基于半导体光放大器的全光采样基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来高速光通信网络单通道的传输速率将超过100Gbit/s,这就需要对光信号进行灵敏、高速地检测。传统的方法是使用高速光电探测器和高速示波器进行检测,但是这种方法由于光电转换的瓶颈,其精确检测数据的速率只能达到40Gbit/s。另一个方案就是采用全光采样的方法,采样的脉冲在光域内直接对模拟光信号进行采样,避免了光电之间的转换,并且采样过程中数据格式是透明的,其潜在的采样速率也远大于电采样速率。本论文主要从以下三个方面进行课题的研究。
     在广泛查阅国内外文献的基础上,综述了目前实现的各种全光采样方案及其基本原理,对比各方案的优缺点。利用光纤、半导体光放大器以及各种非线性光学晶体的非线性效应实现全光采样是目前国际学术上的主流方向。
     半导体光放大器具有体积小、非线性系数大、交换光功率低、利于光子集成等优点逐渐成为研究的热点。利用半导体光放大器可以实现交叉相位调制、交叉增益调制、四波混频、差频产生和非线性偏振旋转等多种非线性效应。本论文将对这几种非线性效应的基本原理及其全光采样机制进行详细的介绍。
     本论文分别基于半导体光放大器交叉增益调制效应和非线性偏振旋转效应搭建全光采样实验系统。其中对基于交叉增益调制效应进行了静态和动态响应的测试,发现其响应效果并不理想而且存在输出信号与输入信号反向的现象,而基于非线性偏振旋转的全光采样系统实现了40GHz的光脉冲对2.5GHz模拟光信号的全光采样,采样出的信号的包络与泵浦光信号非常接近,说明采样的线性度良好,采样速率也达到40Gbit/s,这种方案都具有结构简单,可实现光子集成的优点,有成为未来高速全光采样方案的潜力。
In the future, the single channel transmission speed of high-speed optical communication network can reach 100Gbit/s, which require to detect optical signal sensitively and high-speed. The traditional method of characterizing high-speed optical signals used a fast photodetector in conjunction with a high-speed oscilloscope. However, this method is limited by the electronic bottleneck; the precise detecting data rate can only achieve 40Gbit/s. Another method is all-optical sampling scheme, the sample pulse sample the analog optical signal directly, avoided opto-electronic conversion, and data format is transparent in the sapling process, its potential sampling rate also far outweigh the electricity sampling rate. The thesis research the project mainly from the following three aspects.
     Based on consulting the domestic and foreign literature, review the present realized all-optical sampling schemes and their basic principle, and contrast different schemes. Utilizing the nonlinearity based on fiber、semiconductor optical amplifier and various nonlinear optcail cystal to achive all-optical sampling is mainstream direction in currently international academic.
     Semiconductor optIcal amplifier(SOA) gradually becomes research hotspot due to their features such as compact、large nonlinearity coefficient、low switch power、campatib;e with photonic intergrated. Using semiconductor optical amplifier, some nonlinear effects such as cross-phase modulation(XPM)、cross-gain modulation(XGM)、four-wave mixing(FWM)、difference frequcncy generation(DFG) and nonlinear polarization roation(NPR) are achieved. Basic principle and all-optical sampling mechanism of those nonlinear effects are introduced in detail in this paper.
     All-optical sampling system based on XGM and NPR of SOA is build. its dynamic responsethe is tested, the result is not very ideal, and the output signal is reverse comparied with input signal, scheme based on NPR-SOA, 40GHz optical pulse is used to sample the 2.5GHz anolog optical signal. The envelop of sampled signal is very close to the sharp of pump light, so the sampling linearity is good, and the sampling rate is 40Gbit/s, This scheme has simple structure and allows photonic intergrated, is potential for ultra high speed sampling.
引文
[1] K. C. Kao, G. A. Hockham. Dielectric-fiber surface waveguides for optical frequencies. IEE PROCEEDINGS, 1986, 133(3):191-198
    [2]刘增基,周洋溢.光纤通信.西安电子科技大学出版社,2003:2-3
    [3] http://baike.baidu.com/view/372769.htm
    [4]刘增基,周洋溢.光纤通信.西安电子科技大学出版社,2003:11-12
    [5] Dadasheet of 86116b 65GHz Optical/80 GHz Electrical Plug-In Module, Aglient Technologies, Inc., 2002:7
    [6] Datasheet of 80E06 70+ GHz Sampling Head, Tektronix, Inc., 2003:6
    [7] Datasheet of XPDV2020R Photodetector, U2T Photonics AG, 2003:5
    [8] C. S. Langhorst, C. Schubert, et al. Optical Sampling Technologies and Applications. OFC, 2005:132-134
    [9] N. Yamada, S. Nogiwa. 640Gb/s OTDM Signal Measurement With High-Resolution Optical Sampling System Using Wavelength-Tunable Soliton Pulses. IEEE Photonics Technolohy Letter, 2001, 16(4):1125-1127
    [10] S. Watanabe, et al. Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640Gb/s. ECOC, 2004:27-30
    [11] S. Kawanishi, T. Yamamoto, et al. High sensitivity waveform measurement of 160 Gbit/s signal with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide. OFC, 2001: 61-63
    [12] S. Diez, R. Ludwig, et al. 160Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier. IEEE Technology Letters, 1999, 11(11):1402-1404
    [13] M. Westlund, P. A. Andrekson, et al. 160 Gbit/s optical data pattern monitoring using a software-synchronized all-optical sampling system. ECOC, 2003:48-49
    [14] C. Dorrer, D. C. Kilper, et al. Linear optical sampling. IEEE Technology Letters, 2003, 15(12):1746-1748
    [15] C. Dorrer, J. Leuthold, et al. Direct measurement of constellation diagrams of optical sources. OFC, 2004: 33-35
    [16] O. Buccafusca, P. Hemdat. Time-resolved characterization of the polarization state of optical pulses. OFC, 2003:501-502
    [17] M. Westlund, et al. Time-resolved state-of-polarization measurement using all optical sampling with sampling pulse polarization rotation. ECOC, 2004:365-368
    [18] R. Essiambre, B. Mikkelsen, et al. Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems, Electron Lett, 199, 35(18):1576-1578
    [19] P. Mamyshev and N. Maysheva. Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing, Opt Lett, 1999, 24(21):1454-1456
    [20] C. Schmidt, C. Schubert, et al. Investigation of intra-channel four-wave mixing at 160 Gb/s using an optical sampling system, ECOC, 2003:990–991
    [21] K. Kitayama, Y. Kimura, et al. Optical sampling using an all-fiber optical kerr shutter. Appl Phys Lett, 1985, 46(7):623-625
    [22] B. P. Nelson et al. Optical sampling oscilloscope using nonlinear fiber loop mirror. Electronics, 1991, 27(3):204-205
    [23] P. A. Andrekson. Picosecond optical sampling using four-wave mixing. Electornics Letters, 1991, 27(16):1440-1441
    [24] J. Li, M. Westlund, et al. 0.5-Tb/s Eye-Diagram Measurement by Optical Sampling Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber. IEEE Technology Letters, 2004, 16(2):566-568
    [25] P. A. Andrekson, M. Westlund, et al. High Resolution Optical Waveform Sampling using Fiber-Optic Parametric Amplifiers. IEEE Winter Topical Meeting on Nonlinear Photonics, 2008:55-56
    [26] A. Poustie. SOA-based All-optical Processing. OFC, 2007:1-75
    [27] L. A. Jiang, E. P. Lppen, et al. Sampling pulses with semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2001, 37(1):117-126
    [28] I. Kang, K. Dreyer. Sensitive 320 Gb/s Eye-Diagram Measurements via Optical Sampling with a Semiconductor Optical Amplifier - Ultrafsst Nonlinear Interferometer. OFC, 2003:406-407
    [29] H. Takara, S. Kawanishi, et al. Eye-diagram measurement of 100 Gbitps optical signal using optical sampling. ECOC, 1996:7-10
    [30] B. C. Thomsen, L. P. Barry, et al. Ultra-sensitive all-optical sampling at 1.5μm using waveguide two-photon absorption. Electronics Letters, 1999, 35(17):1483-1484
    [31] N. Yamada, H. Ohta, et al. Polarization-Insensitive Optical Sampling System Using Two KTP Crystals. IEEE Technology Letters, 2004, 16(1):215-217
    [32] C. Dorrer, C. R. DOERR, et al. High-sensitivity high-resolution linear sampling up to 640 Gb/s using 90°-waveguide optical hybrid. Conferrence on Laser & Electro-Optics(CLEO), 2004:2-3
    [33] H. Ji, H. Hu, et al. Optical Waveform Sampling and Error-free Demultiplexing of 1.28 Tbit/s Serial Data in a Silicon Nanowire. OSA/OFC/NFOEC, 2010:1-3
    [34] H. M. Zhang, M. Y. Yao, et al. Detection and A/D Conversion for 10GHz Periodic Signals with Optical Sampling. Chinese Journal of Electronics, 2003, 12(4):656-658
    [35] H. M. Zhang, M. Y. Yao, et al. Optical waveform measurement with electroabsorption modulator as sampling component. Opt Eng, 2004, 43(2):441-444
    [36] Y. Yang, Z. Zheng, et al. Simple optical waveform monitoring based on SOA and l ow-bandwidth PIN. Proc of SPIE, 2007, 6869(683915):1-10
    [37] S. J. Zhang, Q. S. Zhang, et al. All-Optical Sampling Using Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier. Journal of Semiconductor, 2008, 29(6):1031-1035
    [38] J. L. Mao, S. J. Zhang, et al. All-Optical Sampling Utilizing Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier. The International Conference on Optical Internet (COIN), 2009:204-206
    [39] T. Miyazaki, H. Sotobayashi. Optical sampling and demultiplexing of 80 Gb/s OTDM signals with optically recovered clock by injection mode-locked laser diode. ECOC, 2002:1-2
    [40] M. Shirane, Y. Hashimoto, et al. Optical sampling measurement with all-optical clock recovery using mode-locked diode lasers. OFC, 2001:21-23
    [41] T. Miyazaki, F. Kubota. Simultaneous demultiplexing and clock recovery for 160 Gb/s OTDMsignal using a symmetric Mach-Zehnder switch in electrooptic feedback loop. IEEE Photonics Technology Letters, 2003, 15(7):1008-1010
    [42] C. Schmidt, F. Futami, et al. Complete optical sampling system with broad gap-free spectral range for 160 Gbit/s and 320 Gbit/s and its application in a transmission system. OFC, 2002:528
    [43] C. Schmidt, C. Schubert, et al. Optical sampling system including clock recovery for 320 Gbit/s DPSK and OOK data signals. OFC, 2005:2-4
    [44] H. Ohta, S. Nogiwa, et al. Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse. Electronics Letters, 1997, 33(25):2142-2144
    [45] H. Ohta, S. Nogiwa, et al. Highly sensitive optical sampling system with 100 GHz bandwidth. ECOC, 1998, 503-504
    [46] S. Nogiwa, H. Ohta, et al. Improvement of sensitivity in optical sampling system. Electronics Letters, 1999, 35(11):917-918
    [47] H. Ohta, S. Nogiwa, et al. Measurement of 200 Gbit/s optical eye diagram by optical sampling with gain-switched optical pulse. Electronics Letters, 2000, 36(8):737-739
    [48] S. Nogiwa, Y. Kawaguchi, et al. Highly sensitive and time-resolving optical sampling system using thin PPLN crystal. Electronics Letters, 2000, 36(20):1727-1728
    [49] A. Otani, T. Otsubo. A turn-key-ready optical sampling oscilloscope by using electro-absorption modulators. ECOC, 1999:374–375
    [50] C. Schubert, C. Schmidt, et al. A gain-transparent ultrafast-nonlinear interferometer (GT-UNI) in a 160 Gb/s optical sampling system. OAA, 2002:51-53
    [51] C. Schmidt, C. Schubert, et al. 320 Gb/s all-optical eye diagram sampling using gain-transparent ultrafast nonlinear interferometer (GT-UNI). ECOC, 2002:1-2
    [52] C. Schmidt, C. Schubert, et al. Investigation of intra-channel four-wave mixing at 160 Gb/s using an optical sampling system. ECOC, 2003:252-254
    [53] M. Shirane, Y. Hashimoto, et al. Optical sampling system using compact and stable external-cavity mode-locked laser diode modules. IEICE Trans. Electron, 2004, E87-C(7): 1173–1180
    [54] M. Shirane, Y. Hashimoto, et al. A compact optical sampling measurement system using mode-locked laser-diode modules. IEEE Photonics Technology Letters, 2000, 12(11):1537-1539
    [55] H. Takara, S. Kawanishi, et al. Optical signal eye diagram measurement with subpicosecond resolution using optical sampling. Electronics Letters, 1996, 32(15):1399-1400
    [56] H. Takara, S. Kawanishi, et al. 100 Gbit/s optical signal eye-diagram measurement with optical sampling using organic nonlinear optical crystal. Electronics Letters, 1996, 32(17):2256-2258
    [57] J. Li, J. Hansryd, et al. 300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification. IEEE Photonics Technology Letters, 2001, 13(9):987-989
    [58] H. Ohta, N. Banjo, et al. Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fibre laser. Electronics Letters, 2001, 37(25):1541-1542
    [59] S. Nogiwa, N. Yamada, et al. Broad wavelength-bandwidth optical sampling system using wavelength-tunable soliton pulses. OFC, 2002:533-534
    [60] N. Yamada, H. Ohta, et al. Jitter-free optical sampling system using passively modelocked fibre laser. Electronics Letters, 2002, 38(18):1044-1045
    [61] R. L. Jungerman, G. Lee, et al. 1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase. IEEE Photonics Technology Letters, 2002, 14(8):1148-1150
    [62] C. Dorrer, D. C. Kilper, et al. Ultra-sensitive optical sampling by coherentlinear detection. OFC, 2003:51-53
    [63] C. Schubert, R. Ludwig, et al. High-speed optical signal processing using semiconductor optical amplifiers. Journal of Optical and Fiber Commnication Reports, 2004, 2:171-208
    [64] I. Shake, R. Kasahara, et al. WDM signal monitoring utilizing asynchronous sampling and wavelength selection based on thermo-optic switch and AWG. ECOC, 2003:756-759
    [65] I. Shake, H. Takara, et al. Simple Q factor monitoring forBERestimation using openend eye diagrams captured by high-speed asynchronous electrooptical sampling. IEEE Photonics Technology Letters, 2003, 15(4):620-622
    [66] I. Shake, H. Takara, et al. Chromatic dispersion dependence of asynchronous amplitude histogram evaluation of NRZ signal. IEEE Photonics Technology Letters, 2003, 21(10):2154-2161
    [67] I. Kang, C. Dorrer, Optical sampling source-free simultaneous eye-diagram monitoring and clock recovery up to 160 Gb/s. ECOC, 2003:424-426
    [68] S. Kodama, T. Shimizu, et al. Ultrafast optical sampling gate monolithically integrating a PD and EAM. Electronics Letters, 2004, 40(11):696-697
    [69] S. Nakamura, K. Tajima. ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect. Appl Phys Lett, 1997, 70(26):3498-3500
    [70]江涛,陈艳.半导体光放大器.激光与光电子学进展,2000, 8:40-45
    [71]贾正根.半导体光放大器.半导体情报,2000, 3:45-47
    [72] D. K. Mybnaev, L. L. Scheiner. Fiber-Optic Communications Technology. Prentice Hall, 2001:523-541
    [73] K. Sato, H. Toba. Reduction of mode partition noise by using semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(2):328-333
    [74] M. Usami, R. Inohara, et al. Experimental Analysis of Cross Gain Modulation and Cross Phase Modulation in SOA with Assist Light Injection. LEEE Photon Technol Lett, 2003, 15(9):1192-1194
    [75] C. Porzi, A. Bogoni, et al. Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA. IEEE Photonics Technology Letters, 2005, 17(3):633-635
    [76] J. M. Tang, K. A. Shore. Strong picosecond optical pulse propagation in semiconductor optical amplifiers at Transparency. IEEE Journal of Quantum Electronics, 1998, 34(7):1263-1269
    [77] G. P. Agrawal, N. A. Olsson. Self-Phase Modulation and SPectral Broadening of OPtical Pulses in Semiconductor Laser AmPlifiers. IEEE Journal of Quantum Electronics, 25(11):2297-2306
    [78] M. Willatzen, A. Uskov, et al. Nonlinear gain suppression in semicoductor laser due to carrier heating. IEEE Photonics Technology Letters, 1991, 3(7):606-609
    [79] J. Mork, A. Mecozzi. Theory of the ultrafast optical response of actibe semiconductor waveguide. Opt Soc Am B, 1996, 13(8):1803-1816
    [80] A. Uskov, J. Mork, et al. Four-wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE Journal of Quantum Electronics, 1994, 30(8):1769-1781
    [81] J. T. Hsieh, P. M. Gong, et al. Improved dynamic characteristics on four-wave mixing wavelength conversion in light-holding SOAs. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5):1187-1196
    [82] B. B. Wu,S. N. Fu, et al. 40Gb/s Multifunction oPtical Format Conversion Module With wavelength Multicast Capability Using Nondegenerate Four-wave Mixing in a Semiconduetor Optical Amplifier. J. Lightwave Technol, 2009, 27(20) :4446-4454
    [83] H. J. S. Dorren, D. Lenstra, et al. Nonlinear polarization rotation in semiconductor optical amplifiers theory and application to all-optical flip-flop memory. IEEE Journal of Quantum Electronics, 2003, 39(1):141-148
    [84] L. Q. Guo, M. J. Connelly. A Mueller-matrix formalism for modeling polarization azimuth and elllipticity angle in semicinductor optical amplifiers in a pump-probe scheme. Journal of Lightwave Technology, 2007, 25(1):410-420
    [85] S. M. Xu, J. B. Khurgin, et al. Reducing crosstalk and signal distortion in wavelength-division multiplexing by increasing carrier lifetime in semiconductor optical amplifiers. Journal of Lightwave Technology, 2003, 21(6):1474-1485
    [86] B. Ramamurthy, B. Mukherjee. Wavelength conversion in wdm networking. IEEE Journal on Selectrd Areas in Communications, 1998, 16(7):1061-1073
    [87] S. J. B. Yoo. Wavelength conversion technolgies for wdm network application. Journal of Lightwave Technology, 1996, 14(6):955-966
    [88] T. Durhuus, B. Mikkelsen, et al. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14(6):942-954
    [89] D. Nesset, T. Kelly, et al. All-optical wavelength conversion using SOA nonlinearities. IEEE Communication Magazine, 1998, 56-61
    [90] Y. Liu, E. Tangdiongga, et al. Error-Free 320-Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier. Journal of Lightwave Technology, 2007, 25(1):103-108
    [91] O. Leclerc, B. Lavigne, et al. Optical regeneration at 40Gb/s and beyond. Journal of Lightwave Technology, 21(11):2779-2790
    [92] I. D. Phillips, A. D. Ellis, et al. 40 Gbit/s all-optical data regeneration and demultiplexing with long pattern lengths using a semiconductor nonlinear interferometer. Electronics Letters, 1998, 34(24):2340-2342
    [93] H. J. Thiele, A. D. Ellis, et al. Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer. Electronics Letters 35(3):230-231
    [94]王卓然.超快非线性干涉仪(UNI)的理论及实验研究:[硕士学位论文].天津:天津大学,2004:35-38
    [95] M. Eiselt. Optical loop mirror with semiconductor laser amplifier. Electronics Letters, 1992, 28(16):1505-1507
    [96] K. Obermann, S. Kindt, et al. Performance Analysis of Wavelength Converters Based on Cross-Gain Modulation in Semiconductor-Optical Amplifiers. Journal of Lightwave Technology, 1998, 16(1):78-85
    [97]余重秀.光交换技术.人民邮电出版社, 2008:37-38
    [98] O. Qasaimeh. Analytical Model for Cross-Gain Modulation and Crosstalk in Quantum-Well Semiconductor Optical Amplifiers. Journal of Lightwave Technology, 2008, 26(4):449-456
    [99] P. M. Gong, J. T. Hsieh, et al. Theoretical analysis of wavelength conversion based on four-wave-mixing in light-holding SOA’s. IEEE Journal of Quantum Electronics, 2004, 40(1):31-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700