全光3R再生系统中的全光时钟提取技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信容量需求地不断增加,光传送网向着高速率、长距离方向发展,并在此基础之上,最终实现全光网络。由于色散、非线性效应以及其它不利因素地影响,使得信号在传输过程中,质量下降,导致传输距离、传输速率受限。为解决信号恶化的问题,全光3R(Re-amplifying,Re-shaping,Re-timing)技术应运而生。全光3R中的关键技术是全光时钟提取,同时,它也是全光网的关键环节,本论文工作围绕基于F-P滤波器的全光时钟提取技术展开。
     对基于SOA的XGM效应的波长变换进行了分析,研究了各种外部参数和SOA内部参数对波长变换的影响,利用Optisystem3.0进行了仿真。进行相应实验时,在综合考虑影响波长变换效果的各条件的前提下,取得了良好的实验效果,为以后时钟提取中的波长变换,奠定了工作基础。
     利用SOA的传输函数的频域形式,对SOA对信号调制深度地改变进行了理论分析,并得到结论:SOA对低频频率成份有很好地抑制作用。随后通过实验进行了验证。针对全光时钟提方案中的关键器件F-P滤波器,进行了详尽的理论分析。在此基础之上,利用仿真软件Optisystem3.0模拟了F-P滤波器不同精细度、激光器中心波长偏移对全光时钟提取的影响。
     为了使全光判决取得良好效果,确定了以下全光时钟提取方案:首先对信号进行波长变换,将其所携带的信息转移到波长稳定的激光器所产生的连续光上,继而用高精细度的F-P滤波器进行时钟提取。利用Optisystem3.0对拟采取的实验方案进行全面仿真,并提出了利用窄带滤波器改善时钟信号消光比的方法:窄带滤波器要有足够小的带宽,且相对于光载波的中心波长有一定的偏移。随后利用SOA来抑制时钟的低频噪声。
     最后进行了全面实验,成功地利用此方案实现了40Gbps时钟提取实验,得到了较高质量的时钟。不但验证了前述工作的正确性,并取得了良好的实验结果。
As the increase of demand for communication capacity, optical-transport-network develops toward high speed and long haul, and all-optical network finally. However, the transmission distance and speed are limited, because the signal is degraded caused by the dispersion and nonlinear effects during transmission. All-optical 3R is the very technology developed to solve this problem. The all-optical clock recovery is the key of all-optical 3R and all-optical network. All-optical clock recovery using F-P filter is chiefly talked about in this thesis.
     Work is carried out to study the wavelength conversion basing on cross gain modulation (XGM) of SOA and how it being affected by kinds of external and internal parameters of SOA , then it is simulated using the software named Optisystem3.0. The corresponding experiment is finished successfully after all the parameters being considered, and it prepares for the wavelength conversion used in clock recovery.
     It is analyzed theoretically of how SOA affects the modulation-depth of the signal according to the transport function of SOA about frequency,and a conclusion is given: the low-frequency can be suppressed by SOA. Then it is proved through experiment. F-P filter is analyzed theoretically in detail as the key component in all-optical clock recovery. Then, how the differential finesses of F-P filter and the excursion of the central wavelength of laser affecting the clock recovery are simulated using Optisystem3.0.
     For good result in all-optical decision, the scheme of all-optical clock recovery is plotted as follows: first, the information carried by the carrier is transferred to the continuous wave from a laser with steady central wavelength, then clock is recovered using F-P filter. It is simulated using Optisystem3.0, and the extinction-ratio of the clock is improved using a narrow-band-pass filter with enough narrow bandwidth and a little excursion of its center to the central wavelength of the laser, on the other hand, the low frequency noise in the clock is suppressed using SOA.
     40Gbps clock is recovered successfully using this scheme through comprehensive experiment. Not only the validity of previous work is proved, but also good experiment results are accomplished.
引文
[1] 有限公司光网络部 编著,光传输技术 清华大学出版社、北方交通大学出版社:
    [2]张杰,徐云斌,宋鸿升等著,自动交换光网络 ASON 人发邮电出版社:2004.7 邮电出版社:2003.1
    [4]Peter Tomsu, Christian Schmutzer 著,龚倩,徐荣 等译,下一代光网络 IP 层的智能与光技术的融合,人民邮电出版社:2003.1
    [5]Darren L.Spohn, Tian L.Brown, Scott Grau 著,丁宏毅,王文同,李恒丁等译,数据网络设计,人民邮电出版社:2005.9
    [6]王廷尧等著,光通信设备基础,天津科学技术出版社:1992.12
    [7]王健全,杨万春,张杰等著,城域 MSTP 技术 机械工业出版社:2005.4
    [8]张继军,杨壮著,新一代城域光传送技术,北京邮电大学出版社:2005.7
    [9]Olivier Leclerc, Bruno Lavigne, et al, Optical Regeneration at 40 Gb/s and Beyond JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2003
    [10]S. Kawanishi, H. Takara, K. Uchiyama, et al. 1.4Tbit/s (200Gbit/s×7 channel WDM) 50km optical transmission experiment, Electronics Letter, 1997, 33(20): 1716 -1717
    [11]S.M.R.Motaghian Nezam, J.McGeehan, A.Willner,DOP-Based PMD Monitoring in O tical Subcarrier Multiplexed Systems by Carrier/Sideband Equalization, OFC 2003, ThY4, 593~595
    [12]Patrick C.Chou, John M.Fini, Hermann A.Haus, Demonstration of a Feed-Forward PMD Compensation Technique, IEEE Photon. Technol. Lett., 2002, 14(2): 161~163
    [13]王剑,于晋龙等,10Gbit/s光纤通信系统偏振模色散动态补偿技术 光电子· 光 2003 年 07 期
    [14]王宏丽,于晋龙等,偏振模色散补偿中偏振度与差分群延时关系的理论分析和实验 光学学报 2004 年 11 期
    [15]S. Fischer, M. Dulk, E. Gamper, W. Vogt, et al,, Optical 3R regenerator for 40Gbit/s networks, Electron.Lett.,1999,35:2047-2049
    [16]M. Nakazawa et al, 1.28Tbit/s-70km OTDM transmission using third and fourth order simultaneous dispersion compensation with a phase modulator, ECOC’2000, PD-26
    [17]Ivan P.Kaminow, Tingye Li 著,余力等译,光纤通信卷 A:器件篇,北京邮电大学出版社:2005.11
    [18]I.D. Phillips, A.D. Ellis, T. Widdowson, et al, 80Gb/s optical clock recovery using an electrical phase locked loop, and commercially available components, OFC2000, ThP4-1
    [1]朗讯科技 (中国2003.10
    [3]徐荣,龚倩,张光海编著,城域光网络,人发p激
    [19]M. Puleo, A. Miras, E. Legros, et al, A simple high sensitivity clock recovery circuit for 40 Gbit/s return to zero si l Fiber Communication Conference nd Exhibit, OFC '98.,Technical Digest, 22-27 Feb. 1998, Pages:200–201 tters Volume 39, Issue 8, ultiplexing very using an ing l phase lock loop based on four-wave-mixing in a semiconductor optical sing a phase lock loop based on four-wave-mixing in a laser diode amplifier, rdi. R,et al. , Anovel approach to pre-scaled clock recovery in Y. Hashimoto, H. Kurita, et al, Optical sampling measurement with mizu, et al., Recovery of 40GHz optical clock from s Letters, Vol. 40, No. 4, 2004, olithic mode-locked laser diode, CLEO 97 ,1997 CtuJ5 ond hybrid mode-locked semiconductor laser, Eletron. covery using mode-locked semiconductor lasers, Electronics Letters, 2000, Vol. 36, No. 18, 1577-1578 gnals, Opticaa
    [20]Vehovc. S, Vidmar. M, et al, 80 Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop Electronics Le17 April 2003, Page(s):673 - 674
    [21]J. P. Turkiewicz, E. Tangdiongga, et al, Clock recovery and demperformance of 160Gb/s OTDM field experiments, IEEE Photonics Technology Letters, Vol. 16, No. 6, June 2004, 1555-1557
    [22]A. Hati, M. Ghosh and B.C.Sarkar, Phase detector for data-clock recovery circuit, Electronics Letters, 2002(38): 161~163
    [23]Thomas F. Carruths, and Janet W. Lou, 80- to 10-Gb/s clock recoelectro-optic phase-locked loop, ECOC’01: 284~285
    [24]D. M. Patrick, R. J. Manning, 20 Gbit/s all-optical clock recovery ussemiconductor nonlinearity, Electronics Letters, 2000(37): 151~152
    [25]Dong Hwan Kim, Sang Hyuck Kim, et al., Ultrahigh-speed clock recovery with opticaamplifier, Optical communications, 2000(182): 329~334
    [26]O.Kamatani, S. Kawanishi, Prescaled timing extraction from 400 Gb/s optical signal uPhotonics Technology Letters, IEEE Volume 8, Issue 8, Aug. 1996 Page(s):1094–1096
    [27]Cisternino. F,GiraOTDM systems, Optical Communication, 1998. 24th European Conference on Volume 1, 20-24 Sept. 1998 Page(s):477 - 478 vol.1
    [28]M. Shrane, all-optical clock recovery using mode-locked diode laser,OFC’01, MG2-1~MG2-2
    [29]T. Ohno, K. Sato, T. Shi160Gbit/s data using regenerative mode-locked semiconductor laser, Electronics Letters, 2003, Vol. 39, No. 5, 453-455
    [30]T. Ohno, K. Sato, R. Ira, et al., Recovery of 160GHz optical clock from 160Gbit/s data stream using mode-locked laser diode, Electronic265-267
    [31]H. Kurita,T, Shimizu, et al., All optical clock extraction at bit rates up to 80 Gb/s with mon
    [32]R. Ludwig, A. Ehrhardt, Turn-key-ready wavelength repetition rate and pulse width tunable femotosecLett.,1995,31:1165-1167
    [33]H. Yokoyama, Y. Hashimoto, H. Kurita, et al., Two-stage all-optical sub harmonic clock re
    [34]B. Sartorius,3R All-Optical Signal Regeneration, ECOC 2001
    [35]P. Rees, P. McEvoy, Valle, et al., Theoretical analysis of optical clock extraction using a self-pulsating laser diode, IEEE Journal of Quantum Electronics, 1999(35): 221-227 ohrle, et al., All optical clock recovery at 80GHz onics Lett.2000, ntinuous frequency tuning in self-pulsation ecovery using three section pled DFB laser and semiconductor optical amplifier, Electronics LA, IEEE Photonics Technology 动再生锁模光纤激光器同,光电子·激光讯 2002.08 ~707 2001,Vol. 13, No. 5
    [36]B. Satorius, C. Bornholdt, O. Brox, et al., All-optical clock recovery module based on self-pulsating DFB laser, Electronics Letters, 1998(34): 1664~1665
    [37]C. Bornholdt, S. Bauer, M. Mand beyond, ECOC’01 Th. F. 1
    [38]C. Bornholdt, B. Sartorius, S.Schelhase, M. Mohrle and S. Bauer: self-pulsating DFB laser for all-optical clock recovery at 40Gbit/s, Electr36:327-328
    [39]Sartorius.B, Feiste.U, 12-64 GHz co1.55um multi-quantum well DFB lasers IEEE Topics Quantum Electron,1995, 535-538
    [40]Sartorius.B, Feiste.U, Self-pulsation at more than 20GHz in InGaAsP/InP DFB lasers Conf. Dig.13th IEEE int. Semicond. Laser Conf. 1992, 329-330
    [41]O. Brox, S. Bauer, C. Bobbert, et al., 160 to 40Gb/s demultiplexing using a self-pulsating laser based clock recovery, OFC 2003, Vol. 1, 105-106
    [42]Mao, W.; Wang, X.; et al., 40 Gb/s all-optical clock rself-pulsation DFB lasers, Optical Fiber Communication Conference, 2000 , Volume: 3, 2000 Page(s): 79 -80 vol.3
    [43]W. Mao, Y. Li, M. Al-Mumin, et al, 40Gbit/s all optical clock recovery using two-section gain-couLetters, 2001(37): 1302-1303
    [44]A dams, L.E., Kintzer, E.S., Fujimoto, et al., All-optical timing extraction at 40 GH using a mode-locked figure-eight laser with an SLetter, 2000(13):1759~1761
    [45]Chongjin Xie, Peida Ye and Jintong Lin, Four-wave missing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation, IEEE photonics Technology Letters, 1999, 11:560-562
    [46]于晋龙,马晓红等,2.5GHz 主1999,10(4).-292-293
    [47]华颖,于晋龙等,基于注入锁模光纤激光器的 OTDM 时钟提取技术实验研究,高技术通
    [48]K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, et al., 30 Gb/s all-optical clock recovery circuit, IEEE Photonics Technology Letters, 2000(12): 705
    [49]C. Schubert, S. Diez, J. Berger, et al., 160-Gb/s all-Optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer (GT-UNI), IEEE Photonics Technology Letters, May
    [50]L.E. Adams, E.S. Kintzer, J.G. Fujimoto, Performance and scalability of an all-optical clock recovery figure-eight laser, IEEE PhotonicsTechnology Letters, 1996, 8:55-57 57
    [51]Lijun Wang, Yikai Su, Agarwal, et al, All-optical laser synchronization and clock recovery based on dynamic parametric Gain modulation, OFC’2000, ThP6-1
    [52]YiKai Su, Lijun Wang, Anjali Agarwal,et al, Wavelength-tunable all-optical clock recovery using a giber optic parametric oscillator, optical communications, 2000(184):151-156
    [53]Jinno. M,Matsumoto. T,et al., All-optical timing extraction using an optical tank circuit, Photonics Technology Letters, IEEE Volume 2, Issue 3, March 1990 ptical clock extraction using a semiconductor assisted Fabry-Perot filter, iko Jinno, Takao Matsumoto., Optical tank circuits used for all-optical 02 oubavlis, et al., 1Page(s):203 - 204
    [54]Giampiero Contestabile, Antonio D'Errico, Marco Presi, and Ernesto Ciaramella, 40GHz all-oIEEE Photon. Technol. Lett., Vol. 16, No. 16, 2004, 2523-2525
    [55]李亚男,40Gbit/s 全光 3R 再生系统的研究,博士学位论文,天津大学,2005
    [56]Masahtiming recovery Quantum Electronics, IEEE Journal of Volume 28, Issue 4, April 1992 Page(s):895–900
    [57]C. Bintjas, K. Yiannopoulos, N. Pleros, et al., Clock recovery circuit for optical packets, IEEE Photon. Technol. Lett., vol. 14, pp. 1363–1365, Sept. 20
    [58]B.Mikkelsen, Optical amplifiers and their system applications, Ph.D Thesis, Technical university of Denmark, 1995, LD-114
    [59]K. Vlachos, K. Zoiros, T. H 0×30GHz pulse train generation from los,et al, 30Gb/s all-optical clock recovery circuit, iconductor Laser Amplifiers, IEEE J. of Quantum Electronics, Lowell L. Scheiner, Fiber-Optic Communications Technology, Analysis of l. 145, No.1, February semiconductor amplifier fiber ring laser, IEEE photonics Techno. Lett., 2000, 12:25-27
    [60]K.Vlachos,G.TheophilopouIEEE photonics Techonol. Lett., 2000, 12:705-707
    [61]Gerd Keiser Optical Fiber Communications third edition, McGraw-Hill: 2000, 426~430
    [62]通信工程新技术编委会,光通信技术手册 北京邮电大学出版社,2002,6
    [63]M.J. O’Mahoney, Semiconductor Laser Optical Amplifier for use in Fiber Systems, Journal of Lightwave Technology, Vol. 6, N 4, April 1988.
    [64]G.P. Agrawal and N.A. Olsson, Self-Phase Modulation and Spectral Broadening of optical pulses in semVol. QE-25, N 11, pp. 2297-2306, November 1989
    [65]Djafar K. Mybnaev, Prentice Hall: 2001, 523~541
    [66]M. Usami, R.Inohara, K. Nishimura and M. Tsurusawa, ExperimentalCross Gain Modulation and Cross Phase Modulation in SOA with Assist Light Injection 2002 IEEE/LEOS Summer Topi15-17 July 2002 Page (s):TuK1-21 - TuK1-22
    [67]J. M. Tang, P. S. Spencer, K. A. Shore, Analysis of operation characteristics of TOADs using gain saturation and nonlinear gain in SOAs, IEE Proc.- Poelectron, 1998, Vo
    [68]Kristof Obermann, et al., Performance analysis of wavelength conversation based on cross-gain modulation in semiconductor-optical amplifiers, Lightwave Tech., ing, Lightwave Tech., 1999(16): 2095~2108 tt., 1998(10): 522~524 tion noise by using 2.4 1998(16): 78~85
    [69]S. L. Dannielsen, P. B. Hausen, K. E. Stubkjier, Wavelength conversation in optical packet switch
    [70]Trefor J. Morgan, Rodney S. Tucker, Gideon Yoffe, Passive optical equalization of wavelength based on four-wave mixing in semiconductor optical amplifiers, IEEE Photonics Tech. Le
    [71]A. Mecozzi, S. Scotti, Four wave mixing in traveling wave semiconductor amplifiers, IEEE Quantum Electron 1995(31): 689~699
    [72]Kenji Sato , Hiromu Toba. Reduction of mode partisemiconductor optical amplifiers. QUANTUM ELECTRONICS, VOL. 7, NO. 2, March/April 2001
    [73]J.H. Franz, V.K. Jain 著,徐宏杰,何珺,蒋剑良 等译,光通信器件与系统,电子工业出版社:200
    [74]周正,周惠林,通信工程新技术实用手册光通信技术分册,北京邮电大学出版社:2002 年
    [75]吴大正,杨林耀,张永瑞著,信号与线性系统分析,高等教育出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700