992,40(S):s281-s287
    [14]J.C. Romero, et al. Interracial Structure of a SiC/Al composites. [J].Mater. Sci. Eng. 1996, A212:1-5
    [15]隋贤栋等.SiCp/ZL109复合材料中的SiC的界面行为.复合材料学报,2000,17(1):65-70
    [16]崔岩.碳化硅颗粒增增强铝基复合材料的航空航天应用.材料工程,2002(6):3-6
    [17]马建平等.SiCp/Al复合材料光机结构件及光学反射镜的制造研究.航
    
    天工艺,2000,2:1-4
    [18]沃西源等.卫星结构先进复合材料应用进展.航天返回与遥感,2002,23(3):52-56
    [19]曹令俊.复合材料在汽车工业中的应用及发展趋势.汽车工艺与材料,2000.12:31-33
    [20]郭洪光.光电器件用金属基复合材料研究进展.兵器材料科学与工程,1996,19(4):67-72
    [21]张崎.功率微电子封装用铝基复合材料.微电子技术,1999,27(2):30-34
    [22]吴波等.复合材料在惯性器件中的应用研究.导弹与航天运载技术,2000.3:17-20
    [23]周琪等.铝基复合材料在惯性平台结构件中的应用.航天工艺,2001,3:36-39
    [24]张洪立等.铝基复合材料在惯性导航仪表中的应用分析.宇航材料工艺,2001(3):10-14
    [25]马森林等.高尺寸稳定性铝基复合材料研究新进展.中国惯性技术学报,1998,6(3):64-69
    [26]张帆等.SiCp/Al复合材料温度变化引致尺寸不稳定性的研究.热加工工艺,2000,1:5-7
    [27]钟涛兴.压渗SiCp/Al电子封装复合材料的研究.铸造技术,1997,6:42-43
    [28]Han B Q, Agnew S R, Dunand D C, High-strain - rate deformation of pure aluminum reinforced with 25% alumina submicron particles near the solidus temperature [J].Scripta Mater.,1999,40:801-808
    [29]Sang-Shik Kim, Michae J, Hanyes et al, Localized deformation and elevated-temperature fracture of submicron-grain aluminum with dispersoids [J].Mater. Sci. and Eng.,1995:256-271
    [30]栾佰峰等.热挤压变形对亚微米Al_2O_3p/Al复合材料组织性能的影响.中国有色金属学报,2003,13(2):373-376.
    [31]姜龙涛.亚微米Al_2O_3颗粒增强铝基复合材料的界面区的显微结构特征:[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [32]肖永亮等.纳米SiC颗粒增强铝基复合材料研究.金属学报,1996.32:658-662
    [33]李洪武等.亚微米AlN/Al基复合材料的组织性能研究.热加工工
    
    艺,2004.2:
    [34]彭华新.挤压铸造纳米陶瓷颗粒增强铝基复合材料的研究:[博士后论文].北京:北京科技大学,1998
    [35]徐翠云.国内外纳米科技研究应用现状及发展趋势分析.中国粉体技术,2002(8)3:32-36
    [36]张立德.纳米材料研究的进展与我国的对策.科技导报,2000,10:33-34
    [37]白春礼.纳米科技及其发展进展.中国工程咨询,2000,4:38-41
    [38]张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001.99-102
    [39]任俊等.超细颗粒的静电抗团聚分散.科学通报.2000,45(21):2289-2295
    [40]徐国财,张立德著.纳米复合材料.北京:材料科学与工程出版中心,2001.101-105
    [41]许珂敬等.高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用.中国陶瓷,1999(35):515-18
    [42]S. Li and R.J. Arsenault. Quantum Chemical study of Adhesion at the SiC/Al Interface. [J].Appl. Phys.,1988,64:6246-6257
    [43]谭顿强.SiC铝基复合材料的制备技术和界面问题.铝加工,2000,23(3):39-42
    [44]李云平等.新型置换法制备Ni涂覆SiC颗粒.中南工业大学学报,2001,32(2):161-164
    [45]王玲.用化学镀实现陶瓷微粒表面金属化.材料保护,1998,31:16-17
    [46]李云平等.涂覆颗粒增强耐热铝基复合材料的性能.中南工业大学学报.2001,32(6):612-616
    [47]陈建等.合金元素影响铝/陶瓷界面润湿性的研究现状.兵器材料科学与工程.1999,22(4):53-58
    [48]欧阳柳章等.SiCp/Al复合材料的制造及新动向.铸造,2000,49(1):17-20
    [49]陈振华等.多层喷射共沉积制备6066铝合金/SiC颗粒复合材料.中国有色金属学报,19966(4):83-86
    [50]康智涛等。大尺寸多层喷射沉积6066Al/SiCp/Gr复合材料管坯的制备.中南工业大学学报,2001,32(2):165-168
    [51]祖丽君等.SiCp/2024铝合金复合材料粉末混合—半固态挤压法制备.中国有色金属学报,2000,10(增刊1):179-183
    
    
    [52]程羽等.热挤压对颗粒增强金属基复合材料组织和性能的影响.兵器材料科学与工程.2000,23(2):31-34
    [53]柏镇海等.SiC增强颗粒含量对6066铝合金组织及力学性能的影响.轻合金加工技术,2001,9(8):4346
    [54]Kamat S V, et al. Mechanical properties of particulate-reinforced aluminum-matrix composites [J].Acta Metall Mater, 1989,37:2395-2402
    [55]Doel T J A, et al. Tensile properties of particulate - reinforced metal matrix composites[J].Composites Part A, 1996,27A:655-665
    [56]祖丽君等.半固态挤压SiCp/2024复合材料的组织性能研究及缺陷分析.哈尔滨工业大学学报,2000,32(5):69-72
    [57]Guoxian LIANG. et al. Microstructure and mechanical property of 2024 aluminium alloy prepared by rapid solidification and mechanical milling[J].Mater. Sci. Technol.,1995,11:398-402
    [58]喇培清等.高体积分数粒子型铝基复合材料热膨胀性能的研究.复合材料学报,1998,15(2):6-11
    [59]喻学斌等.电子封装铝基复合材料线膨胀研究.宇航材料工艺,1995,5:31-34
    [60]张涛等.金属基复合材料热膨胀性研究.宇航材料工艺,1994,4:37-41
    [61]张国定.金属基复合材料的界面问题.材料研究学报.1997,11(6):649-657
    [62]栾佰峰等.AlNp/LY12复合材料时效行为及微观组织.材料科学与工艺,2001,(9)4:367-370
    [63]樊建中等.高性能铝基复合材料的颗粒分布及界面结合.宇航材料工艺,2002,1:30-34
    [64]郭成等.SiC颗粒增强铝合金基复合材料断裂与强化机理.复合材料学报,200118(4):54-57
    [65]周清等.弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂。金属学报,1998,34(1):107-112
    [66]董尚利等。短纤维增强铝基复合材料强化机制评述.材料科学与工程,2000,18(1):121-126
    [67]武高辉等.亚微米Al_2O_3颗粒增强LD2铝合金复合材料的拉伸性能与强化机制.复合材料学报,1998,15(3):21-26
    [68]李义春等.SiCp/Al复合材料微蠕变行为及其影响因素.航空学报.1994,15(5):632-635
    
    
    [69]郦定强等.增强体颗粒尺寸对SiCp/2124Al复合材料变形行为的影响.上海交通大学学报,2000,34(3):342-346
    [70]Lewandow shi J, et al. Observations on the effects of particulate size and superposed pressure on deformation of metal matrix composites [J].Scripta Metall Mater, 1991,25:21-26
    [71]吕旒雄等.SiCp尺寸及基体强度对铝基复合材料破坏机制的影响.金属学报,1998,34(11):1187-
    [72]武高辉等.亚微米颗粒增强6061铝基复合材料的微塑变特性.材料研究学报,1998,12(3):307-310
    [73]董尚利等.碳化硅晶须和颗粒增强铝基复合材料的时效行为.材料工程,1996,8:45-49
    [74]刘秋云等.SiCw/6061 Al复合材料时效机制的研究.材料研究学报,1999,13(4):408-411
    [75]李伟等.Al-4.5Cu和Mullite增强Al-4.5Cu复合材料时效析出行为的DSC研究.分析测试学报,2002,21(1):8-10
    [76]姚力军等.27vol%-SiCw/6061Al复合材料170℃时效的双硬度峰现象.复合材料学报,1996,13(1):35-40
    [77]乐永康等.颗粒增强铝基复合材料6066Al/SiCp的时效析出特性.稀有金属材料与工程.2002,31(6):460-463
    [78]Gong Hao-ran, et al. Heat treatment of spray deposition SiCp/6066 aluminium matrix composites[J].Cent. South Univ. Technol.,2000, (7)2:61-64
    [79]M. Gupta, et al. Effect of increase in heterogeneous nucleation sites on the aging behavior of 6061/SiC metal matrix composites[J]. Materials Research Bulletin, 30(8):1023-1030
    [80]N. E.Bekheet, et al. The effects of aging on the hardness and fatigue behavior of 2024 Al alloy/SiC composites[J]. Materials and Design, 2002,23:153-159
    [81]A.N. Abdel-Azim, et al. Ageing behaviour of 2024-Al alloy reinforced with Al2O3 particles[J]. Journal of Materials Processing Technology, 1995,55:140-145
    [82]谢水生,黄声宏著.半固态金属加工技术.北京:冶金工业出版社,1999
    [83]罗守靖.复合材料液态挤压.北京:冶金工业出版社,2002
    [84]谢建新,刘静安.金属挤压理论与技术,2001
    
    
    [85]贺春林.碳化硅颗粒增强铝基复合材料的微观结构和力学与腐蚀行为研究:[博士学位论文].沈阳:东北大学,2002
    [86]陈剑峰等.金属基复合材料的强化机制.航空材料学报,2002,22(2):49-53
    [87]张力宁等.颗粒增强金属基复合材料强化机制的探讨.东南大学学报,1995,25(4):77-82
    [88]张昱等.纳米Al_2O_3增强高温铝基复合材料的研究.有色金属,1999,51(3):90-92
    [89]徐晓静等.铝基复合材料超塑性变形机制.机械工程材料,1998,22(5):4-7
    [90]颗粒增强复合材料超塑性中颗粒作用的研究.上海有色金属,1995,16(5):254-259
    [91]黄赞军等.原位Al_2O_3颗粒强化铝基复合材料的研究.金属学报,2002,38(6):568-574
    [92]杨滨等.原位反应TiC颗粒对喷射沉积Al-20Si-5Fe合金微观组织的影响.北京科技大学学报,2001,23(1):24-27
    [93]崔春翔.吴人洁.原位AlN—TiC粒子增强铝基复合材料.金属学报,1996,32(1):101-103
    [94]张豪等.多层喷射沉积6066铝合金半固态挤压.中国有色金属学报,1998,3(2):191-196
    [95]童文俊等.半固态2618铝合金二次加热及成形试验.宇航材料工艺,2001,1:40-42
    [96]蒋鹏等.半固态金属成形技术的研究概况.塑性工程学报,1998,5(3):1-7
    [97]赵爱民等.喷射沉积高硅铝合金的半固态触变成形.中国有色金属学报,2000,10(增刊1):126-131
    [98]刘丹等.铝合金半固态成形性.东北大学学报,1996,20(3):308-311
    [99]刘昌明等.形变诱导法半固态加热工艺参数对LY12合金组织和晶粒尺寸的影响.中国有色金属学报,2002,12(3):436-441
    [100]刘国钧等.几种车用铝合金的半固态成形工艺研究.特种铸造及有色合金,2001,1:7-10
    [101]张奎等.半固态金属制备原理与应用.稀有金属,1998,22(6):447-449
    [102]王开等.ZL112Y铝合金半固态压铸过程微观组织的演变.中国有色金属学报,2003,13(4):956-962
    
    
    [103]祖丽君.SjCp/2024复合材料半固态触变成形研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [104]罗守靖等.SiCp/2024复合材料半固态二次加热组织的研究.材料科学与工艺,2003,11(1):1-5
    [105]齐乐华等.液-固挤压SiCp/LY12复合材料的组织与性能.中国有色金属学报,2001,11(2):64-67
    [106]田荣璋,王祝堂主编.铝合金及其加工手册.长沙:中南工业大学出版社,2000
    [107]孙秋霞等.凝固界面前沿颗粒行为的研究进展.材料导报,2003,17(9):9-12
    [108]喇培清等.高体积分数粒子型铝基复合材料热膨胀性能的研究.复合材料学报,1998,15(2):6-11
    [109]喻学斌等.电子封装铝基复合材料线膨胀研究.宇航材料工艺,1995,5:31-34
    [110]L. Geng, et al, J. Mater. Sci. Lett.,1998,17:403
    [111]A. Needleman, et al, Effective plastic response of two-phase composites. [J].Acta Metallurgica Materialia 1995,43:1701-1722
    [112]S. Lemieux, et al, J. Mater. Sci.,1998,33:4381
    [113]Kerner E H. The elastic and thermo-elastic properties of composite media[J].Proceedings of the Physical Society, 1956,69:808
    [114]奚同庚编.无机材料热物性学.上海:上海科学技术出版社,1981
    [115]中国金属学会,中国有色金属学会编.金属材料物理性能手册(第一册).北京:冶金工业出版社,1987
    [116]陈治明,王建农.半导体器件中的材料物理学基础.北京:科学出版社,1999
    [117]华南工学院等编,陶瓷材料物理性能.北京:中国建筑工业出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700