半导体光放大器的高速动态特性及应用于光信号处理的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网业务的飞速发展,对光通信网络的带宽需求越来越大,推动光通信网络向具有超高速光传输和大容量光交换能力的全光网络方向发展。其中,骨干网中网络节点的全光透明对具备全光信号处理的光子器件提出了更高的要求,研究具有超高速、低功耗、集成化的全光信号处理集成芯片成为关键。半导体光放大器(SOA)具有非线性大、体积小、功耗低、易于集成等优点被认为是全光信号处理中非常有前景的非线性光学器件,因而成为国内外研究的热点。但是SOA存在载流子恢复速度慢,难以实现超高工作速率的缺点。针对超高速全光信号处理对SOA工作速率的要求,本文对SOA的增益、相位动态中的超快动态特性及相关的一些基本物理问题进行了深入研究,主要的研究成果和贡献有以下几个方面:
     1.全面介绍和分析了与SOA超快动态特性相关的载流子速率方程及光波动方程。根据研究SOA超快动态特性和超高速光信号处理的要求,建立了一个包含带内、带间物理效应以及增益色散和群速色散等物理过程的SOA数值模型。
     2.研究了SOA超快带内非线性效应对SOA增益和相位的贡献,数值论证了SOA相位恢复中存在超快的恢复过程。深入分析了SOA相位恢复特性与脉冲宽度的关系,发现在超短光脉冲入射条件下,SOA中会存在较强的载流子加热效应,使得SOA的相位动态中出现超快的恢复过程;在分析带内、带间非线性效应与泵浦脉冲在时间上对应关系的基础上,解释了相位和增益之间存在时间延迟的原因,并进一步分析了时延与泵浦脉冲宽度及泵浦脉冲峰值功率的变化关系;分析了载流子寿命与工作条件的关系,研究了直流光功率、SOA的工作电流和SOA有源区的长度对SOA增益恢复速度的影响,为优化SOA参数以提高其工作速率提供了依据。
     3.采用泵浦-探测(pump-probe)的实验方案,实验验证了SOA相位中存在超快的恢复过程。结果显示在宽度为2ps的泵浦光脉冲输入下,超快相位恢复过程的持续时间约为2ps,对于相位恢复的贡献约为20%(0.15弧度)。基于测量的SOA增益变化和相位变化,分析了SOA线宽增强因子的时分变化特性;结果显示在短脉冲入射下,由于SOA中的超快非线性效应具有不同的增益和相位响应,导致SOA的线宽增强因子表现出较为强烈的变化,其中与载流子密度相关的线宽增强因子最小值约为4.5,并随着载流子密度的恢复而逐渐增大。
     4.深入研究了不同工作条件下SOA的啁啾变化特性,发现泵浦光产生的增益饱和的增加会导致SOA载流子恢复速度的增大从而引起SOA蓝移啁啾的增大。深入分析了码型效应引起的SOA啁啾变化特性并解释了相关的物理原因,在此基础上系统地论述了失谐滤波技术消除码型效应的原理。论证了采用失谐滤波技术能够实现640Gbit/s的全光波长转换。
     5.研究了对向传输模式下SOA的超快动态特性。发现在对向传输模式下SOA增益和相位动态中具有相对较小的超快恢复过程,同时具有大的增益饱和时间,导致SOA很难具有高的工作速率;提出通过减小SOA的长度来增加SOA增益和相位的超快恢复过程以实现对向传输模式下的超高速光信号处理的解决方案。
     6.研究了将蓝移失谐滤波技术引入对向传输模式中来提高SOA工作速率的方案,实验论证了对向传输模式下蓝移滤波技术有效性,实现了无误码的同波长和不同波长的40Gbit/s的高速全光波长转换。
With the rapid progress of internet services, the demand for bandwidth isdramatically increasing, and optical communication networks are developing towardsall-optical networks to achieve all-optical transparency at the network notes, inparticular, for the backbone networks. One key factor in the all-optical networks is todevelop the optical signal processing integrated chips, which have the advantages ofultra-fast operating speed, low power consumption, and large scale of integration. Thesemiconductor optical amplifiers (SOAs) are promising devices in the all-optical signalprocessing due to the small size, low power consumption, high nonlinearity and beeasily integrated with other semiconductor devices. The main drawback of the SOA isthe slow carrier density recovery speed, which limits its operating speed. In order tomeet the requirements of high speed optical signal processing, it is desirable that theSOAs can operate in high speed. Based on this consideration, the SOA ultra-fastdynamical characteristics and the associated physical phenomenon are studied. Themain contributions of this dissertation are summarized as following:
     1. The basic propagation equation of electromagnetic field and the carrier rateequation for the SOAs are introduced, and the ultrafast intraband carrier dynamics areanalyzed. To meet the requirements of investigating the SOA ultrafast dynamics andultra high-speed optical signal processing, an extended SOA model, which includes theultrafast nonlinear effects, is built up.
     2. The contributions of the intraband effects for the gain dynamics and phasedynamics of SOA under different pulse width injection are investigated, and theultrafast phase recovery in the phase dynamics is demonstrated. It is found that thecarrier heating (CH) becomes stronger due to the relative long relaxation time of CHwhen the ultrashort pump pulse is injected, resulting in a ultrafast phase recovery inphase dynamics of SOA. The reason why the delay occurs between SOA gain dynamicsand phase dynamics is explained by analyzing the timescales of the intraband effectsand interband effect. The delay variations with the pulse width and peak pulse power arealso investigated. The impact of the SOA operating conditions on carrier lifetime is investigated,which are useful to increase the SOA operating speed.
     3. The ultrafast phase recovery in phase dynamics of SOA is demonstrated by thepump-probe experiment based on an integrated SOA-MZI. The results show that theultrafast phase recovery contributes about20%phase recovery (0.15rad) and theduration of the ultrafast process is about2ps when the pump pulse width is2ps. Basedon the measured gain dynamics and phase dynamics, the variation of time-resolvedlinewidth enhancement factor (α-factor) is investigated. The results show that theα-factor drastically varies when the short pump pulse injection due to different phaseresponses of intraband effects and interband effects, and the α-factor related to thecarriery density increases with the carrier density recovery from the minimum of4.5.
     4. The chirp variation characteristics of SOA are analyzed under the injection ofclock pulses and random pulses. It is found that the gain saturation induced by pumppulses can increase recovery speed of carrier density, which results in larger blue-shiftchirp. The chirp variation characteristics induced by bit pattern are analyzed in detailand the physical explanation is given, the further comprehensively explanation theoperating principle of using blue-shift band pass filter to reduce the bit pattern effect isalso given. The640Gbit/s all-optical wavelength conversion is numericallydemonstrated by using a blue-shift Gaussian band pass filter.
     5. The SOA ultrafast dynamical characteristics related to the gain dynamics,phase dynamics and chirp dynamics are investigated in the counter-propagating setup. Itis found that the SOA has smaller ultrafast recovery in the gain and phase dynamics inthe counter-propagating setup than in co-propagating setup. The smaller ultrafastrecovery also results in the smaller blue-shift in the chirp. It is also found that the gainsaturation time is a key factor of limiting the SOA operating speed in thecounter-propagating setup. The gain saturation time becomes large with the increase ofthe SOA active region length. And it can be decreased with the increase of work currentand pulse energy. To solve the the SOA slow operating speed in the counter-propagatingsetup, an effective way is to reduce the SOA active region length to increase the SOAultrafast dynamics. The ultrafast operating speed can be also achieved with theassistance of detuning filter or delay interferometer.
     6. The blue-shift detuning filter technology is induced in the counter-propagatingsetup and its feasibility to achieve high speed all-optical wavelength conversion is demonstrated. A high-speed optical wavelength converter is presented, which is capableof converting the data to the same wavelength using a single semiconductor opticalamplifier in counter-propagating setup. Error-free wavelength conversion to a differentwavelength or the same wavelength is demonstrated at a bit-rate of40Gbit/s.
引文
[1] Ultrafast networks gear-up for deployment [EB/OL]. http://www.nature.com/nphoton/journal/v4/n3/full/nphoton.2010.23. html, February1,2010
    [2] D. Worth. Verizon deploys100Gbit/s Ethernet network across Europe [EB/OL]. http://www.atacentres.com/news/verizon-deploys-100-gbits-ethernet-network-across-europe, April3,2011
    [3] Verizon expands100G technology on its U. S. and European networks in2012[EB/OL].http://www.prnewswire.com/news-releases/verizon-expands-100g-technology-on-its-us-and-european-networks-in-2012-183285331.html,2012
    [4] A. Sano, H. Masuda, T. Kobayashi, et al.69.1-Tb/s (432×171-Gb/s) C-and extended L-bandtransmission over240km using PDM-16-QAM modulation and digital coherent detection
    [C], In: Proceedings of Optical Fiber Communication Conference,2010, San Diego, CA,United States
    [5] H. G. Weber, S. Ferber, M. Kroh, et al. Single channel1.28Tbit/s and2.56Tbit/s DQPSKtransmission [J]. Electron. Lett.,2006,42(3):67-68
    [6] C. Zhang, M.Yojiro, I. Koji, et al. Demodulation of1.28Tbit/s polarization-multiplexed16-QAM signals on a single carrier with digital coherent receiver [C]. In Proceedings of theConference on Optical Fiber Communication,2009, San Diego, CA, United States
    [7] R. Driad, R. E. Makon, V. Hurm, et al. INP DHBT-based ICs for100Gbit/s data transmission
    [C]. the International Conference on Indium Phosphide and Related Materials,2008,Versailles, France
    [8] http://www.cisco.com
    [9] S. J. Ben Yoo. Optical packet and burst switching technologies for the future photonicinternet [J]. IEEE J. Lightwave Technol.,2006,24(12):4468-4492
    [10] G. P. Agrawal. Nonlinear fiber optics [M],3rd Edition,2002, San Diego, CA: Academic
    [11] M. Galili, H. C. H. Mulvad, L. Grüner-Nielsen, et al.640Gbit/s optical wavelengthconversion using FWM in a polarization maintaining HNLF [C].34th European Conferenceand Exhibition on Optical Communication,2008, Brussels, Belgium
    [12] H. C. H. Mulvad, M. Galili, L. K. Oxenl we.640Gbit/s optical time-division Add-Dropmultiplexing in a non-linear optical loop mirror [C]. IEEE/LEOS Winter Topicals MeetingSeries,2009, Innsbruck, Austria
    [13] H. Hu, E. Palushani, M. Galili, et al.640Gbit/s and1.28Tbit/s polarization insensitive alloptical wavelength conversion [J]. Opt. Express,2010,18(10):9961-9966
    [14] Y. Miyoshi, K. Ikeda, H. Tobioka, et al. Ultrafast all-optical logic gate using a nonlinearoptical loop mirror based multi-periodic transfer function [J]. Opt. Express,2008,16(4):2571-2577
    [15] A. Bogoni, L. Pot`, R. Proietti, et al. Regenerative and reconfigurable all-optical logic gatesfor ultra-fast applications [J]. Electron. Lett.,2005,41(7):435-436
    [16] J. Kakande, A. Bogris, R. Slavík, et al. First demonstration of all-optical QPSK signalregeneration in a novel multi-format phase sensitive amplifier [C].36th European Conferenceand Exhibition on Optical Communication,2010, Turin, Italy
    [17] A. L. Yi, L. S. Yan, B. Luo, et al. All-optical regeneration of polarization divisionmultiplexing signals in polarization nonlinear loop mirror [J]. Opt. Commun.,2011,248(14):3619-3621
    [18] A. L. Yi, L. S. Yan, B. Luo, et al. Simultaneous all-optical RZ-to-NRZ format conversion fortwo tributaries in PDM signal using a single section of highlynonlinear fiber [J]. Opt. Express,2012,20(9):162729-162736
    [19] J. Wang, Q. Sun, J. Sun. All-optical40Gbit/s CSRZ-DPSK logic XOR gate and formatconversion using four-wave mixing [J]. Opt. Express,2009,17(15):12555-12563
    [20] N. Sugimoto, T. Nagashima, T. Hasegawa, et al. Bismuth-based optical fiberwith nonlinearcoefficient of1360/W/km [C]. Optical Fiber Communication Conference,2004, Los Angeles,CA, U.S.A
    [21] F. Parmigiani, S. Asimakis, N. Sugimoto, et al.2R regenerator based on a2-m-long highlynonlinear bismuth oxide fiber [J]. Opt. Express,2006,14(12):5038-5044
    [22] J. H. Lee, T. Nagashima, T. Hasegawa, et al. Four-wave-mixing-based wavelength conversionof40-Gb/s Nonreturn-to-Zero signal using40-cm bismuth oxide nonlinear optical fiber [J].IEEE Photon. Technol. Lett.,2005,17(7):1474-1476
    [23] J. Fatome, C. Fortier, T. N. Nguyen, et al. Linear and nonlinear characterizations ofchalcogenide photonic crystal cibers [J]. IEEE J. Lightwave Technol.,2009,27(11):1707-1715
    [24] K. K. Chow, K. Kikuchi1, T. Nagashima, et al. Four-wave mixing based widely tunablewavelength conversion using1-m dispersionshifted bismuth-oxide photonic crystal fiber [J].Opt. Express,2007,15(23):15419-15423
    [25] W. Astar, C. C. Wei, Y. J. Chen, et al. Polarization-insensitive,40Gb/s wavelength andRZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF [J].Opt. Express,2008,16(16):12039-12049
    [26] M. D. Pelusi, V. G. Ta’eed, L. Fu, et al. Applications of highly-nonlinear chalcogenide glassdevices tailored for high-speed all-optical signal processing [J]. IEEE J. Sel. Top Quant.,2008,14(3):529-539
    [27] T. D. V, R. Pant, M. D. Pelusi, et al. Photonic chip-based all-optical XOR gate for40and160Gbit/s DPSK signals [J]. Opt. Lett.,2011,35(5):710-712
    [28] M. Galili, J. Xu, H. C. Mulvad, et al. Breakthrough switching speed with an all-opticalchalcogenide glass chip:640Gbit/s demultiplexing [J]. Opt. Lett.,2009,17(4):2182-2187
    [29] B. J. Eggleton, B. L. Davies, K. Richardson. Chalcogenide photonics [J]. Nat. Photonics,2011,5:141-148
    [30] C. Langrock, S. Kumar, J. E. McGeehan, et al. All-optical signal processing using χ2nonlinearities in guided-wave devices [J]. IEEE J. Lightwave Technol.,2006,24(7):2579-2592
    [31] C. Q. Xu, H. Okayama, M. Kawahara.1.5μm band efficient broad-band wavelengthconversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide [J]. Appl. Phys. Lett.,1993,63(26):3559-3561
    [32] M. V. Drummond, J. D. Reis, R. N. Nogueira, et al.160Gb/s wavelength conversion in aPPLN waveguide at room temperature [C]. Nonlinear Photonics,2010, Karlsruhe, Germany
    [33] M. H. Chou, K. R. Parameswaran, M. M. Fejer, et al. Multiple-channel wavelengthconversion by use of engineered quasi-phase-matching structures in LiNbO3waveguides [J].Opt. Lett.,1999,24(16):1557-1559
    [34] H. Furukawa, A. Nirmalathas, N. Wada,et al. Tunable all-optical wavelength conversion of160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide [J]. IEEEPhoton. Technol. Lett.,2007,19(6):384-386
    [35] G. W. Lu, S. Shinada, H. Furukawa, et al.160-Gb/s all-optical phase-transparent wavelengthconversion through cascaded SFG DFG in a broadb and linear-chirped PPLN waveguide [J].Opt. Express,2010,18(6):6064-6070
    [36] A. Bogoni, X. Wu, I. Fazal, et al.160Gb/s Time-domain channel extraction/insertion andall-optical logic operations exploiting a single PPLN waveguide [J]. IEEE J. LightwaveTechnol.,2009,27(19):4221-4227
    [37] J. Wang, J. Sun, X. Zhang, et al. PPLN-based all-optical40Gbit/s three-input logic AND gatefor both NRZ and RZ signals [J]. Electron. Lett.,2008,44(6):43-414
    [38] J. Wang, J. Sun, X. Zhang, et al. Ultrafast all-optical three-input Boolean XOR operation fordifferential phase-shift keying signals using periodically poled lithium niobate [J]. Opt. Lett.,2008,33(13):1419-1421
    [39] J. Wang, J. Sun, X. Zhang, et al. All-optical format conversions using periodically poledlithium niobate waveguides [J]. IEEE J. Quant. Electron.,2009,45(2):195-205
    [40] J. Wang, J. Sun, X. Zhang, et al. Optical phase erasure and its application to formatconversion through cascaded second-order processes in periodically poled lithium niobate [J].Opt. Lett.,2008,33(16):1804-1806
    [41] Y. Wang, C. Yu, L. Yan, et al.44-ns Continuously tunable dispersionless optical delayelement using a PPLN waveguide with two-pump configuration DCF and a dispersioncompensator [J]. IEEE Photon. Technol. Lett.,2007,19(11):861-863
    [42] L. K. Oxenl we, F. Gómez-Agis, C. Ware, et al.640-Gbit/s data transmission and clockrecovery using an ultrafast Periodically Poled Lithium Niobate device [J]. IEEE J. LightwaveTechnol.,2009,27(3):205-213
    [43] A. Bogoni, X. Wu, Z. Bakhtiari, et al.640Gb/s all-optical logic functions in a PPLNwaveguide [C].36th European Conference and Exhibition on Optical Communication,2010,Turin, Italy
    [44] A. Bogoni, X. Wu, S. R. Nuccio, et al.640Gbit/s reconfigurable OTDM Add-Dropmultiplexer [C]. Optical Fiber Communication Conference,2011, Anaheim, CA, USA
    [45] A. Bogoni, X. Wu, S. R. Nuccio, et al.640Gb/s All-optical regenerator based on aperiodically poled lithium niobate waveguide [J]. IEEE J. Lightwave Technol.,2012,30(12):1829-1834
    [46] N. Ophir, J. Chan, K. Padmaraju, et al. Continuous wavelength conversion of40-Gb/s dataover100nm using a dispersion-engineered silicon waveguide [J]. IEEE Photon. Technol.Lett.,2011,23(2):73-75
    [47] R. Salem, M. A. Foster, A. C. Turner, et al. Signal regeneration using low-power four-wavemixing on silicon chip [J]. Nat. Photonics,2008,2:35-38
    [48] H. Ji, H. Hu, M. Galili, et al. Optical waveform sampling and error-free demultiplexing of1.28Tbit/s serial data in a silicon nanowire [C]. Optical Fiber Communication Conference,2010, Anaheim, CA, USA
    [49] L. K. Oxenl we, H. Ji, M. Galili, et al. Silicon photonics for signal processing of Tbit/s serialdata signals [J]. IEEE J. Sel. Top. Quant.,2012,18(2):996-1005
    [50] S. H jfeldt, S. Bischoff, J. M rk. All-optical wavelength conversion and signal regenerationusing an electroabsorption modulator [J]. IEEE J. Lightwave Technol.,2000,18(8):1121-1127
    [51] N. K. Inohara, R. Usami, B. M, et al. All-optical wavelength conversion by electroabsorptionmodulator [J]. IEEE J. Sel. Top. Quant.,2005,11(1):278-284
    [52] N. Jia, T. Li, K. P. Zhong, et al. Simultaneous clock enhancing and demultiplexing for160-Gb/s OTDM signal using two bidirectionally operated electroabsorption modulators [J].IEEE Photon. Technol. Lett.,2011,23(21):1615-1617
    [53] E. S. Awad, P. S. Cho, C. Richardson. Optical3R regeneration using a single EAM forAll-optical timing extraction with simultaneous reshaping and wavelength conversion [J].IEEE Photon. Technol. Lett.,2002,14(9):1378-1380
    [54] E. J. Skogen, G. A. Vawter, A. Tauke-Pedretti. Optical AND and NOT gates at40Gb/s usingelectro-absorption modulator photodiode Pairs [C].23rd Annual Meeting of the PhotonicsSociety,2010, Denver, CO
    [55] T. Wu, J. Wu, Y. Chiu. Novel ultra-wideband (UWB) photonic generation throughphotodetection and cross-absorption modulation in a single electroabsorption modulator [J].Opt. Express,2010,18(4):3379-3384
    [56] T. Durhuus, B. Mikkelsen, C Joergensen, et al. All-optical wavelength conversion bysemiconductor optical amplifiers [J]. IEEE J. Lightwave Technol.,1996,14(6):942-954
    [57] J. Leuthold, L. M ller, J. Jaques, et al.160Gbit/s SOA all-optical wavelength converter andassessment of its regenerative properties [J]. Electron. Lett.,2004,40(9):554-555
    [58] G. Contestabile, Y. Yoshida, A. Maruta, et al. Ultra-broad band, low power, highly efficientcoherent wavelength conversion in quantum dot SOA [J]. Opt. Express,2012,20(25):27902-27907
    [59] M. Matsuura, N. Kishi. High-speed wavelength conversion of RZ-DPSK signal using FWMin a quantum-dot SOA [J]. IEEE Photon. Technol. Lett.,2011,23(10):615-617
    [60] J. Dong, X. Zhang, Y Wang, et al.40Gbit/s reconfigurable photonic logic gates based onvarious nonlinearities in single SOA [J]. Electron. Lett.,2007,43(16):884-886
    [61] T. Fjelde, D. Wolfson, A. Kloch, et al. Demonstration of20Gbit/s all-optical logic XOR inintegrated SOA based interferometric wavelength converter [J]. Electron. Lett.,2000,36(22):1863-1864
    [62] A. Hamie, A. Sharaiha, M. Guegan, et al. All-optical logic NOR gate using two-cascadedsemiconductor optical amplifiers [J]. IEEE Photon. Technol. Lett.,2002,14(10):1439-1441
    [63] X. L Zhang, Y. Wang, J. Sun, et al. All-optical AND gate at10Gbit/s based on cascadedsingle-port-couple SOAs [J]. Opt. Express,2004,12(3):361-366
    [64] Q. Wang, H. Donga, G. Zhua, et al. All-optical logic OR gate using SOA and delayedinterferometer [J]. Opt. Commun.,2006,260(1):81-86
    [65] J. Dong, X. L. Zhang, J. Xu, et al.40Gb/s all-optical logic NOR and OR gates using asemiconductor optical amplifier: Experimental demonstration and theoretical analysis [J]. Opt.Commun.,2008,281(6):1710-1715
    [66] G. Wang, X. Yang, W. Hu. All-optical logic gates for40Gb/s NRZ signals usingcomplementary data in SOA-MZIs [J]. Opt. Commun.,2012,290(1):28-32
    [67] E. Tangdiongga, H. Mulvad, C. Hansen, et al. SOA-based clock recovery and demultiplexingin a lab trial of640Gb/s OTDM transmission over50-km fiber link [C].33rd EuropeanConference and Exhibition of optical communication,2007, Berlin, Germany
    [68] T. Yamamoto, L. K. Oxenlowe, C. Schmidt, et al. Clock recovery from160Gbit/s datasignals using phase-locked loop with interferometric optical switch based on semiconductoroptical amplifier [J]. Electron. Lett.,2001,37(8):509-510
    [69] H. C. H Mulvad, E. Tangdiongga, H. de Waardt, et al.40GHz clock recovery from640Gbit/s OTDM signal using SOA-based phase comparator [J]. Electron. Lett.,2008,44(2):146-147
    [70] F. Wang, Y. Yu, X. Huang, et al. All-optical clock recovery using a single fabry–perotsemiconductor optical amplifier [J]. IEEE Photon. Technol. Lett.,2012,30(11):1632-1637
    [71] H. C. H. Mulvad, E. Tangdiongga, O. Raz.640Gbit/s OTDM lab transmission and320gbit/s field-transmission with soa-based clock recovery [C]. Optical Fiber CommunicationConference,2008, San Diego, California
    [72] K.N. Nguyen, T. Kise, J. M. Garcia, et al. All-optical2R regeneration of BPSK and QPSKdata using a90°optical hybrid and integrated SOA-MZI wavelength converter pairs [C].Optical Fiber Communication Conference and Exposition,2011, Los Angeles, CA
    [73] Y. Yu, W. Wu, X. Huang, et al. Multichannel all-optical RZ-PSK amplitude regenerationbased on the XPM effect in a single SOA [J]. IEEE J. Lightwave Technol.,2011,34(24):3633-3639
    [74] G. Chen, L. Xi, Y. Ma, et al. Regeneration of DQPSK signals using semiconductor opticalamplifier-based phase regenerator [C]. International Conference on Advanced InfocomTechnology2011(ICAIT2011),2011, Wuhan, China
    [75] P. X. Duan, L. G. Chen, S. J. Zhang, et al. All-optical2R regeneration based on self-inducedpolarization rotation in a single semiconductor optical amplifier [J]. Chin. Sci. Bull.,2009,54(20):3704-3708
    [76] M. Matsuura, O. Raz, F. Gomez-Agis, et al.320-to-40-Gb/s optical demultiplexing by meansof optical filtering of chirped signal using a quantum-dot SOA [C]. Optical FiberCommunication Conference (OFC2012),2012, Los Angeles, California
    [77] J. Xu, Y. Ding, C. Peucheret, et al. SOA-based OTDM-DPSK demultiplexing assisted byoffset-filtering [C]. Optical Fiber Communication Conference and Exposition (OFC/NFOEC),2011, Los Angeles, CA,1-3
    [78] K. Mishina, T. Kono, A. Maruta, et al. All-optical OOK-to-16QAM format conversion byusing SOA-MZI wavelength converters [C].17th Opto-Electronics and CommunicationsConference (OECC),2012, Busan, Korea
    [79] S. M. Nissanka., A. Maruta., S. Mitani., All-optical modulation format conversion fromNRZ-OOK to RZ-QPSK using integrated SOA three-arm-MZI wavelength converter [C].Optical Fiber Communication Conference (OFC2009),2009, San Diego, CA
    [80] Y. Yu, X. L. Zhang, J. B. Rosas-Fernández, et al. Single SOA based16DWDM channelsall-optical NRZ-to-RZ format conversions with different duty cycles [J]. Opt. Express,2008,16(20):16166-16171
    [81] J. Wang, Q. Sun, J. Sun. All-optical40Gbit/s CSRZ-DPSK logic XOR gate and formatconversion using four-wave mixing [J]. Opt. Express,2009,17(15):12555-12563
    [82] J. Dong, X. Zhang, F. Wang, et al. Single-to-dual channel NRZ-to-RZ format conversion byfour-wave mixing in single semiconductor optical amplifier [J]. Electron. Lett.,2008,44(12):763-764
    [83] H. J. S. Dorren, M. T. Hill, Y. Liu, et al. Optical packet switching and buffering by usingall-optical signal processing methods [J]. IEEE J. Lightwave Technol.,2003,20(1):2-12
    [84] Y. Liu, M. T. Hill, R. Geldenhuys, et al. Demonstration of a variable optical delay for arecirculating buffer by using all-optical signal processing [J]. IEEE photon. Technol. Lett.,2004,16(7):1748-1750
    [85] Y. Liu, M. T. Hill, N. Calabretta, et al. All-optical buffering in all-optical packet switchedcross connects [J]. IEEE J. Sel. Top. Quant.,2002,14(6):849–851
    [86] F. Songnian, P. Shum, L. Zhang, et al. Design of soa-based dual-loop optical buffer with a3×3collinear coupler: guideline and optimizations [J]. IEEE J. Lightwave Technol.,2006,24(7):2768-278
    [87] Y. Li, C. Wu, S. Fu, et al. Power equalization for soa-based dual-loop optical buffer by opticalcontrol pulse optimization [J]. IEEE J. Quant. Electron.,2007,43(6):508-516
    [88] S. Fu, P. Shum, N. Q. Ngo, et al. An enhanced soa-based double-loop optical buffer forstorage of variable-length packet [J]. IEEE J. Lightwave Technol.,2008,26(4):425-431
    [89] R. Clavero, F. Ramos, J. M. Martinez, et al. All-optical flip-flop based on a single SOA-MZI[J]. IEEE photon. Technol. Lett.,2005,17(4):843–845
    [90] J. Wang, G. Meloni, G. Berrettini, et al. All-optical clocked flip-flops and binary countingoperation using soa-based sr latch and logic gates [J]. IEEE J. Sel. Top. Quant.,2010,16(5):1486-1494
    [91] P. Bakopoulos, K. Vyrsokinos, D. Fitsios, et al. All-optical T-flip-flop using a singleSOA-MZI-based latching element [J]. IEEE Photon. Technol. Lett.,2012,24(9):748-750
    [92] P. Berger, J. Bourderionnet, M. Alouini, et al. Theoretical study of the spurious-free dynamicrange of a tunable delay line based on slow light in SOA [J]. Opt. Express,2009,17(22):20584-20597
    [93] X. Li, L. Peng, S. Wang, et al. A novel kind of programmable3n feed-forward optical fibertrue delay line based on SOA [J]. Opt. Express,2007,15(25):16760-16766
    [94] P. Healey, P. Townsend, C. Ford, et al. Spectral slicing WDM-PON using wavelength-seededreflective SOAs [J]. Electron. Lett.,2001,37(19):1181-1182
    [95] K. Y. Cho, Y. Takushima, Y. C. Chung, et al.10-Gb/s operation of RSOA for WDM PON [J].IEEE Photon. Technol. Lett.,2008,20(18):1533-1535
    [96] L. Xu, C. W. Chow, H. K. Tsang. Long-reach multicast high split-ratio wired and wirelessWDM-PON using SOA for remote upconversion [J]. IEEE Transact. Microwave Tech.,2010,58(11):3136-3143
    [97] X. Hu, L. Zhang, P. Cao, et al. Reconfigurable and scalable all-optical VPN in WDM PON [J].IEEE Photon. Technol. Lett.,2011,23(14):941-943
    [98] D. Petrantonakis, G. T. Kanellos, P. Zakynthinos. A40Gb/s3R burst mode receiver with4integrated MZI switches [C]. Optical Fiber Communication Conference,2006, Anaheim,U.S.A
    [99] R. McDougall, G. Maxwell, R. Harmon, et al.40Gb/s hybrid integrated all optical SOA-MZIregenerator incorporating separately optimised SOAs, on-chip time delays and WDMcombiners [C]. European Conference and Exhibition on Optical Communication,2006,Cannes, France.
    [100] M. Bougioukos, C. Kouloumentas, M. Spyropoulou, et al. Multi-format all-optical processingbased on a large-scale, hybridly integrated photonic circuit [J]. Opt. Express,2011,19(12):11479-11489
    [101] R. McDougall, Y. Liu, G. Maxwell, et al. Hybrid integrated, all-optical flip-flop memoryelement for optical packet networks [C]. European Conference and Exhibition on OpticalCommunication,2006, Cannes, France
    [102] Y. Liu, R. McDougall, J. Seoane, et al. Characterisation of hybrid integrated all-opticalflip-flop [C]. Invited paper, IEEE Lasers and Electro-Optics Society Annual Meeting,2006,Montreal, Canada
    [103] J. Herrera, E. Tangdiongga, Y. Liu, et al.160Gb/s all-optical packet switching employingin-band wavelength labelling and a hybrid-integrated optical flip-flop [C]. EuropeanConference and Exhibition on Optical Communication,2006, Cannes, France
    [104] S. C. Nicholes, M. L. Ma anovi, B. Jevremovi, et al. The world’s first InP8×8monolithictunable optical router (motor) operating at40gb/s line rate per port [C]. Optical fibercommunication conference (OFC2009),2009, San Diego, California
    [105] T. Durhuus, B. Fernier, P. Garabedian, et al. High speed alloptical gating using two-sectionsemiconductor optical amplifier structure [J]. IEEE Lasers and Electro-Optics Society,1992,Anaheim, CA
    [106] D. Norte, A. E. Willner. Multistage all-optical WDM-to-TDM-to-WDM andTDM-to-WDM-to-TDM data-formatconversion and reconversion through80km of fiber andthree EDFAs [J]. IEEE Photon. Technol. Lett.,1995,7(11):1354-1356
    [107]王颖,张新亮,黄德修.基于级联半导体光放大器中交叉增益调制效应的新型全光逻辑与门[J].中国激光,2004,31(12):1534-1536
    [108]孙军强,黄德修,易河清.交叉增益调制的全光波长转换的消光比特性分析[J].光学学报,2000,20(1):89-93
    [109] M. Eiselt, W. Pieper, H. G. Weber. SLALOM: Semiconductor laser amplifier in a loop mirror[J]. IEEE J. Lightwave Technol.,1995,13(10):2099-2112
    [110]吴重庆.半导体光放大器的光-光互作用及在全光信号处理中的应用(I)[J].《激光与光电子学进展》,2007,44(10):17-25
    [111] R. J. Manning, A. Antonopoulos, R. L. Roux, et al. Experimental measurement of nonlinearpolarization rotation in semiconductor optical amplifiers [J]. Electron. Lett.,2001,37(4):229-231
    [112] H. J. S Dorren, D. Lenstra, Y. Liu, et al. Nonlinear polarization rotation in semiconductoroptical amplifiers: theory and application to all-optical flip-flop memories [J]. IEEE J. Quant.Electron.,2003,39(1):141-148
    [113] Y. Liu, M. T. Hill, E. Tangdiongga, et al. Wavelength conversion using nonlinear polarizationrotation in a single semiconductor optical amplifier [J]. IEEE Photon. Technol. Lett.,2003,15(1):90-92
    [114] L. Yi, W. Hu, H. He, et al. All-optical reconfigurable multi-logic gates based on nonlinearpolarization rotation effect in a single SOA [J]. Chin. Opt. Lett.,2011,9(3):0306031-0306034
    [115] S. Zhang, L. G. Chen, P. X. Duan, et al. High-speed all-optical sampling based on nonlinearpolarization rotation in a semiconductor optical amplifier [C].2010Symposium on Photonicsand Optoelectronic (SOPO),2010, Chengdu
    [116] S. Fu, W. D. Zhonga, P. P. Shuma, et al. All-optical NRZ-OOK-to-RZ-OOK formatconversions with tunable duty cycles using nonlinear polarization rotation of a semiconductoroptical amplifier [J]. Opt. Commun.,2009,282(11):2143-21461
    [117] X. Yang, A. K. Mishra, R. J. Manning, et al. All-optical40Gbit/s NRZ to RZ formatconversion by nonlinear polarization rotation in SOAs [J]. Electron. Lett.,2007,43(8):469-471
    [118] G. Contestabile, M. Presi, E. Ciaramella. Multiple wavelength conversion for WDMmulticasting by FWM in an SOA [J]. IEEE Photon. Technol. Lett.,2004,16(7):1775-1777
    [119] M. Matsuura, N. Kishi, High-speed wavelength conversion of RZ-DPSK signal using FWMin a quantum-dot SOA [J]. IEEE Photon. Technol. Lett.,2011,23(10):615-617
    [120] C. Meuer, C. Schmidt-Langhorst, H. Schmeckebier, et al.40Gb/s wavelength conversion viafour-wave mixing in a quantum-dot semiconductor optical amplifier [J]. Opt. Express,2011,19(4):3788-3798
    [121] J. Wang, Q. Sun, J. Sun. All-optical40Gbit/s CSRZ-DPSK logic XOR gate and formatconversion using four-wave mixing [J]. Opt. Express,2009,17(15):12555-12563
    [122] B. Li, D. Lu, I. M. Memon, et al. All-optical digital logic AND and XOR gates usingfour-wave-mixing in monolithically integr semiconductor ring lasers [J]. Electron. Lett.,2009,45(13):698-700
    [123] D. Kong, Y. Li, H. Wang, et al. All-optical xor gates for QPSK signals based on four-wavemixing in a semiconductor optical amplifier [J]. IEEE Photon. Technol. Lett.,2012,24(12):988-990
    [124] M. Matsuura, F. Gomez-Agis, N. Calabretta, et al.320-to-40-Gb/s optical demultiplexingusing four-wave mixing in a quantum-dot SOA [J]. IEEE Photon. Technol. Lett.,2012,24(2):101-103
    [125] J. M rk, T. W. berg, M. L. Nielsen, The role of fast carrier dynamics in SOA based devices[J]. IEICE Transact. Electron.,2004, E87-C (7):1126-1133
    [126] F. Girardin, G. Guekos, A. Houbavlis. Gain recovery of bulk semiconductor optical amplifiers[J]. IEEE Photon. Technol. Lett.,1998,10(6):784-786
    [127] J. Dong, S. Fu, X. Zhang, et al. Single SOA based all-optical adder assisted by opticalbandpass filter: Theoretical analysis and performance optimization [J]. Opt. Commun.,2007,270(2):238-246
    [128] A. Mecozzi, J. M rk. Saturation effects in nondegenerate four-wave mixing between shortoptical pulses in semiconductor laser amplifiers [J]. IEEE J. Sel. Top. Quant.,1997,3(5):1190-1207
    [129] A. Mecozzi, J. M rk. Saturation induced by picosecond pulses in semiconductor opticalamplifiers [J]. J. Opt. Soc. Am. B,1997,14(4):761-770
    [130] J. Mark, J. M rk. Subpicosecond gain dynamics in InGaAsP optical amplifiers: experimentand theory [J]. Appl. Phys. Lett.,1992,61(19):2281-2283
    [131] J. M rk, A. Mecozzi. Theory of the ultrafast optical response of active semiconductorwaveguides [J]. J. Opt. Soc. Am. B,1996,13(8):1803-1816
    [132] T. Katayama, H. Kawaguchi. Measurement of ultrafast cross-gain saturation dynamics of asemiconductor optical amplifiern using two-color pump-probe technique [J]. IEEE Photon.Technol. Lett.,2004,60(3):855-857
    [133] R. Giller, R. J. Manning, D. Cotter. Gain and phase recovery of optically excitedsemiconductor optical amplifiers [J]. IEEE Photon. Technol. Lett.,2006,18(9):1061-1063
    [134] A. Gomez-Iglesias, J. G. Fenn, M. Mazilu, et al. Carrier heating in semiconductor opticalamplifier-based sagnac-type all-optical switches [J]. Semicond. Sci. Technol.,200621(12):1703-1708
    [135] L. Occhi, Y. Ito, H. Kawaguchi, et al. Intraband gain dynamics in bulk semiconductor opticalamplifiers: measurements and simulations [J]. IEEE J. Quant. Electron.,2002,38(1):54-60.
    [136] K. A. Shore, D. A. S. Chan. Kramers-Kronig relations for nonlinear optics [J]. Electron. Lett.,1990,26(15):1206-1207
    [137] S. N, H. Uenohara. Improvement of transmission characteristics with chirping control schemein optical signal regenerator csing SOA gain saturation and XGM signal [C]. The18th AnnualMeeting of the IEEE Lasers and Electro-Optics Society, Sydney, Australia,2005,153-154
    [138] Y. Liu, E. Tangdiongga, Z. Li, et al. Error-free all-optical wavelength conversion at160Gb/susing a semiconductor optical amplifier and an optical bandpass filter [J]. IEEE J. LightwaveTechnol.,2006,24(1):230-236
    [139] M. Sugawara, H. Ebe, N. Hatori, et al. Theory of optical signal amplification and processingby quantum-dot semiconductor optical amplifiers [J]. Phys. Rev. B,2003,69(23):235-332.
    [140] A. J. Zilkie, J. Meier, M. Mojahedi, et al. Carrier dynamics of quantum-dot, quantum-dash,and quantum-well semiconductor optical amplifiers operating at1.55μm [J]. IEEE JQuantum. Elect.,2007,43(11):982-991
    [141] M. Sugawara,T. Akiyama, N. Hatori, et al. Quantum-dot semiconductor optical amplifiers forhigh-bit-rate signal processing up to160Gb/s and a new scheme of3R regenerators [J]. Meas.Sci. Technol.,2002,13(11):1683-1691
    [142] T. Akiyama, N. Hatori, Y. Nakata., et al. Wavelength conversion based on ultrafast (<3ps)cross-gain modulation in quantum-dot optical amplifiers [C].28th European conference onoptical communication (ecoc2002),2002, Copenhagen, Danmark
    [143] I. O‘Driscoll, T. Piwonski, J. Houlihan, et al. Phase dynamics of InAs/GaAs quantum dotsemiconductor optical amplifiers [J]. Appl. Phys. Lett.,2007,91(26):263-506
    [144] A. Rostami, H. Baghban A. Nejad, et al. Tb/s optical logic gates based on quantum-dotsemiconductor optical amplifiers [J]. IEEE J. Lightwave Technol.,2010,46(3):354-360
    [145] E. Thomas, V. Evgeny, A. M. Paul, et al. The fast recovery dynamics of a quantum dotsemiconductor optical amplifier [J]. Appl. Phys. Lett.,2009,94(11):113501-113501-3
    [146] B. Dagens, F. Lelarge, A. Accard, et al. Recent advances in quantum dot based lasers andamplifiers at1.55μm [C]. In Proceedings of SPIE, Workshop on Optical Components forBroadband Communication,2006, Stockholm, Sweden
    [147] F. Lelarge, B. Dagens, J. Renaudier, et al. Recent advances on InAs/InP quantum dash basedsemiconductor lasers and optical amplifiers operating at1.55μm [J]. IEEE J. Sel. Top. Quant.,2007,13(1):111-124
    [148] R. Giller, R. J. Manning, G. Talli, et al. Analysis of the dimensional dependence ofsemiconductor optical amplifier recovery speeds [J]. Opt. Express,2006,15(4):1773-1782
    [149] F. Girardin, G. Guekos, A. Houbavlis. Gain recovery of bulk semiconductor optical amplifiers[J]. IEEE Photon. Technol. Lett.,1998,10(6):784-786
    [150] C. M. Gallep, E. Conforti. Reduction of semiconductor optical amplifierswitching times bypreimpulse step-injected current technique [J]. IEEE Photon. Technol. Lett.,2002,17(7):902-904
    [151] M. T. Hill, E. Tangdiongga, H. de Waardt, et al. Carrier recovery time in semiconductoroptical amplifiers that employ holding beams [J]. Opt. Lett.,2002,27(18):1625-1627
    [152] J. L. Pleumeekers, M. Kauer, K. Dreyer, et al. Acceleration of gain recovery in semiconductoroptical amplifiers by optical injection near transparency wavelength [J]. IEEE Photon.Technol. Lett.,2002,14(1):12-14
    [153] R. Inohara, K. Nishimura, M. Tsurusawa, et al. Experimental analysis of cross-phasemodulation and cross-gain modulation in soa injecting cw assist light [J]. IEEE Photon.Technol. Lett.,2003,15(9):1192-1194
    [154] A. D. Ellis, A. E. Kelly, D. Nesset, et al. Error free100Gb/s wavelength conversion usinggrating assisted cross-gain modulation in2mm long semiconductor amplifier [J]. Electron.Lett.,1998,34(20):1958-1959
    [155] Y. Liu, L.G. Chen, T. X. Xu. All-optical signal processing based on semiconductor optical [J].Front. Optoelectron.,2011,4(3):231-242
    [156] J. P. Sokoloff, P. R. Prucnal, I. Glesk. A terahertz optical asymmetric demultiplexer (TOAD)[J]. IEEE Photon. Technol. Lett.,1993,5(7):787-790
    [157] K. Tajima. All-optical switch with switch-off time unrestricted by carrier lifetime [J]. Jpn. J.Appl. Phys.,1993,32(12A): L1746-L1749
    [158] B. Mikkelsen, K.S. Jepsen, M. Vaa, et al. All-optical wavelength converter scheme for highspeed RZ signal formats [J]. Electron. Lett.,1997,33(25):2137-2139
    [159] Y. Ueno, S. Nakamura, K. Tajima, et al.3.8-THz wavelength conversion of picosecond pulsesusing a semiconductor delayed-interference signal-wavelength converter (DISC)[J]. IEEEPhoton. Technol. Lett.,1998,10(3):346-348
    [160] J. Leuthold, C. H. Joyner, B. Mikkelsen, et al.100Gbit/s all-optical wavelength conversionwith integrated SOA delayed-interference configuration [J]. Electron. Lett.,2000,36(13):1129-1130
    [161] J. Leuthold, B. Mikkelsen, R. E. Behringer, et al. Novel3R regenerator based onsemiconductor optical amplifier delayed-interference configuration [J]. IEEE Photon.Technol. Lett.,2001,13(8):860-862
    [162] S. Nakamura, Y. Ueno, K. Tajima.168-Gb/s all-optical wavelength conversion with asymmetric-Mach-Zehnder-type switch [J]. IEEE Photon. Technol. Lett.,2001,13(10):1091-1093
    [163] J. Sakaguchi, T. Nishida, Y. Ueno.200-Gb/s wavelength conversion using adelayed-interference all-optical semiconductor gate assisted by nonlinear polarization rotation[J]. Opt. Commun.,2009,282(9):1728-1733
    [164] J. Xu, X. Zhang, D. Liu,ea tl. Ultrafast all-optical nor gate based on semiconductor opticalamplifier and fiber delay interferometer [J]. Opt. Express,2006,14(22):10708-10714
    [165] J. Xu, X. Zhang, Y. Zhang, et al. Reconfigurable all-optical logic gates for multi-inputdifferential phase-shift keying signals: design and experiments [J]. IEEE J. LightwaveTechnol.,2009,27(23):6268-5275
    [166] H. S. Chung, R. Inohara, K. Nishimura, et al.40-Gb/s NRZ wavelength conversion with3Rregeneration using an EA modulator and soa polarization-discriminating delay interferometer[J]. IEEE Photon. Technol. Lett.,2006,18(2):337-339
    [167] X. Yang, A. K. Mishra, R. J. Manning, et al. All-optical42.6Gbit/s NRZ to RZ formatconversion by cross-phase modulation in single SOA [J]. Electron. Lett.,2007,43(16):890-892
    [168] Y. Yu, X. L. Zhang, D. X. Huang All-optical RZ-to-NRZ format conversion with a tunablefiber based delay interferometer [J]. Chin. Phys. Lett.,2007,24(3):706-709
    [169] E. Lazzeri, A. T. Nguyen, G. Serafino, et al. All-optical NRZ-DPSK to RZ-OOK formatconversion using optical delay line interferometer and semiconductor optical amplifier [C].Photonics in Switching,2010, Monterey, CA
    [170] R. J. Manning, X. Yang, W. P. Roderick, et al. The "Turbo-Switch": A novel technique toincrease the high-speed response of SOAs for wavelength conversion [C]. Optical FiberCommunication Conference,2006, Anaheim, California
    [171] R. J. Manning. Cancellation of non-linear patterning in semiconductor amplifier basedswitches. optical amplifiers and their applications [C], SOA-Based All Optical Processing(OTuC),2006, Whistler, Canada
    [172] G. Contestabile, R. Proietti, N. Calabretta, et al. Cross-gain compression in semiconductoroptical amplifiers [J]. IEEE J. Lightwave Technol.,2007,25(3):915-921
    [173] C. S. Cleary, R. J. Manning. High speed cross-amplitude modulation inconcatenatedSOA-EAM-SOA [J]. Opt. Express,2012,20(13):14338-14349
    [174] X. Yang, Q. Weng, W. Hu. High-speed, all-optical XOR gates using semiconductor opticalamplifiers in ultrafast nonlinear interferometers [J]. Front. Optoelectron.,2010,3(3):245-252
    [175] X. Yang, R. J. Manning, R. P. Webb. All-optical85Gb/s XOR using dual ultrafast nonlinearinterferometers and turbo-switch configuration [J]. European Conference on OpticalCommunications (ECOC2006),2006, Cannes, France
    [176] R. Gutiérrez-Castrejón. Turbo-switched Mach-Zehnder interferometer performance asall-optical signal processing element at160Gb/s [J]. Opt. Commun.,2009,282(22):4345-4352
    [177] X. Yang, A. K. Mishra, R. J. Manning, et al. All-optical40Gbit/s NRZ to RZ formatconversion by nonlinear polarization rotation in SOAs [J]. Electron. Lett.,2007,43(8):469-471
    [178] Y. Liu, E. Tangdiongga, Z. Li, et al. Error-Free All-optical wavelength conversion at160Gb/susing a semiconductor optical amplifier and an optical bandpass filter [J]. IEEE J. LightwaveTechnol.,2006,24(1):230-236
    [179] S. Fu, J. Dong, P. Shum, et al. Experimental demonstration of both inverted andnon-inverted wavelength conversion based on transient cross phase modulation of SOA [J].Opt. Express,2006,14(17):7587-7592
    [180] Y. Liu, E. Tangdiongga, Z. Li, et al. Error-free320-Gb/s all-optical wavelength conversionusing a single semiconductor optical amplifier [J]. IEEE J. Lightwave Technol.,2007,25(1):103-108
    [181] J. Dong, X. Zhang, J. Xu, et al.40Gb/s all-optical NRZ to RZ format conversion using singleSOA assisted by optical bandpass filter [J]. Opt. Express,2007,15(6):2907-2914
    [182] J. Zhang, J. Wu, C. Feng, et al. All-optical logic OR gate exploiting nonlinear polarizationrotation in an SOA and red-shifted sideband filtering [J]. IEEE Photon. Technol. Lett.,2007,19(1):33-35
    [183] E. Tangdiongga, Y. Liu, H. de Waardt, et al. All-optical demultiplexing of640to40Gbits/susing filtered chirp of a semiconductor optical amplifier [J]. Opt. Lett.,2007,32(7):835-837
    [184] J. Xu, Y. Ding, C. Peucheret, et al. Demultiplexing of OTDM-DPSK signals based on a singlesemiconductor optical amplifier and optical filtering [J]. Opt. Lett.,2011,36(9):1560-1562
    [185] Z. Alferov. Double heterostructure lasers: early days and future perspectives [J]. IEEE J.Quantum Elect.,2000,6(6):832-840
    [186] G. Zeidler, D.shicketanz. Use of laser amplifiers in a glass-fiber communications system [J].The Rad. Elect. Eng,1973,43(11):675-682
    [187] S. D. Personick. Applications for quantum amplifiers in simple digital optical communicationsystems [J]. The bell system technology jounal,1973,52(1):117-133
    [188] J. Simon, GaInAsP semiconductor laser amplifiers for single-mode fiber communications [J].IEEE J. Lightwave Technol.,1987,9(5):1286-1295
    [189] K. E. Stubkjaer. Semiconductor optical amplifier-based all-optical gates for high-speedoptical processing [J]. IEEE J. Quantum. Elect.,2000,6(6):1428-1435
    [190] H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties ofsemiconductors [C]. World Scientific,1994, Singapore
    [191] G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulsesin semiconductor laser amplifiers [J]. IEEE J. Quantum Elect.,1989,25(11):2297-2306
    [192] J. M. Tang, P. S. Spencer, P. Rees, et al. Pump-power dependence of transparencycharacteristics in semiconductor optical amplifiers [J]. IEEE J. Quantum Elect.,2000,36(12):1462-1467
    [193] A. Dienes, J. P. Heritage, M. Y. Hong, et al. Time-and spectral-domain evolution ofsubpicosecond pulses in semiconductor optical amplifiers [J]. Opt. Lett.,1992,17(22):1602-1604
    [194] M. Y. Hong, Y. H. Chang, A. Dienes, et al. Femtosecond self-and cross-phase modulation insemiconductor laser amplifiers [J]. IEEE J. Sel. Top. Quant.,1996,2(3):523-539
    [195] X. Zhang, Y. Wang, J. Sun, et al. All-optical AND gate at10Gbit/s based on cascadedsingle-port-couple SOAs [J]. Opt. Express,2004,12(3):361-366
    [196] J. Dong, X. Zhang, Z. Jiang, et al. Theoretical and experimental study on all-opticalwavelength converters based on the single-port-coupled SOA [J]. Opt. Quantum Elect.,2005,37(11):1011-1023
    [197] M. Willatzen, A. Uskov, J. Mork, et al. Nonlinear gain suppression in semiconductor lasersdue to carrier heating [J]. IEEE Photon. Technol. Lett.,1991,3(7):606-609
    [198] G. Sanders, C. K. Sun, B. Golubovic, et al. Carrier-carrier scattering in the gain dynamics ofInGaAs/AlGaAs diode lasers [J]. Phys. Rev. B,1996,54(11):8005-8019
    [199] A. Uskov, J. M rk, J. Mark. Wave mixing in semiconductor laser amplifiers due to carrierheating and spectral-hole burning [J]. IEEE J. Quantum Elect.,1994,30(8):1769-1781
    [200] G. Agrawal, N. Dutta, Semiconductor lasers [M]. Springer,1993
    [201] G. Slavcheva, J. Arnold, R. Ziolkowski. Fdtd simulation of the nonlinear gain dynamics inactive optical waveguides and semiconductor microcavities [J]. IEEE J. Sel. Top. Quant,2004,10(5):1052-1062
    [202] A. Dienes, J. P. Heritage, M. Y. Hong, et al. Time-and spectral-domain evolution ofsubpicosecond pulses in semiconductor optical amplifiers [J]. Opt. lett.,1992,17(22):1602-1604
    [203] A. Mecozzi, J. M rk. Saturation induced by picosecond pulses in semiconductor opticalamplifiers [J]. J. Opt Soc. B,1997,14(4):761-770
    [204] Y. Ueno, S. Nakamura, K. Tajima. Nonlinear phase shifts induced by semiconductor opticalamplifiers with control pulses at repetition frequencies in the40-160-GHz range for useinultrahigh-speed all-optical signal processing [J]. J. Opt. Soc. Am. B,2002,19(11):2573-2589
    [205] J. Wang, A. Maitra, C. G. Poulton, etal. Temporal dynamics of the alpha factor insemiconductor optical amplifiers [J]. IEEE J. Lightwave Technol.,2007,25(3):891-900
    [206] X. Yang, D. Lenstra, G. D. Khoe, et al. Nonlinear polarization rotation induced by ultrashortoptical pulses in a semiconductor optical amplifier [J]. Opt. Commun.,2003,223(1-3):169-179
    [207] M. Y. Hong, Y. H. Chang, A. Dienes, et al. Femtosecond self-and cross-phase modulation insemiconductor laser amplifier [J]. IEEE J. Sel. Top. Quant.,1996,2(2):523-539
    [208] M. Y. Hong, Y. H. Chang, A. Dienes, et al. Subpicosecond pulse amplification insemiconductor laser amplifiers: theory and experiment [J]. IEEE J. Quantum. Elect.,1994,30(4):1184-1131
    [209] N. Das, Y. Yamayohshi, Kuwakuchi. Analysis of basic four-wave mixing characteristics in asemiconductor optical amplifier by the finite-difference beam propagation method [J]. IEEE J.Quantum. Elect.,2000,36(10):1184-1192
    [210] J. Park and Y. Kawakami.Time-domain models for the performance simulation ofsemiconductor optical amplifers [J]. Opt. Express,2006,14(7):2956-2968
    [211] G. Toptchiyski, S. Kindt, K. Petermann, et al. Time-domain modeling of semiconductoroptical amplifers for otdm applications [J]. IEEE J. Lightwave Technol.,1999,17(12):257-2583
    [212] A. J. Zilkie, J. Meier, P. W. E. Smith, et al. Femtosecond gain and index dynamics in anInAs/InGaAsP quantum dot amplifier operating at1.55μm [J]. Opt. Express,2006,14(23):11453-11459
    [213] C. T. Hultgren. Ultrafast refractive index dynamics in AlGaAs diode laser amplifiers [J]. Appl.Phys. Lett.,1991,59(6):635-637
    [214] K. L. Hall, G. Lenz, E. P. Ippen, et al. Heterodyne pump-probe technique for time-domainstudies of optical nonlinearities in waveguides [J]. Opt. Lett.,1992,17(12):874-876
    [215] M. T. Hill, E. Tangdiongga, H. de Waardt, et al. Carrier recovery time in semiconductoroptical amplifiers thatemploy holding beams [J]. Opt. Lett.,2002,27(18):1665-1627
    [216] K. L. Hall, E. P. Ippen, G. Eisenstein, Bias-lead monitoring of ultrafast nonlinearities inInGaAsP diode laser amplifiers [J]. Appl. Phys. Lett.1990,57(2):129-132
    [217] K. L. Hall, Y. Lai, E. P. Ippen, et al. Femtosecond gain dynamics and saturation behavior inInGaAsP multiple quantum well optical amplifiers [J]. Appl. Phys. Lett.,1990,57(27):2888-2890
    [218] W. Mathlouthi, F. Vacondio, P. Lemieux, et al. SOA gain recovery wavelength dependence:simulation and measurement using a single-color pump-probe technique [J]. Opt. Express,2008,16(25):20656-20665
    [219] C. S. Cleary, M. J. Power, S. Schneider, et al. Fast gain recovery rates with strong wavelengthdependence in a non-linear SOA [J]. Opt. Express,2010,18(25):25726-25737
    [220] L. Schares, C. Schubert, C. Schmidt, et al. Phase dynamics of semiconductor opticalamplifiers at10-40GHz [J]. IEEE J. Quantum. Elect.,2003,39(11):1394-1408
    [221] I. Kang, C. Dorrer. Measurements of gain and phase dynamics of a semiconductor opticalamplifier using spectrograms [C]. Optical Fiber Communication Conference,2004, LosAngeles, California
    [222] J. M. Dailey, T. L. Koch. Impact of carrier heating on soa dynamics for wavelengthconversion [J].19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS2006),2006, Montreal, Que.,156-157
    [223] S. Nakamura, Y. Ueno, K. Tajima. Femtosecond switching with semiconductor opticalamplifier based Symmetric Mach-Zehnder-type all-optical switch [J]. Appl. Phys. Lett.,2001,78(25):3929-3831
    [224] K. L. Hall, A. M. Darwish, E. P. Ippen, et al. Femtosecond index nonlinearities in InGaAsPoptical amplifiers [J]. Appl. Phys. Lett.,1993,62(12):1320-1322
    [225] M. W. Fleming, A. Mooradian. Fundamental line broadening of single-mode (GaAl) as diodelasers [J]. Appl. Phys. Lett.,1981,38(7):511-513
    [226] M. Eiselt, W. Pieper, H. G. Weber. SLALOM: Semiconductor laser amplifier in a loop mirror[J]. IEEE J. Lightwave Technol.,1995,13(10):2099-2112
    [227] H. Takeda, H. Uenohara. Improvement of transmission characteristics with chirping controlscheme in optical signal regenerator using soa gain saturation and XGM signal [C]. Lasersand Electro-Optics Society (LEOS),2005, Sydney, Australia,153-154
    [228] H. Buchta, E. Patzak. Impact of modulation formats and SOA chirp on the throughput ofSOA based OBS nodes [C]. Optical Fiber Communication Conference (OFC/NFOEC),2005,Anaheim, CA
    [229] J. A. Summers, M. L Ma anovi, V. Lal. Design and operation of a monolithically integratedtwo-stage tunable all-optical wavelength converter [J]. IEEE Photon. Technol. Lett.,2007,19(16):1248-1250
    [230] J. P. Sokoloff, R. Prucnal, P. G. Ivan, et al. A terahertz optical asymmetric demultiplexer(TOAD)[J]. IEEE Photon. Technol. Lett.,1993,5(7):787-790
    [231] A. K. Cherri. Terahertz-optical-asymmetric-demultiplexer (TOAD)-based Arithmetic units forultra-fast optical information processing [C]. SPIE Defense, Security, and Sensing.International Society for Optics and Photonics,2010, Orlando, Florida
    [232] B. C. Wang, V. Baby, W. Tong, et al. A novel fast optical switch based on two cascadedTerahertz Optical Asymmetric Demultiplexers (TOAD)[J]. Opt. Express,2001,10(1):16-22
    [233] S. Bischoff, A. Buxens, S. T. Fischer. Comparison of all-optical co-and counter-propagatinghigh-speed signal processing in SOA-based Mach-Zehnder interferometers [J]. Opt. QuantumElect.,2001,33(10):907-926
    [234] J. W. D. Chi, L. Chao, M. K. Rao. Time-domain large-signal investigation on nonlinearinteractions between an optical pulse and semiconductor waveguides [J]. IEEE J. LightwaveTechnol.,2001,37(10):1325-1339
    [235] M. Razaghi, V. Ahmadi, M. J. Connelly. Comprehensive finite-difference time-dependentbeam propagation model of counterpropagating picosecond pulses in a semiconductor opticalamplifier [J]. IEEE J. Lightwave Technol.,2009,27(15):3162-3174
    [236] W. Mathlouthi, F. Vacondio, P. Lemieux, et al. SOA gain recovery wavelength dependence:simulation and measurement using a single-color pump-probe technique [J]. Opt. Express,2008,16(25):20656-20664

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700