全光3R再生系统中的全光时钟提取技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信的两大发展趋势之一是主干传输向高速率、长距离的光传送网发展,最终实现全光网。光信号在传输过程中积累的各类损伤(衰减、色散、非线性效应)导致信号质量变差,限制了系统的传输速率和距离。全光3R(Re-amplifying,Re-shaping,Re-timing)再生技术能够很好的解决这一问题,而全光时钟提取是全光3R再生的核心技术。本论文围绕全光时钟提取展开了以下几方面的工作:
    1.对全光时钟提取方案中的关键器件SOA进行了详细的理论分析,并通过仿真软件OptiSystem3.0模拟了基于SOA的交叉增益调制效应的波长变换,具体分析讨论了SOA在不同的控制光功率、连续光功率和偏置电流下的增益特性,通过40Gbps波长变换实验对仿真结果加以验证,为在时钟提取实验中合理有效地使用SOA提供了理论和实验依据。
    2.以对主动锁模激光器锁模原理的介绍为基础,分析了注入锁模光纤激光器的工作原理;介绍了马赫-曾德干涉仪的基本结构和工作原理,分别从时域和频域分析了马赫-曾德干涉仪的传输特性,验证了其对提高时钟质量的作用,为基于注入锁模的时钟提取实验提供了理论基础。
    3.进行了基于注入锁模的全光时钟提取实验。首先进行了10Gbps的时钟提取实验,得到了噪声性能很好的10GHz时钟脉冲的波形图和光谱图,并验证了马赫-曾德干涉仪的效果。然后进行了40Gbps的时钟提取实验,成功地从40Gbps伪随机信号中提取出质量较好的40GHz时钟脉冲。最后,通过改变实验中的注入信号功率、SOA偏置电流和滤波器中心波长,比较了不同参数条件下提取出的时钟信号的效果,为优化各个参数提供了实验依据。
    4.进行了基于UNI的时钟提取实验。首先介绍了UNI的基本工作原理,并从琼斯矩阵和传输函数两个角度加以理论分析。然后介绍了将UNI应用于时钟提取的方案,进行了基于UNI的10Gbps时钟提取实验,得到波形较好的10GHz时钟脉冲,并分别改变控制光功率、SOA偏置电流、EDFA工作电流等参数,观察其对时钟质量的影响。最后进行了40Gbps的时钟提取实验,得到了40GHz时钟脉冲的波形图和光谱图。
One of the two development trends in optical communication isoptical-transfer-network (OTN), even all-optical-network (AOC) with high speed andlong haul. The optical signals will be degraded by many factors, which limit thetransmission capacity and distance. This problem can be well solved by usingall-optical 3R regeneration. Clock recovery is a key technology in all-optical 3Rregeneration. In this paper, we spread our work on injection mode-locked clockextraction in following aspects.
    1. As the key component of clock recovery, SOA is studied theoretically in detail.The characteristics of SOA-XGM are emulated using software Optisystem3.0.Then we complete the experiment of 40Gbps wavelength conversion, from whichwe validate the simulation results. So that we make the theoretical andexperimental foundations on using SOA effectively in clock recovery.
    2. Base on the analysis of active mode-locked fiber laser, we demonstrate theprinciple of injection mode-locked fiber laser. We also introduce the basicstructure and principle of the Mach-Zehnder interferometer (MZI), and investigateits transmission functions both in time domain and frequency domain. Thesesupport the injection mode-locked clock recovery in theory.
    3. We carry out the experiments of all-optical clock recovery based on injectionmode-locked laser. At first, we complete 10Gbps clock extraction and get thewaveform and spectrum figures with good characteristics, from which the effectof MZI be proved. Then we successfully extract 40Hz clock pulses from 40Gbpspseudo-random signals. Changing the injection signal power, the bias current ofthe SOA and the central wavelength of the filter, and we get the differentexperimental effects of the clock signals.
    4. We perform the clock extraction experiments utilizing an ultrafast nonlinearinterferometer (UNI). First, We introduce the basic work principle of the UNIthrough the analysis of the Jones Matrix and the transmission function. Then wedemonstrate the clock recovery scheme using the UNI, and achieve the10Gbps/40Gbps clock recovery. At the same time, we observe the different clockwaveforms under the different conditions, such as the control signal power, thebias current of the SOA and the work current of the EDFA.
引文
[1] I. Jacobs, Lightwave System Development: Looking Back and Ahead, Optics and Photonics News, 1995(6): 19~23
    [2] R. S. Sanferrare, Terrestrial Lightwave System, AT & T Tech., 1987 (66): 95~107
    [3] D. A. Fishman, J. A. Nagel, T. W. Cline, et al., A High Capacity Noncoherent FSK Lightwave Field experiment Using Er3+-Doped Fiber Optical Amplifiers, IEEE Photon. Technol. Lett.,1990(2):662~664
    [4] A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach et al., 8×10Gb/s Transmission Through 280km of Dispersion-Managed Fiber, IEEE Photon. Technol. Lett., 1993(5): 1233~1235
    [5] A. R. Chraplyvy and R. W. Tkach, Terabit/Second Transmission Experiments, IEEE J. QE, 1998(34): 2103~2108
    [6] T. N. Nielsen, A. J. Stentz, K. Rottwitt, et al., 3.28-Tb/s (82×40Gb/s) Transmission Over a 3×100km Nonzero-Dispersion Fiber Using Dual C-and L-Band Hybrid Raman/Erbium-doped Inline Amplifiers, OFC'2000, PD23
    [7] T. Ito, K. Fukuchi, Y. Inada, et al., 3.2Tb/s-1500km WDM Transmission Experiment Using 64 nm Hybrid Repeater Amplifiers, OFC'2000, PD24
    [8] Sergio Tsuda and Valeria L. da Silva, Transmission of 80×10Gbit/s WDM channels with 50GHz spacing over 500km of LEAF fiber, OFC'2000, Tuj6-1
    [9] Susumu Kinoshita, Broadband fiber optic amplifiers, OFC'2001, TuA1
    [10] A. J. G. Ellison, D. E. Goforth, B. N. Samson, J. D. Minelly, J. P. Trentelman, D. L. McEnroe, Extending the L-band to 1620 nm Using MCS Fiber, TuA2
    [11] 张娟娜,40Gb/s 技术的回顾与展望,通讯世界,2003(8),78
    [12] http://www.c-fol.net/news/content/2/20040903084033.htm, 光纤在线
    [13] S. Kawanishi, H. Takara, K. Uchiyama, et al. 1.4Tbit/s (200Gbit/s×7channel WDM) 50km optical transmission experiment, Electronics Letter, 1997, 33(20): 1716-1717
    [14] S. Fischer, M. Dulk, E. Gamper, et al, Optical 3R regenerator for 40Gbit/s netwoks, Electronics Letters, 1999, 35 (23): 2047-2049
    [15] Y. Liang, J. W. Lou, J. K. Anderson, et al., Polarization-insensitive nonlinear optical loop mirror demultiplexer with twisted fiber, Opt. Lett., 1999, Vol. 24, No. 11, pp. 726-728
    [16] M. Nakazawa, E. Yoshida. T. Yamatoto, E.Yamada, et al., TDM single channel 640Gbit/s transmission experiment over 60km using a 400fs pulse train and a walk-off free, dispersion-flattened nonlinear optical loop mirror, OFC'98, PD14, 1998
    [17] M. Eiselt, Optical loop mirror with semiconductor laser amplifier, Electron. Lett., Vol. 28, No. 16, pp. 1505-1507, 1992
    [18] J. P. Sokoloff, P. R. Prucnal, I. Glesk, et al., A teraherhz optical asymmetric dumultiplexer (TOAD), IEEE Photon. Technol. Lett., Vol5, No.7, pp.787-790, 1993
    [19] M. Puleo, A. Miras, E. Legros, L. Giraudet, and S. Vuye, A simple high sensitivity clock recovery circuit for 40-Gbit/s return to zero signals, Optical Fiber Communication Conference and Exhibit, OFC '98., Technical Digest, 22-27 Feb. 1998, Pages:200 –201
    [20] J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, Fellow, IEEE, and H. de Waardt, Clock recovery and demultiplexing performance of 160Gb/s OTDM field experiments, IEEE Photonics Technology Letters, Vol. 16, No. 6, June 2004, 1555-1557
    [21] Thomas F. Carruths, and Janet W. Lou, 80-to 10-Gb/s clock recovery using an electro-optic phase-locked loop, ECOC'01: 284~285
    [22] A. Hati, M. Ghosh and B.C.Sarkar, Phase detector for data-clock recovery circuit, Electronics Letters, 2002(38): 161~163
    [23] Dong Hwan Kim, Sang Hyuck Kim, Jae Cheol Jo, et al., Ultrahigh-speed clock recovery with optical phase lock loop based on four-wave-mixing in a semiconductor optical amplifier, Optical communications, 2000(182): 329~334
    [24] T. Yamamoto, L. K. Oxenlowe, C. Schmidt, et al, Clock recovery from 160Gbit/s data signals using phase-locked loop with interferometric optical swith based on semiconductor optical amplifier, Electronics Lett. 2001(37): pp 509~510
    [25] M. Jinno, T. Mataumoto, and M. Koga, All-optical timing extraction using an optical tank circuit, IEEE Photon. Technol. Lett., Vol. 2, No. 3, 1990, 203-204
    [26] Giampiero Contestabile, Antonio D'Errico, Marco Presi, and Ernesto Ciaramella, 40GHz all-optical clock extraction using a semiconductor-assisted Fabry-Perot filter, IEEE Photon. Technol. Lett., Vol. 16, No. 16, 2004, 2523-2525
    [27] C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, Multiwavelength all-optical clock recovery, Photonics Technology Letters, 1999, Vol. 11, No. 7, 895-897
    [28] D. M. Patrick, R. J. Manning, 20 Gbit/s all-optical clock recovery using semiconductor nonlinearity, Electronics Letters, 2000(37): 151~152
    [29] A dams, L.E.;Kintzer, E.S.;Fujimoto, et al., All-optical timing extraction at 40 GH using a mode-locked figure-eight laser with an SLA , IEEE Photonics Technology Letter 2000(13):1759~1761
    [30] S. Kawanishi, Y. Miyamoto, H. Takara, et al., 120Gbit/SOTDM system prototype, ECOC'98, 1998, 3: 41-45
    [31] K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, et al., 30 Gb/s all-optical clock recovery circuit, IEEE Photonics Technology Letters, 2000(12): 705~707
    [32] P. Rees, P. McEvoy, Valle, et al., Theoretical analysis of optical clock extraction using a self-pulsating laser diode, IEEE Journal of Quantum Electronics, 1999(35): 221-227
    [33] C. Bornholdt, S. Bauer, M. Mohrle, et al., All optical clock recovery at 80GHz and beyond, ECOC'01 Th. F. 1
    [34] B. Satorius, C. Bornholdt, O. Brox, et al., All-optical clock recovery module based on self-pulsating DFB laser, Electronics Letters, 1998(34): 1664~1665
    [35] W. Mao, Y. Li, M. Al-Mumin, et al, 40Gbit/s all optical clock recovery using two-section gain-coupled DFB laser and semiconductor optical amplifier, Electronics Letters, 2001(37): 1302-1303
    [36] C. Bornholdt, B. Sartorius, S. Schellhase, et al, Self-pulsating DFB laser for all-optical clock recovery at 40Gbit/s, Electronics Letters, 2000(36): 327~328
    [37] B. Sartorlus, C. Bornholdt, Bauer, et al., 40GHz optical clock recovery for application in asynchronous networks, Optical Communication & ECOC01: 442~443
    [38] O. Brox, S. Bauer, C. Bobbert, et al., 160 to 40Gb/s demultiplexing using a self-pulsating laser based clock recovery, OFC 2003, Vol. 1, 105-106
    [39] M. Shrane, Y. Hashimoto, H. Kurita, et al, Optical sampling measurement with all-optical clock recovery using mode-locked diode laser, OFC'01, MG2-1~MG2-2
    [40] H. Yokoyama, Y. Hashimoto, H. Kurita, et al., Two-stage all-optical subharmonic clock recovery using modelocked semiconductor lasers, Electronics Letters, 2000, Vol. 36, No. 18, 1577-1578
    [41] T. Ohno, K. Sato, T. Shimizu, et al., Recovery of 40GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser, Electronics Letters, 2003, Vol. 39, No. 5, 453-455
    [42] T. Ohno, K. Sato, R. Ira, et al., Recovery of 160GHz optical clock from 160Gbit/s data stream using modelocked laser diode. Electronics Letters, Vol. 40, No. 4, 2004, 265-267
    [43] Lijun Wang, Yikai Su, Agarwal, et al, All-optical laser synchronization and clock recovery based on dynamic parametric Gain modulation, OFC'2000, ThP6-1
    [44] YiKai Su, Lijun Wang, Anjali Agarwal,et al, Wavelength-tunable all-optical clock ecovey using a giber optic parametric oscillator, optical communications, 2000(184):151-156
    [45] C. Schubert, S. Diez, J. Berger, et al., 160-Gb/s all-Optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer (GT-UNI), IEEE Photonics Technology Letters, May 2001, Vol. 13, No. 5
    [46] B. Mikkelsen, Optical amplifiers and their system applications, Ph. D Thesis, Technical university of Denmark, 1995, LD-114
    [47] T. Durhuus, Semiconductor optical amplifiers: amplification and signal processing, Ph. D Thesis, Technical university of Denmark, 1995, LD-114
    [48] S. Shimada, H. Ishio, Optical amplifiers and their applications, John willey & Sons. Ltd., West Sussex Pol9, England, pp.177~240
    [49] 周正,周惠林,通信工程新技术实用手册光通信技术分册,北京邮电大学出版社:2002 年,340~345
    [50] Djafar K. Mybnaev, Lowell L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall: 2001, 523~541
    [51] J. M. Tang, P. S. Spencer, K. A. Shore, Analysis of operationg characteristics of TOADs using gain saturation and nonlinear gain in SOAs, IEE Proc.-Poelectron, 1998, Vol. 145, No.1, February
    [52] S. L. Dannielsen, P. B. Hausen, K. E. Stubkjier, Wavelength conversation in optical packet switching, Lightwave Tech., 1999(16): 2095~2108
    [53] Kristof Obermann, et al., Performance analysis of wavelength conversation based on cross-gain modulation in semiconductor-optical amplifiers, Lightwave Tech., 1998(16): 78~85
    [54] Trefor J. Morgan, Rodney S. Tucker, Gideon Yoffe, Passive optical equalization of wavelength based on four-wave mixing in semiconductor optical amplifiers, IEEE Photonics Tech. Lett., 1998(10): 522~524
    [55] A. Mecozzi, S. Scotti, Four wave mixing in traveling wave semiconductor amplifiers, IEEE Quantum Electron 1995(31): 689~699
    [56] Mehdi Asghari, Ian H. White and Tichar V. penty, Wavelength conversation using semiconductor optical amplifier, Lightwave Tech., 1997(15): 1181~1190
    [57] Terji Durhuus, et al, Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion, Lightwave Tech, 1992(10): 1056~1064
    [58] Hamlim Lee, Sungkee Kim, and Jichai Jeong, Frequency chirp and dynamic characteristics of wavelength-converted optical signals by cross-gain and cross-phase modulation in semiconductor optical amplifiers, CLEO'99, ThG5
    [59] F. Ginovart, J. C. Simon, I. Valiente, Gain recovery dynamics in semiconductor optical amplifiers, Optics communications, 2001(199): 111~115
    [60] K. Zoiros, T. Stathopoulos, K. Vlachos, et al, Experimental and theoretical studies of a high repetition rate fiber laser, mode-locked by external optical modulator, Optics communications 2000(180): 301~315
    [61] H. Kawaguchi, et al, Absorption and dispersion bistability in semiconductor injection lasers, Opt. Quantum Electron, 1987(19): S1~S36
    [62] G. P. Agrawal and N. A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers, Quantum Electronics 1989(QE-25): 2297-2306
    [63] K. Vlachos, G. Theophilopoulos, A. Hatziefremidis,et al, “30Gbps all-optical clock recovery circuit ,IEEE Photon. Techonol. Lett , 2000(12):705~707
    [64] 周炳琨,高以智,陈倜嵘,激光原理,北京,国防工业出版社,2000,235~240
    [65] L. Billes, J.C. Simon, B. Kowalski, et al., Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (Conf. Publ. No.: 448), Volume: 2 , 22-25 Sept. 1997 Pages:269 -272 Vol.2
    [66] S. Nakamura, Y. Ueno, K. Tajima, Ultrahigh-speed optical signal processing with symmetric-Mach-Zehnder-type all-optical switches, All-Optical Networking: Existing and Emerging Architecture and Applications/Dynamic Enablers of Next-Generation Optical Communications Systems/Fast Optical Processing in Optical Transmission/VCSEL and Microcavity Lasers. 2002, IEEE/LEOS Summer Topi , 15-17 July 2002 Pages: TuK4-27 -TuK4-28
    [67] S. Diez, C. Schubert, R. Ludwig, et al., 160Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer, Electronics Letters, 2000, Vol. 36, No. 17, 1484-1486
    [68] 瞿荣辉,赵浩,方祖捷,级联非平衡Mach-Zehnder 干涉仪型复用器特性分析[J],光电子·激光,2001,12(3):254-257
    [69] L. Occhi, L. Scgares, G. Guekos, 40GHz all-optical XOR with UNI gate, Optical Fiber Communication Conference and Exhibit, 2001, OFC 2001, Vol. 1, pp. MB2-1-MB2-3
    [70] C. Bintjas, M. Kalyvas, G.Theophilopoulos, et al., 20 Gb/s all-optical XOR with UNI gate, Photonics Technology Letters, IEEE, 2000, Vol. 12, Issue: 7, pp. 834 ~836
    [71] J. D. Gaskill, Linear Systems, Fourier Transfer and Optics, New York: John Wiley & Sons Inc, 1978, 60-63
    [72] C. Schubert, J. Berger, U. Feiste, et al., 160-Gb/s polarization insensitive all-optical demultiplexing using a gain-transparent ultrafast nonlinear interferometer, IEEE Photonics Technology Letters, 2001, Vol. 13, No. 11, 1200-1202
    [73] Giancario Gavioli, Polina Bayvel, Novel, high-stability 3R all-optical regenerator based on polarization switching in a semiconductor optical amplifier,Optical Networks Group, Dept. of Electronic and Electrical Engineering, University College London (UCL)
    [74] A. E. Kelly, I. D. Phillips, R. J. Manning, et al., 80Gbit/s all optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer, Electronics Letters, 1999, VOL. 35, NO. 17, pp 1477-1478
    [75] Chen Xingzhong, Yao Minyu, Chen Minghua, Demonstration of optical switch operation of an ultrafast nonlinear interferometer (UNI) with counter-propagating control pulse, Communication Technology Proceedings, 2000. WCC -ICCT 2000. International Conference on., Vol. 1, 21-25. pp. 206 –209
    [76] Chen Xingzhong, Yao Minyu, Chen Minghua, et al., Demonstration of optical switch operation of an ultrafast nonlinear interferometer (UNI) with counter-propagating control pulse, Communications, 1999. APCC/OECC'99, Fifth Asia-Pacific Conference on ... and Fourth Optoelectronics and Communications Conference, Volume: 1, 1999, Page (s): 475-476
    [77] 赵秋铃,吴福全,光相位延迟量的归一化偏振调制测量,光学学报,2002,Vol. 22, No.3, pp. 360~362
    [78] J. P. Sokoloff, B. P. BcGinnis, S. G. Lee, et al., Efficiently packaged ultrafast demultiplexers for high bandwidth optical TDM systems, Electronics Letters , Volume: 33, Issue: 19, 11 Sep 1997, Page(s): 1648-1650
    [79] L. J. Pinson, A Quantitative measure of the effects of aliasing on raster scanned imagery, IEEE Trans. Syst. Man and Cybernetics, 1978, SMC-8 (10): 774-778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700