磁敏感加权成像(SWI)在脑缺血中的初步实验研究及临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.初步探讨磁敏感加权成像在大鼠超急性脑缺血中的价值。
     2.对比磁敏感加权成像与灌注加权成像在大鼠超急性脑缺血中的应用,评价磁敏感加权成像对缺血半暗带的检测作用。
     3.应用磁敏感加权成像评价慢性大脑中动脉狭窄或闭塞患者的脑氧代谢。
     4.联合应用磁敏感加权成像及弥散加权成像检测急性期脑梗死半暗带,探讨脑梗死缺血半暗带的存在规律。
     材料与方法:
     1.健康雄性Wistar大鼠40只,采用线栓法制备超急性期MCAO模型。模型制作成功后20分钟及2.5小时分别行SWI及DWI检查,经过后处理得到校正后相位图及ADC图,参照缺血2.5小时DWI及ADC图,分别测量梗死核心区、周围区及对侧镜像区的相位弧度值及SWI信号值,并比较不同兴趣区之间以及相同兴趣区两个时间点之间的相位弧度值及SWI信号值。
     2.健康雄性Wistar大鼠20只,MCAO模型制作成功后2.5小时分别行SWI、PWI及DWI检查,分别测量SWI异常信号区、SWI梗死核心相对正常信号区占同层全脑面积相对百分比,以及PWI灌注减低区、DWI高信号区占同层全脑面积相对百分比,并比较SWI异常信号区与PWI灌注减低区、SWI梗死核心相对正常信号区与DWI高信号区、SWI低信号区及PWI/DWI不匹配区的面积百分比。
     3.单侧大脑中动脉狭窄或重度闭塞患者11例及性别、年龄相匹配的健康对照组10例,分别行TOF-MRA及SWI检查,测量并比较患者病变侧、健侧以及对照组两侧脑组织的相位弧度值及SWI信号值。
     4.发病6-24小时的急性脑梗死患者20例,分别行SWI及DWI检查,参照DWI及ADC图,测量梗死核心周围区脑组织的相位弧度值及SWI信号值,确定SWI半暗带的存在情况。
     结果:
     1.大鼠大脑中动脉栓塞20分钟梗死核心区、核心周围区及对侧镜像区相位弧度平均值分别为-0.05060±0.03201,0.04508±0.0205l,-0.03791±0.01735,0.04315±0.01740,之间存在显著差异(F=164.341,P=0.000);SWI信号平均值分别为201.66±59.86,289.72±55.51,203.48±47.19,304.43±79.91,亦存在显著性差异(F=25.250,P=0.000);梗死核心区、核心周围区的相位弧度值及SWI信号值均低于对侧镜像区脑组织(P=0.000),但梗死核心区、核心周围区之间无显著性差异(P值分别为0.279,0.906)。栓塞2.5小时梗死核心区、核心周围区及对侧镜像区相位弧度平均值分别为0.04681±0.01689,0.04287±0.01906,-0.03866±0.01691,0.04596±0.01784,之间存在显著差异(F=180.038,P=0.000);SWI信号平均值分别为293.18±73.22,284.48±39.89,200.36±43.08,308.14±59.53,亦存在显著性差异(F=24.323,P=0.000);梗死核心周围区的相位弧度值及SWI信号值均低于梗死核心区及对侧镜像区脑组织(P=0.000),但梗死核心区与对侧镜像区脑组织之间无显著性差异(P>0.05)。
     2.大鼠大脑中动脉栓塞2.5小时PWI灌注减低区与SWI异常信号区面积百分比分别为35.75±9.44(%)、35.56±8.07(%),二者之间无显著性差异(t=0.226,P=0.824)。DWI高信号区与SWI梗死核心相对正常信号区面积百分比分别为29.15±8.57(%)、26.68±6.53(%),二者之间亦无显著性差异(t=2.007,P=0.062)。PWI灌注减低区与SWI异常信号区面积百分比之间相关性较强(Pearson相关系数为0.932,P=0.000);ADC减低区与SWI梗死核心相对正常信号区面积百分比之间亦具有明显的相关性(Pearson相关系数为0.807,P=0.000)。
     3.单侧大脑中动脉重度狭窄或闭塞患者病变侧、健侧、正常对照组左侧及右侧的相位弧度平均值分别为0.00600±0.00210,0.01166±0.00352,0.01208±0.00286,0.01051±0.00230(F=13.476,P=0.000).SWI信号平均值分别为194.29±28.08,238.33±24.76,245.05±8.76,233.06±11.66(F=13.360.P=0.000),均存在显著性差异。病变侧相位弧度值及SWI信号值均低于健侧及正常对照组(P<0.05)。
     4.20例脑梗死患者中基底节、丘脑区病灶6个,脑叶病灶14个,其中基底节、丘脑6病灶均未见存在SWI半暗带;脑叶病灶有5例出现SWI半暗带,其中直径<2.0 cm病灶2个,直径≥2.0 cm病灶3个,其发病时间依次为7、10、10、15、19小时。
     结论:
     1.SWI能在大鼠大脑中动脉栓塞20分钟即可显示脑缺血,表现为SWI信号及相位弧度值降低。随着缺血时间的延长,缺血核心区在SWI上又升高接近正常脑组织信号,预示不可逆梗死。
     2.SWI能间接反映超急性脑梗死缺血半暗带血流变化及代谢情况,可以代替MR灌注成像用于脑缺血半暗带的检测。
     3.SWI能间接反映慢性缺血脑组织OEF的升高及CBF的降低,可代替CT或MR灌注成像评价大脑中动脉狭窄或闭塞患者缺血范围及缺血程度,指导临床治疗。
     4.缺血半暗带没有严格的时间窗,其存在一定的个体差异,发病6-24小时的脑梗死患者中有仍有25%左右存在缺血半暗带。磁敏感加权成像联合弥散加权成像能敏感地检测到脑缺血半暗带,为临床实施个体化溶栓方案提供有力的影像学证据。
Objectives:
     1.To investigate the value of susceptibility weighted imaging in the rat hyperacute cerebral ischemia.
     2.To compare the application of susceptibility weighted imaging and perfusion weighted imaging in the rat hyperacute cerebral ischemia,and to evaluate the usefulness of susceptibility weighted imaging in the detection of ischemic penumbra.
     3.To evaluate the brain oxygen metabolism in patients of chronic middle cerebral artery stenosis or occlusion with susceptibility weighted imaging.
     4.To detect the ischemic penumbra of acute cerebral infarction with susceptibility weighted imaging and diffusion weighted imaging,and to explore the existing duration of ischemic penumbra.
     Materials and Methods:
     1.40 male healthy Wistar rats were enrolled in this study.The rat model of middle cerebral artery occlusion(MCAO)was performed according to the intraluminal filament technique.Susceptibility weighted imaging and diffusion weighted imaging were performed at 20 minutes and 2.5 hours respectively after MCAO model was successfully accomplished,and corrected phase images and ADC map were acquired through postprocessing.According to the DWI and ADC map of 2.5 hours after occlusion,the phase radians and SWI signal intensity values of the infarction core,peri-core area,and counterparts in the contralateral hemisphere were measured respectively,the phase radians and SWI signal intensity values in different ROIs and same ROI in different times were compared.
     2.20 male healthy Wistar rats were enrolled in this study.Susceptibility weighted imaging,perfusion weighted imaging and diffusion weighted imaging were performed at 2.5 hours after MCAO model was successfully accomplished.The area percent of abnormal signal and the core showed relative normal signal on SWI,the hypoperfusion area percent on PWI and hyperintensity area percent on DWI versus the whole brain area in the same slice were measured respectively. Finally the area percent of abnormal signal on SWI and the hypoperfusion area percent on PWI,the area percent of the core showed relative normal signal on SWI and the hyperintensity area percent on DWI,the hypointensity area percent on SWI and PWI/DWI mismatch area percent were compared and correlated respectively.
     3.11 patients with severe unilateral middle cerebral artery(MCA)chronic stenosis or occlusion and 10 healthy controls with matched gender and age were performed TOF-MRA and susceptibility weighted imaging,the phase radians and SWI signal intensity values of lesion side,normal side of patients and the two sides of controls were measured and compared.
     4.20 patients with acute cerebral infarction within 6-24 hours after onset of clinical symptoms were underwent susceptibility weighted imaging and diffusion weighted imaging,according to the DWI and ADC map,the phase radians and SWI signal intensity values of brain tissue around the infarction core were measured,to identify the presence of ischemic penumbra.
     Results:
     1.20 minutes after occlusion of MCA in rats,the phase radians of the infarction core,the peri-core area,and the counterparts in the contralateral hemisphere were -0.05060±0.03201,0.04508±0.02051,-0.03791±0.01735,0.04315±0.01740 respectively,the difference was significant(F=164.341,P=0.000).and the SWI signal intensity values were 201.66±59.86,289.72±55.51,203.48±47.19, 304.43±79.91 respectively,the difference was also significant(F=25.250, P=0.000).The phase radians and SWI signal intensity values of the infarction core,the peri-core area were lower than that of the counterparts in the contralateral hemisphere(P=0.000),but the infarction core and the peri-core area had no significant difference(P values were 0.279,0.906 respectively).2.5 hours after occlusion of MCA,the phase radians of the infarction core,the peri-core area,and the counterparts in the contralateral hemisphere were 0.04681±0.01689,0.04287±0.01906,-0.03866±0.01691,0.04596±0.01784 respectively,the difference was significant(F=180.038,P=0.000).and the SWI signal intensity values were 293.18±73.22,284.48±39.89,200.36±43.08, 308.14±59.53 respectively,the difference was also significant(F=24.323, P=0.000).The phase radians and SWI signal intensity values of the peri-core area were lower than that of infarction core and counterparts in the contralateral hemisphere(P=0.000),but that of infarction core and counterparts in the contralateral hemisphere had no significant difference(P>0.05).
     2.2.5 hours after occlusion of MCA in rats,the hypoperfusion area percent on PWI and the area percent of abnormal signal on SWI were 35.75±9.44(%)、35.56±8.07(%)respectively,there was no significant difference(t=0.226,P=0.824). The hyperintensity area percent on DWI and the area percent of the core showed relative normal signal on SWI were 29.15±8.57(%)、26.68±6.53(%),there was also no significant difference(t=2.007,P=0.062).The area percent of abnormal signal on SWI and the hypoperfusion area percent on PWI were well correlated(Pearson correlate coefficient is 0.932,P=0.000).The hyperintensity area percent on DWI and the area percent of the core showed relative normal signal on SWI were also well correlated(Pearson correlate coefficient is 0.807, P=0.000).
     3.The phase radians of lesion side,normal side of patients and the two sides of controls were 0.00600±0.00210,0.01166±0.00352,0.01208±0.00286, 0.01051±0.00230(F=13.476,P=0.000),and the SWI signal intensity values were 194.29±28.08,238.33±24.76,245.05±8.76,233.06±11.66(F=13.360, P=0.000),the difference were all significant.The phase radians and SWI signal intensity values of lesion side were all lower than that of normal side and two sides of controls(P<0.05).
     4.In the 20 patients with acute cerebral infarction,6 lesions located at basal ganglia and hypothalamus region,14 lesions located at lobes.All the 6 lesions located at basal ganglia and hypothalamus region had no SWI penumbra,while 5 lesions at lobes had SWI penumbra,2 of the 5 lesions were smaller than 2.0cm,and other 3 lesions were equal to or larger than 2.0cm,the time after onset of clinical symptoms were 7、10、10、15、19 hours respectively.
     Conclusions:
     1.SWI can detect cerebral ischemia in rat as early as 20 minutes after occlusion of MCA,which demonstrate as decrease of the signal on SWI and phase radian. With the development of the ischemia,the signal of the infarction core may increase to relative normal signal on SWI,which signify irreversible infarction.
     2.SWI can reflect the hemodynamics and metabolism of ischemic penumbra in hyperacute infarction inderectly,so may substitute for MR perfusion weighted imaging to detect cerebral ischemic penumbra.
     3.SWI can reflect the increase of OEF and decrease of CBF in chronic cerebral ischemia indirectly,may substitute for CT or MR perfusion to evaluate the cerebral ischemia volume and extent in patients with MCA stenosis or occlusion, and guide to make a therapeutic plan.
     4.There is no absolute time window of ischemic penumbra,it's duration has individual differences.Ischemic penumbra can be detected in about 25%of patients with cerebral infarction within 6-24 hours after onset.SWI combined with DWI can detect ischemic penumbra sensitively and provide convincing imaging evidence for individual thrombolytic protocol.
引文
1.Moseley ME,Cohen Y,Mintorovitch J,et al.Early detection of regional cerebral ischemia in cats:comparison of diffusion-and T2-weighted MRI and spectroscopy.Magn Reson Med,1990,14:330-346.
    2.van Gelderen P,de Vleeschouwer MHM,DesPres D,Pekar J,van Zijl PCM,Moonen CTW.Water diffusion and acute stroke.Magn Reson Med,1994,31:154-163.
    3.Bryan RN.Diffusion-weighted imaging of stroke:a brief follow-up.AJNR Am J Neuroradiol,1998,19(6):1003-1004.
    4.Lovblad KO.Clinical experience with diffusion-weighted MR in patients with acute stroke.AJNR Am J Neuroradiol,1998,19(6):1061-1066.
    5.Schaefer PW.Quantitative assessment of core/penumbra mismatch in acute stroke:CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged.Stroke,2008,39(11):2986-2992.
    6.Wintermark M.Acute stroke imaging research roadmap.Stroke,2008,39(5):1621-1628.
    7.Haacke EM,Xu Y,Cheng YC,et al.Susceptibility weighted imaging(SWI).Magn Reson Med,2004,52(3):612-618.
    8.Sehgal V;Delproposto Z;Haacke EM;et al.Clinical applications of neuroimaging with susceptibility-weighted imaging.J Magn Reson Imaging,2005,22(4):439-450.
    9.ZeaLonga E,Weinstein PR,Carison S,et al.Reversible middle cerebral artery occlusion without cranioectomy in rats.Stroke,1989;20:84-91.
    10.De Ryck M,Verhoye M,Van der Linden AM.Diffusion-weighted MRI of infarct growth in a rat photochemical stroke model:effect of lubeluzole.Neuropharmacology,2000,39:691-670.
    11.Takamatsu H, Tsukad H, Kakiuchi T, et al.Changes in local cerebral blood flow in photo chemically induced thrombotic occlusion model in rats.Eur J Pharmacol, 2000,398:375-379.
    12.Bardutzky J.Differences in ischemic lesion evolution in different rat strains using diffusion and perfusion imaging.Stroke, 2005,36(9):2000-2005.
    13.Nagel S.Volumetric evaluation of the ischemic lesion size with serial MRI in a transient MCAO model of the rat: comparison of DWI and T1WI.Brain Res Brain Res Protoc, 2004,12(3):172-179.
    14.Virley D, Hadingham SJ, Roberts JC.A new primate model of focal stroke: endothelin-1 -induced middle cerebral artery occlusion and reperfusion in the common marmoset.J Cereb Blood Flow Metab, 2004,24(1):24-41.
    15.Wycliffe ND, Choe J, Holshouser B, et al.Reliability in Detection of Hemorrhage in Acute Stroke by a New Three-Dimensional Gradient Recalled Echo Susceptibility-Weighted Imaging Technique Compared to Computed Tomography: A Retrospective Study.J Magn Reson Imaging, 2004,20:372-377.
    16.Thomas B, Somasundaram S, Thamburaj K, et al.Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review.Neuroradiology.2008,50(2):105-116.
    17.Harder SL, Hopp KM, Ward H, et al.Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging.AJNR.2008,29(1):176-183.
    18.Lee BC, Vo KD, Kido DK, et al.MR high-resolution blood oxygenation level dependent venography of occult (low-flow) vascular lesions.AJNR.1999,20:1239-42.
    19.Fiebach JB,Schellinger PDJansen 0,et al.CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke.Stroke, 2002,33(9):2206-2210.
    20.Roh JK,Kang DW,Lee SH, et al.Significance of acute multiple brain infarction on diffusion-weighted imaging.Stroke,2000,31 (3):688-694.
    21.Moseley ME,Kucharxczyk J,Mintorovitch J,et al.Diffusion-weighted MR imaging of acute stroke:correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats.AJNR,1990,11:423-429.
    22.Frykholm P.A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model.Acta Neurol Scand,2000,102(1):18-26.
    23.Heiss WD.Best measure of ischemic penumbra:positron emission tomography.Stroke,2003,34(10):2534-2535.
    24.Touzani O.The ischaemic penumbra.Curr Opin Neurol.2001,14(1):83-88.
    25.肖小华,黄如训.缺血半暗带的研究进展.国外医学脑血管疾病分册,1999,7(5):265-268.
    26.高宗恩,苏克江,冯兰玲.缺血半暗带的检测,MRI还是PET?国外医学脑血管疾病分册,2005,13(10):793-795.
    27.卢洁,李坤成.MR脑灌注与弥散加权成像.中国医学影像技术,2002,18(10):1083-1085.
    28.满晓,冷珍璞.CT灌注成像在脑缺血中的应用进展.国外医学脑血管疾病分册,2002,3(2):113-115.
    1.Higashida RT,Furlan AJ.Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.Stroke,2003,34(8):e109-137.
    2.Touzani O.The ischaemic penumbra.Curr Opin Neurol,2001,14(1):83-88.
    3.Takasawa M.How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET.Stroke,2008,39(3):870-877.
    4.Schaefer PW,Barak ER,Kamalian S,et al.Quantitative assessment of core/penumbra mismatch in acute stroke:CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged.Stroke,2008,39(11):2986-2992.
    5.Rohl L,Ostergaard L,Simonsen CZ,et al.Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient.Stroke,2001,32(5):1140-1146.
    6.Heiss WD.Ischemia penumbra:evidence from functional imaging in man.J Cereb Blood Flow Metab,2000,20(9):1276-1293.
    7.Astrup J,Symon L,Branston NM,et al.Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia.Stroke,1977,8(1):51-57.
    8.呼日勒,张春雨,牛广明.急性脑血管病脑缺血半暗带的研究进展.实用医学 影像杂志,2004,5(3):173-174.
    9.林东虎,孙德津.MR扩散及灌注成像对超急性期脑梗死缺血半暗带的研究进展.放射学实践,2005,20(5):433-435.
    10.高万军.急性脑缺血半暗带的影像学研究进展.国外医学临床放射学分册,2006,29(2):94-97.
    11.Read SJ,Hirano T,Abbott DF,et al,Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole.Neurology,1998,51(6):1617-1621.
    12.Baron JC.Mapping the ischaemic penumbra with PET:implications for acute stroke treatment.Cerebrovasc Dis,1999,9(4):193-201.
    13.Frykholm P,Andersson JL,Valtysson J,et al.A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model.Acta Neurol Stand,2000,102(1 ):18-26.
    14.Saita K,Chen M,Spratt NJ,et al.Imaging the ischemic penumbra with 18F-fluoromisonidazole in a rat model of ischemic stroke.Stroke,2004,35(4):975-980.
    15.Rohl L,Ostergaard L,Simonsen CZ,et al.Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient.Stroke,2001,32(5):1140-1146.
    16.Oppenheim C,Grandin C,Samson Y,et al.Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke? Stroke,2001,32(11):2486-2491.
    17.Lee SK,Kim DI,Jeong EK,et al.Temporal changes in reversible cerebral ischemia on perfusion-and diffusion-weighted magnetic resonance imaging:the value of relative cerebral blood volume maps.Neuroradiology,2002,44(2):103-108.
    18.Wintermark M,Reichhart M,Cuisenaire O,et al.Comparison of admission perfusion computed tomography and qualitative diffusion-and perfusion-weighted magnetic resonance imaging in acute stroke patients.Stroke,2002,33(8):2025-2031.
    19.Davis SM,Donnan GA.Advances in penumbra imaging with MR.Cerebrovasc Dis.2004,17(S3):23-27.
    20.Chen F,Suzuki Y,Nagai N,et al.Rat cerebral ischemia induced with photochemical occlusion of proximal middle cerebral artery: a stroke model for MR imaging research.MAGMA, 2004, 17(3-6):103-108.
    21.Moon WJ,Na DG,Ryoo JW,et al.Assessment of tissue viability using diffusion- and perfusion-weighted MRI in hyperacute stroke.Korean J Radiol, 2005,6(2):75-81.
    22.Heidenreich JO,Hsu D,Wang G,et al.Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care.Acta Radiol, 2008,49(5):550-557.
    23.Frykholm R A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model.Acta Neurol Scand, 2000,102(1): 18-26.
    24.Heiss WD.Best measure of ischemic penumbra: positron emission tomography.Stroke, 2003, 34(10):2534-2535.
    25.Sehgal V; Delproposto Z; Haacke EM; et al.Clinical applications of neuroimaging with susceptibility-weighted imaging.J Magn Reson Imaging, 2005,22 (4):439-450.
    26.Thomas B, Somasundaram S, Thamburaj K, et al.Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review.Neuroradiology, 2008,50(2): 105-116.
    27.Geisler BS,Brandhoff F,Fiehler J,et al.Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients.Stroke, 2006,37(7):1778-1784
    28.Santosh C,Brennan D,McCabe C,et al.Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra.J Cereb Blood Flow Metab, 2008,28(10):1742-1753.
    29.Sun PZ,Zhou J,Sun W,et al.Detection of the ischemic penumbra using pH-weighted MRI.J Cereb Blood Flow Metab, 2007,27(6): 1129-1136.
    30.Sobesky J,Zaro Weber O,Lehnhardt FG,et al.Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke.Stroke,2005,36:980-985.
    1.Feldmann E,Daneault N,Kwan E,et al.Chinese-white differences in the distribution of occlusive cerebrovascular disease[J].Neurology,1990,40:1541-1545.
    2.Sacco RL,Kargman DE,Gu Q,et al.Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction:the Northern Manhattan Stroke Study[J].Stroke,1995,26:14-20.
    3.Wong KS,Huang YN,Gao S,et al.Intracranial stenosis in Chinese patients with acute stroke[J].Neurology,1998,50:812-813.
    4.Arenillas JF,Molina CA,Montaner J,et al.Progression and clinical recurrence of symptomatic middle cerebral artery stenosis:a long-term follow-up transcranial Doppler ultrasound study[J].Stroke,2001,32:2898-2904.
    5.Wong KS,Li H,Chan YL,et al.Use of transcranial Doppler ultrasound to predict outcome in patients with intracranial large-artery occlusive disease[J].Stroke,2000,31:2641-2647.
    6.Derdeyn CP,Powers WJ,Grubb RL Jr.Hemodynamic effects of middle cerebral artery stenosis and occlusion.AJNR Am J Neuroradiol.1998,19(8):1463-1469.
    7.Lehmann KJ , Neff KW, Ries S , et al.Spiral CT angiography in stenoses of the middle cerebral artery [J].Radiology , 1996,36: 845-849.
    8.ROTHER J , SCHWARTE A , WENTE K U , et al .Middle cerebral artery stenoses: assessment by magnetic resonance angiography and transcranial Doppler ultrasound [J].Cerebrovasc Dis,1994,4 (3):273-279.
    9.KOROGI Y, TA KAHASHI M , MABUCHI N , et al .Int racranial vascular stenosis and occlusion: diagnostic accuracy of there-dimensional, fourier transform, time of flight MR angiography[J].Radialogy, 1994,193 (1): 187-193.
    10.UEHARA T , MORI E , TABUCHI M , et al.Detection of occlusive lesions in int racranial arteries by t here dimensional time of flight magnetic resonance angiography [J].Cerebrovasc Dis,1994,4 (4) :365-370.
    11.Kajimoto K, Moriwaki H , Yamada N , et al.Cerebral hemodynamic evaluation using perfusion-weighted magnetic resonance imaging.Comparison with positron emission tomography values in chronic occlusive carotid disease[J].Stroke, 2003,34 (7): 1662-1666.
    12.Mukherjee P, Kang HC , Videen TO , et al.Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography[J].AJNR , 2003,24 (5) -.862-871.
    13.Cheung RT, Cheng PW, Lui WM, et al.Visualization of ischaemic penumbra using a computed tomography perfusion method.Cerebrovasc Dis.2003,15(3):182-187.
    14.Schaefer PW,Roccatagliata L,Ledezma C,et al.First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy.AJNR Am J Neuroradiol.2006,27(1):20-25.
    15.Jezzard P.Advances in perfusion MR imaging[J].Radiology, 1998, 2008(2) : 296-299.
    16.Chaves CJ , Staroselskaya I , Linfante I , et al.Patterns of perfusion-weighted imaging in patients with carotid artery occlusive disease[J].Arch Neurol ,2003 ,60(2) :237-242.
    17.Haacke EM,Xu Y,Cheng YC,et al.Susceptibility weighted imaging(SWI).Magn Reson Med.2004,52(3):612-618.
    18.Sehgal V:Delproposto Z:Haacke EM:et al.Clinical applications of neuroimaging with susceptibility-weighted imaging.J Magn Reson Imaging.2005,22(4):439-450.
    19.Thomas B,Somasundaram S,Thamburaj K,et al.Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review.Neuroradiology.2008,50(2):105-116.
    20.Derdeyn CP,Powers W J,Grubb RL.Hemodynamic Effects of Middle Cerebral Artery Stenosis and Occlusion.AJNR Am J Neuroradiol,1998,19:1463-1469.
    21.Geisler BS,Brandhoff F,Fiehler J,et al.Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients.Stroke.2006,37(7):1778-1784
    22.Santosh C,Brennan D,McCabe C,et al.Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra.J Cereb Blood Flow Metab.2008,28(10):1742-1753.
    1.陈海棠.中华神经科学会各类脑血管疾病诊断要点.中华神经科杂志,1996,29:379-380.
    2.Heiss WD.Ischemia penumbra:evidence from functional imaging in man.J Cereb Blood Flow Metab,2000,20(9):1276-1293.
    3.Touzani O,Roussel S,MacKezie ET.The ischemic penumbra[J].Curt Opin Neurol,2001,14:83-88.
    4.Bentley P.Pharmacological treatment of ischemic stroke.Pharmacol Ther,2005,108(3):334-352.
    5.Poncyljusz W.Treatment of acute ischemic brain infarction with the assistance of local intraarterial thrombolysis with recombinant tissue-type plasminogen activator.Acta Radiol,2007,48(7):774-780.
    6.Merino JG.Lesion volume change after treatment with tissue plasminogen activator can discriminate clinical responders from nonresponders.Stroke,2007,38(11):2919-2923.
    7.Majersik JJ.Population-based analysis of the impact of expanding the time window for acute stroke treatment.Stroke,2007,38(12):3213-3217.
    8.Marchal G,Serrati C,Rioux P,et al.PET imaging of cerebral perfusion and oxygen consumption in acute ischemia:relation to outcome.Lancet,1993,341(4):925-927.
    9.Read S J,Hirano T,Abbott DF,et al.The fate of hypoxic tissue on ~(18)F-fluoromisonidazole positron emission tomography after ischemic stroke.Ann Neurol,2000,48:228-235.
    10.Read S J,Hirano T,Abbott DF,et al.Identifying hypoxic tissue after acute ischemic stroke using PET and ~(18)F-fluoromisonidazole.Neurology,1998,51:1617-1621.
    11.魏秀娥,荣良群,许静,等.急性脑梗死缺血半暗带演变的磁共振成像研究.中国临床神经科学,2008,16(2):145-148.
    12.Frykholm P,Andersson JL,Valtysson J,et al.A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model.Acta Neurol Scand.2000,102(1):18-26.
    13.Heiss WD.Best measure of ischemic penumbra:positron emission tomography.Stroke,2003,34(10):2534-2535.
    14.Heiss WD.Ischemia penumbra:evidence from functional imaging in man.J Cereb Blood Flow Metab,2000,20(9):1276-1293.
    15.Touzani O.The ischaemic penumbra.Curr Opin Neurol,2001,14(1):83-88.
    16.Read SJ,Hirano T,Abbott DF,et al.Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole.Neurology,1998,51(6):1617-1621.
    17.Baron JC.Mapping the ischaemic penumbra with PET:implications for acute stroke treatment.Cerebrovasc Dis,1999,9(4):193-201.
    18.Haacke EM,Xu Y,Cheng YC,et al.Susceptibility weighted imaging(SWI).Magn Reson Med,2004,52(3):612-618.
    19.Sehgal V:Delproposto Z:Haacke EM;et al.Clinical applications of neuroimaging with susceptibility-weighted imaging.J Magn Reson Imaging,2005,22(4):439-450.
    20.Thomas B,Somasundaram S,Thamburaj K,et al.Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review.Neuroradiology.2008,50(2):105-116.
    21.Cho ZH.Observation of the lenticulostriate arteries in the human brain in vivo using 7.OT MR angiography.Stroke,2008,39(5):1604-1606.
    22.Tanriover N,Kawashima M,Rhoton AL Jr,et al.Microsurgical anatomy of the early branches of the middle cerebral artery:morphometric analysis and classification with angiographic correlation.J Neurosurg,2003;98:1277-1290.
    1.Haacke EM,Xu Y,Cheng YC,et al.Susceptibility weighted imaging(SWI).Magn Reson Med.2004,52(3):612-618.
    2.Sehgal V;Delproposto Z;Haacke EM;et al.Clinical applications of neuroimaging with susceptibility-weighted imaging.J Magn Reson Imaging.2005,22(4):439-450.
    3.Thomas B,Somasundaram S,Thamburaj K,et al.Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review.Neuroradiology.2008,50(2):105-116.
    4.Harder SL,Hopp KM,Ward H,et al.Mineralization of the deep gray matter with age:a retrospective review with susceptibility-weighted MR imaging.AJNR.2008,29(1):176-183.
    5.Lee BC,Vo KD,Kido DK,et al.MR high-resolution blood oxygenation level dependent venography of occult(low-flow)vascular lesions.AJNR.1999,20:1239-42.
    6.Hu J,Yu Y,Juhasz C,et al.MR susceptibility weighted imaging(SWI)complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome.J Magn Reson Imaging.2008,28(2):300-307.
    7.Fushimi Y,Miki Y,Togashi K,et al.A developmental venous anomaly presenting atypical findings on susceptibility-weighted imaging.AJNR Am J Neuroradiol.2008,29(7):E56.
    8.de Souza JM,Domingues RC,Cruz LC Jr,et al.Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations:a comparison with t2-weighted fast spin-echo and gradient-echo sequences.AJNR.2008,29(1):154-158.
    9.Yoshida Y,Terae S,Kudo K,et al.Capillary telangiectasia of the brain stem diagnosed by susceptibility-weighted imaging.J Comput Assist Tomogr.2006,30(6):980-982.
    10.Cooper AD,C ampeau NG;Meissner I,et al.Susceptibility-weighted imaging in familial cerebral cavernous malformations.Neurology.2008,71(5):382.
    11.Liu HL,Wai YY,Chen WS,et al.Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging.Ultrasound Med Biol.2008,34(4):598-606.
    12.Knight RA,Han Y,Nagaraja TN,et al.Temporal MRI assessment of intracerebral hemorrhage in rats.Stroke.2008,39(9):2596-2602.
    13.Gao T,Wang Y,Zhang Z,et al.Silent cerebral microbleeds on susceptibility- weighted imaging of patients with ischemic stroke and leukoaraiosis.Neurol Res.2008,30(3):272-276.
    14.Haacke EM; DelProposto ZS; Chaturvedi S, et al.Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging.AJNR Am J Neuroradiol.2007,28(2):316-317.
    15.Linfante I , Llinas RH , Caplan LR ,et al .MRI features of intracerebral hemorrhage within 2 hours from symptomonset [J].Stroke.1999,30:2263-2267.
    16.ldbaih A , Boukobza M, Crassard 1, et al.MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images[J].Stroke,2006,37:991-995.
    17.Hermier M, Nighoghossian N.Contribution of susceptibility-weighted imaging to acute stroke assessment.Stroke.2004,35(8): 1989-1994.
    18.Sehgal V, Delproposto Z, Haddar D, et al.Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses.J Magn Reson Imaging.2006,24(1):41-51
    19.Essig M Waschkies M, Wenz F, et al.Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results.Radiology.2003,228(1): 193-199.
    20.Law M, Young RJ, Babb JS, et al.Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.Radiology.2008,247(2):490-498.
    21.Tong KA, Ashwal S, Obenaus A, et al.Susceptibility-weighted MR imaging: a review of clinical applications in children.AJNR Am J Neuroradiol.2008,29(1):9-17.
    22.Sigmund GA, Tong KA, Nickerson JP, et al.Multimodality comparison of neuroimaging in pediatric traumatic brain injury.Pediatr Neurol.2007,36(4): 217- 226.
    23.Xu X, Wang Q, Zhang M.Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study.Neuroimage.2008, 40(1):35-42.
    24.Haacke EM,Ayaz M,Khan A,et al.Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs.abnormal iron content in the brain.J Magn Reson Imaging.2007,26(2):256-264.
    25.Sedlacik J,Helm K,Rauscher A,et al.Investigations on the effect of caffeine on cerebral venous vessel contrast by using susceptibility-weighted imaging(SWI)at 1.5,3 and 7 T.Neuroimage.2008,40(1):11-18.
    26.Sedlacik J,Kutschbach C,Rauscher A,et al.Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging(SWI).Neuroimage.2008,43(1):36-43.
    27.Jahan R.Hyperacute therapy of ischemic stroke:intravenous thrombolysis.Tech Vasc Interv Radiol.2005,8(2):81-86.
    28.Segura T,Calleja S,Jordan J.Recommendations and treatment strategies for the management of acute ischemic stroke.Expert Opin Pharmacother.2008,9(7):1071-1085.
    29.Molina CA,Saver JL.Extending reperfusion therapy for acute ischemic stroke:emerging pharmacological,mechanical,and imaging strategies.Stroke.2005,36(10):2311-2320.
    30.Astrup J,Symon L,Branston NM,et al.Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia.Stroke.1977,8(1):51-57.
    31.Cheung RT,Cheng PW,Lui WM,et al.Visualization of ischaemic penumbra using a computed tomography perfusion method.Cerebrovasc Dis.2003,15(3):182-187.
    32.Schaefer PW,Roccatagliata L,Ledezma C,et al.First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy.AJNR Am J Neuroradiol.2006,27(1):20-25.
    33.Murphy BD,Fox AJ,Lee DH,et al.Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements.Stroke.2006,37(7):1771-1777.
    34.Sparacia G,Iaia A,Assadi B,et al.Perfusion CT in acute stroke:predictive value of perfusion parameters in assessing tissue viability versus infarction.Radiol Med (Torino).2007,112(1):113-122.
    35.Schaefer PW,Barak ER,Kamalian S,et al.Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged.Stroke.2008,39(11): 2986-2992.
    36.Rohl L,Ostergaard L,Simonsen CZ,et al.Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient.Stroke.2001,32(5):1140-1146.
    37.Oppenheim C? Grandin C> Samson Y, et al.Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke? Stroke.2001V,32(11):2486-2491.
    38.Lee SK, Kim DI, Jeong EK,et al.Temporal changes in reversible cerebral ischemia on perfusion- and diffusion-weighted magnetic resonance imaging: the value of relative cerebral blood volume maps.Neuroradiology.2002,44(2): 103-108.
    39.Wintermark M,Reichhart M,Cuisenaire 0,et al.Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients.Stroke.2002,33(8):2025-2031.
    40.Davis SM,Donnan GA.Advances in penumbra imaging with MR.Cerebrovasc Dis.2004,17(S3):23-27.
    41.Chen F, Suzuki Y,Nagai N,et al.Rat cerebral ischemia induced with photochemical occlusion of proximal middle cerebral artery: a stroke model for MR imaging research.MAGMA.2004,17(3-6): 103-108.
    42.Moon WJ,Na DQRyoo JW,et al.Assessment of tissue viability using diffusion- and perfusion-weighted MRI in hyperacute stroke.Korean J Radiol.2005,6(2):75-81.
    43.Heidenreich JO,Hsu D,Wang G,et al.Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care.Acta Radiol.2008,49(5):550- 557.
    44.Read SJ,Hirano T,Abbott DF,et al.Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole.Neurology.1998,51(6):1617-1621.
    45.Baron JC.Mapping the ischaemic penumbra with PET:implications for acute stroke treatment.Cerebrovasc Dis.1999,9(4):193-201.
    46.Frykholm P,Andersson JL,Valtysson J,et al.A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model.Acta Neurol Scand.2000,102(1):18-26.
    47.Saita K,Chen M,Spratt NJ,et al.Imaging the ischemic penumbra with 18F-fluoromisonidazole in a rat model of ischemic stroke.Stroke.2004,35(4):975-980.
    48.van der Zijden JP,van der Toorn A,van der Marel K,et al.Longitudinal in vivo MRI of alterations in perilesional tissue after transient ischemic stroke in rats.Exp Neurol.2008,212(1):207-212.
    49.Saunders DE.MR spectroscopy in stroke.Br Med Bull.2000,56(2):334-345.
    50.Giroud M,Walker P,Guy F,Cerebral metabolism after transient ischemic attack.A 1H MR spectroscopy study.Neurol Res.1999,21(6):563-565.
    51.Geisler BS,Brandhoff F,Fiehler J,et al.Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients.Stroke.2006,37(7):1778-1784
    52.Santosh C,Brennan D,McCabe C,et al.Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra.J Cereb Blood Flow Metab.2008,28(10):1742-1753.
    53.Sun PZ,Zhou J,Sun W,et al.Detection of the ischemic penumbra using pH-weighted MRI.J Cereb Blood Flow Metab.2007,27(6):1129-1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700