半导体光放大器中的慢光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来高速光网络要求避免电子瓶颈,实现全光信号处理,而全光缓存器是全光分组交换网的关键器件,近年来受到越来越广泛的关注。慢光效应有望用于实现全光缓存和全光存储,基于慢光效应的全光延时线在光交换、光计算、微波光子学等领域有广泛的应用前景。本文在国家高技术研究发展计划(NO.2006AA03Z414)、国家自然科学基金(NO.60407001)和教育部新世纪优秀人才计划(NO.NCET-04-0715)的资助下,对基于半导体光放大器(SOA)中四波混频效应产生慢光进行了理论和实验研究,取得了一定的研究成果。其主要研究工作如下:
     (1)在广泛查阅大量国内外文献的基础上,阐述了全光缓存技术和全光分组交换网的研究背景、全光缓存器在全光分组交换网中的应用,给出了慢光和快光概念,并综述了国内外慢光研究的概况,提出了基于半导体中的慢光效应研制可变延时全光缓存器的设想。
     (2)从载流子浓度的速率方程和光功率传输方程出发,对SOA的稳态特性和动态特性进行了数值模拟,研究了SOA的超快非线性动态特性。
     (3)建立了SOA近简并四波混频的理论模型,利用该模型研究了SOA中四波混频的载流子脉动效应产生慢光的机理,推导了混频增益、混频折射率和光速减慢因子。
     (4)对基于SOA中四波混频产生慢光进行了实验研究。实际观测到了探测光的延时,并对实验结果和影响实验结果的因素进行了分析和讨论。从理论上分析了限制探测光群速度减慢的因素和共轭光的存在对探测光群速度观测的影响。最后对SOA中的THz带宽慢光进行了理论分析。
In future, it is crucial to develop all-optical signal processing to avoid the limits of electronic bottlenecks. All-optical buffers, as important components of optical packet switching networks, have received much attention in recent years. Slow light effect is promising to realize all-optical buffers and all-optical storages, variable all-optical delay lines using slow light effect attract increasingly due to their extensive potential applications in all-optical switching, optical computing, RF photonics, and so on. The research is supported by the National High Technology Development Program of China (No.2006AA03Z414), the National Natural Science Foundation of China (No.60407001), and Program for New Century Excellent Talents in University of Ministry of Education (No.NCET-04-0715). Theoretical and experimental researches on slow light via four-wave mixing in SOAs are presented in this dissertation. The main contents are listed as follows:
     (1)All-optical buffering used in all-optical packet switching networks is clarified. Conceptions of slow light and fast light are given,domestic and overseas achievements of slow light are summarized. Conceivableness for all-optical buffer using semiconductor based on slow light is proposed.
     (2)Based on the carrier density rate equation and optical power propagation equation, both the static, dynamic characteristics of SOA and the ultra-fast nonlinear dynamic characteristics of SOA are simulated theoretically.
     (3)A theoretical model of SOA for the nearly degenerate four-wave mixing is proposed. The theory of carrier density pulsation in SOA leading to realize slow light and fast light is analyzed by means of the model. The gain, the refraction index of SOA and slow down factor are given when the four-wave mixing takes place.
     (4)Experimental study of slow light via four-wave mixing in SOAs is presented. Investigation on the delay of the probe light in SOA is carried out and the performance of the delay of the probe light in SOAs is analyzed theoretically. Subsequently, THz-bandwidth tunable slow light in SOAs is also analyzed theoretically.
引文
[1]吴重庆.半导体光放大器的光-光相互作用及其应用.物理, 2007, 36(2): 631~635
    [2]吴重庆.半导体光放大器的光-光相互作用及在全光信号处理中的应用(Ⅰ).激光与光电子学进展, 2007, 44(10): 17~25
    [3]吴重庆.光速减慢和光缓存技术.物理, 2005, 34(12): 922~926
    [4]周剑琦.解读全光网.计算机世界报,2002,31: 24~25
    [5]董天临.光纤通信与光纤信息网.北京:清华大学出版社,2005
    [6] Yang H,Yoo S J B.A new optical switching fabric architecture incorporating rapidly switchable all-optical variable delay buffer.Proc.of IEEE/OSA, Optical Fiber Communication Conf.,2004,2:ThV5.
    [7] A.Kasapi, Maneesh Jain, G. Y. Yin, et al. Electromagnetically Induced Transparency: Propagation Dynamics. Phys.Rev.Lett., 1995, 74(13): 2447~2450
    [8] O. Schmidt, R. Wynands, Z. Hussein, et al. Steep dispersion and group velocity below c/3000 in coherent population trapping. Phys. Rev. A, 1996, 53(1): R27 ~ R30
    [9] L. V. Hau, S. E. Harris, S. E. Dutton, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 1999, 397:594~ 598
    [10] Michael M. Kash, Vladimir A. Sautenkov, Alexander S. Zibrov, et al. Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas. Phys. Rev. Lett. 1999, 82(26):5229 ~ 5232
    [11] D. Budker, D. F. Kimball, S. M. Rochester. et al. Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation. Phys. Rev. Lett. 1999, 83(9): 1767 ~ 1770
    [12] Olga Kocharovskaya, Yuri Rostovtsev, Marlan O. Scully, et al. Stopping Light via Hot Atoms. Phys. Rev. Lett. 2001, 2000, 86(4): 628~631
    [13] D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth. Storage of Light in Atomic Vapor. Phys. Rev. Lett., 2001, 86(5): 783~786
    [14] A.V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, et al. Observation of Ultraslow and Stored Light Pulses in a Solid. Phys. Rev. Lett., 2002, 88(2):023602-1~4
    [15] Bigelow D.A, Lepeshkin N.N, Boyd R.W, et al. Observtion of ultraslow lightpropagation in a ruby crystal at room temperature. Phys. Rev. Lett., 2003, 90(11): 113903
    [16] Bigelow D.A, Lepeshkin N.N, Boyd R.W, et al. Superluminal and slow light propagation in a room temperature solide. Science, 2003, 301: 200~202
    [17]掌蕴东,范保华,袁萍等.红宝石晶体中慢光现象的实验观测.光学学报, 2004, 24(12): 1688~1690
    [18]范保华,掌蕴东,袁萍等.固体介质中光速减慢现象的研究.物理学报, 2005, 54(10): 4692~4695
    [19] Song K.Y., Herraez M G, Thevenaz L.Observation of pulse delaying and advancement in optical fibers using stimulated Brilliouin scattering. Optics Express, 2005, 13(1): 82~88
    [20] Herraez M G, Song K.Y., Thevenaz L. Arbitrary-bandwidth Brilliouin slow light in opitacl fibers, Optics Express, 2006, 14(4): 1395~1400
    [21] Okawachi Y, Bigelow M S, Sharping J E et al. Tunable all-optical delays via Brilliouin slow light in an optical fibers. Phys. Rev. Lett., 2005, 94:153902-1~4
    [22] Zhu Zhaoming, Dawes A M, et al. 12-GHz-bandwidth SBS slow light in optical fibers. OFC2006 PDP1
    [23] Sharping J E, Okawachi Y, Gaeta A L, et al. Sharping wide bandwidth slow light using a Raman fiber amplifier. Optics Express, 2005, 13(16): 6092~6098.
    [24] Pei-Cheng Ku, Forrest Sedgwick, Connie J. Chang-Hasnain.et al. Slow light in semiconductor quantum wells. Optics Letters, 2004, 29(19): 2291~2293.
    [25] Pei-Cheng Ku. Semiconductor Slow-Light Device: [D]. Berkeley: University of California at Berkeley, 2003.
    [26] Bala Pesala, Zhangyuan Chen, Alexander V. Uskov, et al. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers. Optics Express, 2006, 14(26): 12968~12975.
    [27] F. G. Sedgwick, Bala Pesala, Jui-Yen Lin. THz-bandwidth tunable slow light in semiconductor optical amplifiers. Optics Express, 2007, 15(2): 747~753.
    [28] Hui Su, Shun Lien Chuang. Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers. Appl. Phys. Lett., 2006, 88: 061102-1~3
    [29] Hui Su, Piotr Kondratko, Shun Lien Chuang. Variable optical delay using populationoscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 2006, 14(11): 4800~4807.
    [30] Hui Su, Shun Lien Chuang. Room-temperature slow light with semiconductor quantum-dot devices. Optics Letters, 2006, 31(2): 271~273
    [31] Susanta Sarkar, Yan Guo, Hailin Wang. Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells. Optics Express, 2006, 14(7): 2845~2850.
    [32] M?rk J, and Mecozzi A. Theory of the ultrafast optical response of active semiconductor waveguide. J. Opt. Soc. Am. B. 1996, 13: 1803~1816
    [33] Agrawal G P. Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. J. Opt. Soc. Am. B 1988, 5(1): 147~158
    [34] Uskov A, M?rk J, and Mark J. Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE J. Quantum Electron. 1994, 30(8): 1769~1781
    [35] Storkfelt N, Mikkelsen B, Olesen D S, et al. Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier. IEEE Photon. Technol. Lett. 1991, 3(7): 632~634
    [36] Occhi L, Schares L, and Guekos G. Phase modeling based on theα-factor in bulk semiconductor optical amplifiers. IEEE J. Select. Topics Quantum Electron. 2003, 9(3): 788~797
    [37] Agrawal G P, and Olsson N A. Self-phase modulation and spectral broadening of optical pulse in semiconductor laser amplifiers. IEEE J. Quantum Electron. 1989, 25(11): 2297~2306
    [38] Ruiz-Moreno S, Guitart J. Practical method for modeling the nonlinear behaviour of a traveling wave semiconductor optical amplifier. IEE Proc.of 1993, 140(1): 39~43
    [39] Reale A, Carlo A D, Lugli P. Study of the steady state and dynamical behavior of semiconductor optical amplifiers. Physica B 1999, 272: 513~517
    [40] Cassioli D, Scotti S, Mecozzi A. A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J. Quantum Electron. 2000, 36(9): 1072~1080
    [41] Marcuse D. Computer model of an injection laser amplifier. IEEE J. QuantumElectron. 1983, 19(1): 63~73
    [42] G.P.Agrawal.非线性光纤光学.胡国绛译.天津:天津大学出版社. 1992
    [43]蒋中.半导体光放大器的超快动态特性分析:[硕士学位论文].武汉:华中科技大学图书馆,2006.
    [44] J.Mork, J.Mark, C.P.Seltzer. Carrier heating in InGaAsP laser amplifiers due to two-photon absorption. Appl.Phys.Lett, 1994, 64(17): 2206~2208
    [45] A.Mecozzi, J.Mork. Saturation induced by picosecond pulses in semiconductor optical amplifiers. J.Opt.Soc.Am.B, 1997, 14(4): 761~770
    [46] A.Mecozzi, J.Mork. Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(5): 1190~1207
    [47] G.Toptchiyski, S.Kindt, K.Petermann, et al. Time-domain modeling of semiconductor optical amplifiers for OTDM applications. Journal of Lightwave Technology, 1999, 17(12): 2577~2583
    [48]蒋雁,崔一平,庞叔鸣.半导体光放大器中非简并四波混频效应的理论分析.物理学报, 1999, 48(4): 673~683
    [49] A.V. Uskov, C. J. Chang-Hasnain. Slow and superluminal light in semiconductor optical amplifiers. Electron. Lett. , 2005, 41(16):55~56.
    [50] A. Uskov, F. Sedgwick, C. J. Chang-Hasnain. Delay limit of slow light in semiconductor opticalamplifiers, IEEE Photon. Technol. Lett. 2006, 18(6): 731– 733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700