光采样技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光采样技术是对高比特率光学数据信号进行时间分辨测量的理想技术,它具有传统光电探测器和示波器无法达到的带宽。光采样在高比特率信号的波形和眼图测量、相位调制信号的星座图测量、偏振态时域分辨测量和光纤传输损伤研究等方面得到广泛应用。本文在湖北省杰出青年基金和教育部新世纪优秀人才计划的资助下,对光采样的实现方案和关键技术进行较深入的理论和实验研究,完成的主要工作有如下几点:
     (1)在广泛查阅国内外文献的基础上,综述了目前报道过的光采样的实现方案和基本原理,并对光采样中的关键技术:采样脉冲源、时钟恢复、采样门和光电探测及数据采集的实现方案分别进行概括总结。
     (2)分析了半导体光放大器(SOA)的三种理论模型,利用琼斯矩阵法推导了基于SOA的超快非线性干涉仪(UNI)的传输函数,并在此基础上模拟了UNI的开关窗口特性。利用折叠型干涉仪结构实验验证了20Gb/s的UNI开关特性。
     (3)分别以UNI和增益透明UN(IGT-UNI)作为采样门,模拟得到了在不同的SOA载流子寿命下20Gb/s NRZ和RZ伪随机序列的同步光采样眼图,并进行了对比分析。
     (4)对全光码型转换和差分相移键控(DPSK)信号解调进行了实验研究。分别利用UNI和延时偏振干涉仪进行了不同速率的NRZ到PRZ的转换;利用延时偏振干涉仪实现了不同速率的NRZ-DPSK到PRZ的转换以及40Gb/s NRZ-DPSK和RZ-DPSK的解调。这一部分的工作对于研究同步光采样系统中时钟恢复的实现方法以及如何利用传统的光采样技术实现对相位调制信号的采样是有益的探索。
The optical sampling technique is a novel method to perform time-resolved measurements of optical data signals at high bit rates with a bandwidth that cannot be reached by conventional photodetectors and oscilloscopes. Applications of optical sampling systems include high bit rate waveform and eye diagram measurements, measurements of constellation diagrams of phase modulated data signals, time-resolved measurements of the state-of-polarization as well as investigations of fiber transmission impairments. Supported by the Science Fund for Distinguished Young Scholars of Hubei Province and the Program for the New Century Excellent Talents in University of Ministry of Education of China,the realization of optical sampling and its key techniques are studied in this paper. The main contents are listed as follows:
     (1) Different configurations of optical sampling systems and their principles are reviewed. The schemes of sampling pulse source, clock recovery, sampling gate, opto/electrical detection and data acquisition are summarized.
     (2) Three different theoretical models of semiconductor optical amplifier (SOA) are introduced. The optical power transmittance function of the ultrafast nonlinear interferometer (UNI) based on SOA is derived using the Jones formalism. Then the switch window properties of the UNI are simulated based on them. The switch window properties of the UNI at 20Gb/s are also experimentally studied using a folded structure.
     (3) Synchronous optical sampling eye diagrams of 20Gb/s NRZ and RZ pseudorandom binary sequence are simulated in different carriers lifetime conditions, with UNI and gain- transparent UNI (GT-UNI) as sampling gate respectively. And the results are analyzed comparatively.
     (4) All-optical data format conversion and differential phase-shift keying (DPSK) signals demodulation are experimentally studied. All-optical nonreturn-to-zero (NRZ) to pseudo-return- to-zero (PRZ) conversion has been achieved at different bit rate using UNI and delay polarization interferometer respectively. In addition, all-optical NRZ-DPSK to PRZ conversion at different bit rate, 40Gb/s NRZ-DPSK demodulation and 40Gb/s RZ-DPSK demodulation have been achieved using delay polarization interferometer. These works are beneficial to clock recovery in synchronous optical sampling system and DPSK signals sampling using traditional sampling technique.
引文
[1] C. Schubert, C. Schmidt, C. Boerner, et al. Optical Sampling Technologies and Applications. Optical Fiber Communication Conference, 2005. Technical Digest Series, OFC/NFOEC, 2005, 2: 185~187
    [2] Mathias Westlund, Henrik Sunnerud, Magnus Karlsson, et al. Software-synchronized all-optical sampling for fiber communication systems. Journal of Lightwave Technology, 2005, 23(3): 1088~1099
    [3] C. Schmidt-Langhorst and Hans-Georg Weber. Optical sampling techniques. Springer J. Opt. Fiber. Commun. Rep., 2005, 2(1): 86~114
    [4] N. Yamada, S. Nogiwa, and H. Ohta. 640 Gb/s OTDM signal measurement with high resolution optical sampling system using wavelength-tunable soliton pulses. IEEE Photon. Technol. Lett., 2004, 16 (4): 1125~1127
    [5] C. Schmidt, C. Schubert, S. Watanabe, et al. 320 Gb/s all-optical eye diagram sampling using gain-transparent ultrafast nonlinear interferometer (GT-UNI). ECOC’02, 2002, 1: 1~2.
    [6] Wen Pingjin, Zhang Hongming, Yao Mingyu, et al. Optical Performance Monitoring Based on Asynchronous Sampling Technology. Proceedings of SPIE, 2005, 5625: 1001~1003
    [7] I. Shake, H.Takara, S. Kawanishi. Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling. IEEE Photon. Technol. Lett., 2003, 15 (4): 620~622
    [8] I. Shake, E. Otani, H. Takara, et al. Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique. Electron. Lett., 2000, 36(25): 2087~2088
    [9] M. Westlund, H. Sunnerud, M. Karlsson, et al. Software-synchronized all-optical sampling. OFC, 2003, 1: 409~410
    [10] George Moustakides, Frederic Cerou et al. Eye diagram reconstruction using asynchronous imperfect sampling, application to BER estimation for fiber-optic communication systems. European Signal Processing Conference - EUSIPCO’02, 2002, 3: 375~378
    [11] L. Noirie, F. Cérou, G. Moustakides, et al. New transparent optical monitoring of theeye and BER using asynchronous under-sampling of the signal. ECOC’02, 2002, 5: 1~2
    [12] Eduardo Mobilon, Miriam Regina Xavier de Barros and Amauri Lopes. Experimental Verification of an Eye Diagram Reconstruction Technique Based on Asynchronous Undersampling. SBMO/IEEE MTT-S International Microwave and Optoelectronic Conference, 2005. 603~606
    [13]张洪明,鲁涛,王鑫等.异步取样在光数字信号监测中的应用.光电子激光,2006,17 (10): 1229~1232
    [14] M. Westlund, H. Sunnerud, M. Karlsson, et al. 160 Gb/s optical data pattern monitoring using a software-synchronized all-optical sampling system. ECOC’03, 2003. 48~49
    [15] C. Schmidt-Langhorst, C. Schubert, C. Boerner, et al. Optical sampling system including clock recovery for 320 Gbit/s DPSK and OOK data signals. OFC 2005, 2005, 3: 1~2
    [16] C. Dorrer, J. Leuthold, and C. Doerr. Direct measurement of constellation diagrams of optical sources. OFC 2004, 2004, 2:1~3
    [17] C. Dorrer, D. Kipler, H. Stuart, et al. Linear optical sampling. IEEE Photon. Technol. Lett., 2003, 15 (12): 1746~1748
    [18]华颖.全光3R再生关键技术的理论与实验研究:[博士学位论文].武汉:华中科技大学,2003
    [19] Giampiero Contestabile, Antonio D’Errico, Marco Presi, et al. 40-GHz All-Optical Clock Extraction Using a Semiconductor-Assisted Fabry–Pérot Filter. IEEE Photonics Technology Letters, 2004, 16(11): 2523~2525
    [20] Zhaoyang Hu, Hsu-Feng Chou, Kohsuke Nishimura, et al. Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration. IEEE Journal Of Selected Topics In Quantum Electronics, 2005, 11(2): 329~337
    [21] Jacob Lasri, Preetpaul Devgan, Renyong Tang, et al. Ultralow Timing Jitter 40-Gb/s Clock Recovery Using a Self-Starting Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2004, 16(1): 263~265
    [22] H. Otha, S. Nogiwa, N. Oda, et al. Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse. Electron. Lett., 1997, 33(25): 2142~2144
    [23] S. Nogiwa, H. Otha, K. Kawaguchi, et al. Improvement of sensitivity in opticalsampling system. Electron. Lett., 1999, 35 (11): 917~918
    [24] S. Nogiwa, Y. Kawaguchi, H. Ohta, et al. Highly sensitive and time-resolving optical sampling system using thin PPLN crystal. Electron. Lett., 2000, 36 (20): 1727~1728
    [25] A. Otani, T. Otsubo, and H.Watanabe. A turn-key-ready optical sampling oscilloscope by using electro-absorption modulators. ECOC’99, 1999. 374~375
    [26] C. Schmidt, C. Schubert, C. B¨orner, et al. Investigation of intra-channel four-wave mixing at 160 Gb/s using an optical sampling system. ECOC’03, 2003. 990~991
    [27] C. Schubert, C. Schmidt, C. B¨orner, et al. A gain-transparent ultrafast-nonlinear interferometer (GT-UNI) in a 160 Gb/s optical sampling system. Techn. Dig. of Optical Amplifiers and their Applications, OAA, 2002, (OTuD5):1~3
    [28] B. Bakhshi, P. A. Andrekson, Xiupu Zhang. A Polarization-Maintaining and Dispersion- Managed 10-GHz Mode-Locked Erbium Fiber Ring Laser Providing Both sech2-and Gaussian-Shaped Pulses. Optical Fiber Technology, 1998, 4: 293~303
    [29] J. S. Wey, J. Goldhar, D. W. Rush, et al. Performance Characterization of a Harmonically Mode-Locked Erbium Fiber Ring Laser. IEEE Photonics Technology Letters, 1995, 7(2): 152~154
    [30] J. S. Wey, J. Goldhar. Active Harmonic Modelocking of an Erbium Fiber Laser with Intracavity Fabry–Perot Filters. Journal of Lightwave Technology, 1997, 15(7): 1171~1180
    [31] H. Takara, S. Kawanishi, M. Saruwatari. Optical signal eye diagram measurement with subpicosecond resolution using optical sampling. Electron. Lett., 1996, 32(15): 1399~1400
    [32] H. Takara, S. Kawanishi, A.Yokoo, et al. 100 Gbit/s optical signal eye-diagram measurement with optical sampling using organic nonlinear optical crystal. Electron. Lett., 1996, 32 (24): 2256~2258
    [33] J. Li, J. Hansryd, P. Hedekvist, et al. 300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification. IEEE Photon. Technol. Lett., 2001, 13 (9): 987~989
    [34] J. Li, M. Westlund, H. Sunnerud, et al. 0.5 Tbit/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber. ECOC’03, 2003. 136~137
    [35] S. Nogiwa, N.Yamada, H. Ohta. Broad wavelength-bandwidth optical sampling systemusing wavelength-tunable soliton pulses. OSA Trends in Optics and Photonics (TOPS) . OFC, 2002, 55: 533~534
    [36] N. Yamada, H. Ohta, S. Nogiwa. Jitter-free optical sampling system using passively modelocked fibre laser. Electron. Lett., 2002, 38 (18): 1044~1045
    [37] T. Miyazaki and F. Kubota. Simultaneous demultiplexing and clock recovery for 160 Gb/s OTDM signal using a symmetric Mach-Zehnder switch in electrooptic feedback loop,”IEEE Photon. Technol. Lett., 2003, 15 (7): 1008~1010
    [38] S.Watanabe, R. Okabe, F. Futami, et al. Novel fiber kerr-switch with parametric gain: Demonstration of optical demultiplexing and sampling up to 640 Gb/s. ECOC’04, 2004. 12~13
    [39] M. Shirane, Y. Hashimoto, H. Yamada, et al. A compact optical sampling measurement system using mode-locked laser-diode modules. IEEE Photon. Technol. Lett., 2000, 12 (11): 1537~1539
    [40] C. Schubert, R. Ludwig, Hans-Georg Weber. High-speed optical signal processing using semiconductor optical amplifiers. Springer J. Opt. Fiber Commun, 2004, 2: 171~208
    [41] C.Schubert, J.Berger, S.Diez, et al. Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems. Journal of Lightwave Technology, 2002, 20(4): 618~624
    [42] S. Diez, R. Ludwig, H. G. Weber. Gain-Transparent SOA-Switch for High-Bit rate OTDM Add/Drop Multiplexing. IEEE Photonics Technology Letters, 1999, 11(1): 60~62
    [43] I. Kang and K. Dreyer. Sensitive 320 Gb/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer. Electron. Lett., 2003, 39 (14): 1081~1082
    [44] I. Shake and H. Takara. Chromatic dispersion dependence of asynchronous amplitude histogram evaluation of NRZ signal. J. Lightwave Technol., 2003, 21(10): 2154~2161
    [45] I. Kang and C. Dorrer. Optical sampling source-free simultaneous eye-diagram monitoring and clock recovery up to 160 Gb/s. Proc. ECOC’03, 2003. 292~293
    [46] S. Kodama, T. Shimizu, T.Yoshimatsu, et al. Ultrafast optical sampling gate monolithically integrating a PD and EAM. Electron. Lett., 2004, 40 (11): 696~697
    [47] M. Shirane, Y. Hashimoto, H. Kurita, et al. Optical sampling measurement with all-optical clock recovery using mode-locked diode lasers. OSA Trends in Optics and Photonics (TOPS). OFC, 2001, 1: MG2-1~ MG2-3
    [48] G. P. Agrawal, N. A. Olsson. Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers. IEEE J Q E ,1989, 25(11): 2297~ 2306
    [49] Willner A E, Shich W. Optimal spectral and power parameters for all-optical wavelength shifting: Single stage , fanout , and cascadability. J. Lightwave Technol., 1995, 13(5): 771~781
    [50]张新亮.半导体光放大器用作全光波长转换器的研究:[博士学位论文].武汉:华中科技大学,2000
    [51] A. Uskov, J. Mork, J. Mark. Theory of short-pulse gain saturation in semiconductor laser amplifiers. IEEE Photon Technol Lett, 1992, 4(5): 443~446
    [52] A. Mecozzi, J. Mork. Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(5): 1190~1207
    [53] S. Diez, C. Schubert, R. Ludwig, et al. 160Gbit/s all optical demultiplexer using Hybrid gain-transparent SOA Mach-Zehnder interferometer. Electronics Letters, 2000, 36 (17): 1484~1486
    [54] C. Schubert, S. Diez, J. Berger, et al. 160-Gb/s All-Optical Demultiplexing Using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GT-UNI). IEEE Photonics Technology Letters, 2001, 13 (5): 475~477
    [55] S. Diez, R. Ludwig, H. G. Weber. All-optical switch for TDM and WDM/TDM systems demonstrated in a 640 Gbit/s demultiplexing experiment. Electron. Lett., 1998, 34: 803~804
    [56] G. Toptchiyski, S. Randel, K. Petermann, et al. Analysis of Switching Windows in a Gain-Transparent-SLALOM Configuration. J. Lightwave Technol., 2000, 18: 2188~ 2195
    [57] N. S. Patel, K. L. Hall, K. A. Rauschenbach. 40-Gbits cascadable all-optical logic with an ultrafast nonlinear interferometer. Opt. Lett., 1996, 21: 1466~1468
    [58] R. P. Webb, R. J. Manning, and R. Giller. All-optical 40 Gb/s logic XOR gate with dualultrafast nonlinear interferometers. Electron. Lett., 2005, 41: 49~50
    [59] A. E. Kelly, I. D. Phillips. 80Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer. Electronic Letters, 1999, 35(17 ): 1477~1478
    [60] C. Schubert, J. Berger, U. Feiste, et al. 160 Gb/s polarization insensitive all-optical demultiplexing using a gain-transparent Ultrafast-Nonlinear Interferometer (GT-UNI). IEEE Photon. Technol. Lett., 2001, 13 (11): 1200~1202
    [61] C. Schubert. Interferometric Gates for All-Optical Signal Processing: [Ph. D. Thesis]. Berlin: Technischen University, 2004
    [62]李达.SOA-UNI应用的理论与实验研究:[硕士学位论文].武汉:华中科技大学,2007
    [63] Hyuek Jae Lee, Hae Geun Kim, JeeYon Choi, et al. All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of Semiconductor optical amplifier. Electronics Letters, 1999, 35 (12): 989~990
    [64] Weiming Mao, Mohammed Al-Mumin, Xinhong Wang, et al. All-Optical Enhancement of Clock and Clock-to-Data Suppression Ratio of NRZ Data. IEEE Photonics Technology Letters, 2001, 13(3): 239~241
    [65] H. K. Lee, J. T. Ahn, M.-Y.Joen, et al. All-optical clock recovery from NRZ data of 10Gb/s. IEEE Photonics Technology Leters, 1999, 11(6): 730~732
    [66] M. Yao, Haiyun Tang, M. Fukazawa, et al. All-optical clock recovery from NRZ data using a nonlinear loop clock generator. OFC'96, 1996, W L.11 : 177~178
    [67] Hyuck Jae Lee, Chang-Soo Park. Novel all-optical edge detector for the clock component extraction of NRZ signal using an SOA-loop-minor. Optics Communications, 2000, 181(4): 323~326
    [68] W. W. Tang, M. P. Fok, C. Shu. All-optical Clock Recovery from NRZ Data using a NRZ-to-PRZ Converter Constructed with a Polarization-Maintaining Fiber Loop Mirror Filter. Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim conference on, 2005. 1198~1199
    [69] C. H. Lee, H. K. Lee. Passive all-optical clock signal extractor for non-return-to-zero signals. Electron Lett, 1998, 34(3): 295
    [70] G. Contestabile, M. Presi, N. Calabretta, et al. All-Optical Clock Recovery forNRZ-DPSK Signals. IEEE. Photonics Technology Letters, 2006, 18(23): 2544~2546
    [71] E. A. Swanson, J. C. Livas, R. S. Bondurant. High Sensitivity Optically Preamplified Direct Detection DPSK Receiver with Active Delay-line Stabilization. Photonics Technology Letters, 1994, 6(2): 263~265
    [72]齐鸣,张新亮,黄德修.可调马赫-曾德尔干涉仪型差分相移键控解调器.中国激光, 2006, 33: 1643~1647
    [73] C. W. Chow, H. K. Tsang. Polarization-independent DPSK Demodulation Using a Birefringent Fiber Loop. Photonics Technology Letters, 2005, 17(6): 1313~1315
    [74] E. Ciaramella, G. Contestabile, A. D’Errico. A Novel Scheme to Detect Optical DPSK Signals. Photonics Technology Letters, 2004, 16(9): 2138~2140
    [75] Xin Wang and Xinliang Zhang. Generation of modified duobinary return-to-zero format using polarization-maintaining fiber loop mirror. Chin. Opt. Lett. 2007, 5: 69~70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700