石墨烯/纳米银杂化物的制备及在环氧树脂导电胶中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚丹物为蕋体添加泞电填料组成的聚丹物泞电泛合材料(如圩电胶)山于.H有加T-温度低、可连接线分辨率小及环境友好性等优点,成为丫新-?代理想的电子封装连接材料。但是它仍存在任电率低、力学剪切强度蒂等问题。如何形成更有效的疗电通路媛提髙拜电胶技电性的关键。石墨烯及纳米银等纳釆材料由干本身M.有的优异泞电性和力学性能在聚丹物玲电复丹材料方而W有广阔的应用前晃。本论文采用液相剥离法制备f高质虽石墨烯,并分別通过原位法和聚酰胺胺树状大分子功能化石墨烯制茶丫纳米银粒子/石墨烯杂化物及银纳米线拓墨烯杂化物;然后将其应用于环氧树脂导电胶中,用以增强其导电性和剪切强度t对其结构与性能进行了研?^
     采用1-氛乙基-2-乙基4甲基咪唑(2E4MZ-CN)为稳定剂,在低沸点乙腈溶剂中直接超声剥离无然石墨制备石墨烯。研宂了初始天然石墨浓度、2E4MZ-CN浓度及超声时间对石墨烯浓度的影响。AFM和Raaran衷明制备得到了单尾或少层石墨烯.TEM、XRD和XPS表明制谷的石墨烯保持原有品体结构,含氣结枸缺陷捏度较小。揭示了液相剥离石墨烯的作用机理主要是石墨烯与2E4MZ-CN中咪唑环之间的twi相互作用。在液相剥离石墨烯体系中直接加入银盐<乙酸银)与2E4MZ-CN形成络合物,在环氧树脂蓰体中原位生成纳米银粒子,分布在石墨烯表而。TEM、XRD和XPS表明丫纳浓银粒子的生成。垚石墨烯和乙酸银含量分別为环氣树脂的0.6^?和30w极时制崙的泞电胶体积电阻率达4.8E-5Q cm.微观界面结构表明原位生成的纳米银/石墨烯在环氧树脂I古1化时焓结在银片表而和银片之间,改变了原来银片被树脂阻阽的结构t从而提萵泞电性。
     采用端胺恶聚酰胺胺树状大分子迪过原位过程对液相剥离的石墨烯进行非共价功能化,得到无洧剂的聚酰胺胺功能化石墨烯流体。采用FTIR, NMR和EA表明丹成丫聚酰胺胺。TEM和XRD研宂丫聚酰胺胺功能化石墨烯的结抅形态t表明原位生成的聚酰胺胺可插尾在石墨烯片层间,对石墨烯起到稳上分敗的作用,且不会破坏K-结构。分析了聚酰胺胺与石墨烯之间相互作用,表明石墨烯与聚酰胺胺外端氧基或内层酰胺基等位罝发生作ML以聚酰胺胺同时力纳米银模帜和还原剂制备纳米锒粒子/石墨烯杂化物。研宂T聚酰胺胺还原纳米银拉子的作用机理,表明银离子々聚酰胺胺中各种胺单元可发生络合1形成的络丹物通过中低温加热处理没生还原,生成纳米银粒子修饰石墨烯。杂化结构形态研宂表明,纳米银粒子均匀分布在石墨烯片层表面t无游离在外的粒子,且粒径较平均。1.0、2.0和3.0代聚酰胺胺控制合成的纳米银粒子粒径分别为13nm,12nm和7nm,且在3.0代中纳米银粒子在石墨烯表面的分布密度最大。聚酰胺胺/石墨烯/纳米银复合物可固化环氧树脂,且体系出现两个或三个固化放热峰。当石墨烯和乙酸银含量分别为环氧树脂的0.6wt%和24wt%时制备的导电胶体积电阻率达3E-5Ω·cm,比空白样降低了83%。界面结构研究表明,石墨烯片层均匀分散在基体中,通过石墨烯表面纳米银的烧结将微米银片通过石墨烯桥接起来,形成良好的导电通路。
     采用边缘功能化法制备边缘接枝对氨基苯甲酰基功能化石墨烯,功能化反应只发生在石墨烯边缘处,对主体结构破坏程度小。以丙三醇为还原剂和溶剂,PVP稳定下制备了直径为50±10nm,长度为8±5μm的银纳米线,呈现网络结构。采用共沉降法制备了石墨烯与一维银纳米线杂化物。石墨烯与银纳米线通过两者之间相互作用可自动发生杂化组装过程,形成共沉淀。研究了杂化物的结构形态,表明石墨烯片层嵌入在纳米银线网络中,形成三维层状网络结构。研究了两者之间的相互作用发现,银纳米线网络对石墨烯起到阻隔分散的作用,同时石墨烯片层可有效防止纳米银线氧化。由于银纳米线在低渗流阈值下可形成较多的导电通路,同时石墨烯片层增强了银纳米线网络中线与线之间的连接,因此在杂化结构中形成了顺畅的三维导电网络。石墨烯的加入使得银纳米线网络强度增加,因此杂化物对导电胶的导电性和剪切强度具有明显的协同增强作用。边缘功能化石墨烯由于边缘处接枝基团可与环氧树脂形成共价界面结合,可有效实现填料与基体间负荷转移,对导电胶剪切强度具有更明显的增强效应。
Polymer-based conductive composites (eg. electrical conductive adhesives, ECAs)which consist of polymer and conductive fillers have been considered as the new promisingmaterial for electronic packaging because of the advantages of low processing temperature,fine pitch interconnect and environmental friendliness. However, there are some issues suchas low electrical conductivity and poor mechanical strength which still need to be solved. Theformation of effective conductive paths in the ECAs is the key to improve the electricalconductivity. The nanomaterials such as graphene and silver nanostructure have been widelyused in the conductive composites as result of the excellent electrical and mechanicalproperties. In the study, pristine graphene with high quality was prepared by liquid-phaseexfoliation method. Then the silver nanoparticle (AgNP)/graphene hybrid were prepared byin situ method and Poly(amidoamine)(PAMAM) dendrimer functionalization. Also, the silvernanowire (AgNW) decorated graphene hybrid was generated. The graphene/Ag hyrid wereused to reinforce the electrical conductivity and shear strength of epoxy-based ECAs. Both ofthe structure and properties of ECAs were investigated.
     Graphene was prepared by direct exfoliation of natural graphite in low boiling-pointsolvent acetonitrile when1-cyanoethyl-2-ethyl-4-methyl imidazole (2E4MZ-CN) was used asstabilizer. The influence of the initial concentration of natural graphite, the concentration of2E4MZ-CN and the sonication time on the concentration of graphene in the dispersions wasinvestigated. The result of AFM and Raman indicated that single and few-layer graphenesheets were obtained. TEM, XRD and XPS demonstrated that the original crystallinestructure was preserved and there was few structure defects. The exfoliation of graphene wasinduced by the π-π interaction between graphene and the imidazole ring in2E4MZ-CN. TheSilver acetate (AgAc) was added to the exfoliated graphene dispersion. The complex wasgenerated between the AgAc and2E4MZ-CN. The AgNPs were in situ generated in theepoxy matrix and evenly distributed on the surface of graphene. The formation of AgNPs wasconfirmed by TEM, XRD and XPS. The ECAs have a volume resistivity of4.8E-5Ω·cmwhen the content of graphene and AgAc was0.6wt%and30wt%. The investigation ofinterfacial structure of the composites indicated that the generated AgNP/graphene hybrid sintered with microscale Ag flakes. The original structure in which the Ag flakes wereisolated by epoxy resin was changed, leading to the improvement of electrical conductivity.
     The liquid-phased exfoliated graphene was non-covalently functionalized by PAMAMdendrimer with terminal amino-group. FTIR, NMR and EA confirmed the synthesis ofPAMAM. The investigation of the structure morphology of PAMAM functionalized grapheneby TEM and XRD revealed that the intercalation of in situ synthesized PAMAM amonggraphene layers stabilized the graphene sheets and the functionalization did not disturb thestructure of graphene. The interaction sites between graphene and PAMAM dendrimer lied interminal amino-groups and interior tertiary amines. The AgNP/graphene hybrid wasgenerated by using PAMAM as both of the stabilizer and reducing agent. The mechanisminvestigation of the reduction of AgNPs by PAMAM revealed that the complex was formedbetween Ag ions and the amine groups in PAMAM. Then the AgNPs were generated byheating treatment of the complex under low and middle temperature. The investigation of thestructure of the hybrid demonstrated that the AgNPs with average size were uniformlydistributed on the surface of graphene sheets and there was nearly no isolated AgNPs outsidethe graphene sheets. The particle size generated in1.0G,2.0G and3.0G was13nm,12nm and7nm, respectively. The density of AgNPs generated in3.0G PAMAM was the largest. ThePAMAM/graphene/AgNP composite can cure the epoxy resin. There were two or three mainexothermic peaks in the curing system. The volume resistivity of the ECAs filled with0.6wt%graphene and24wt%AgAc reached at3E-5Ω·cm, the decrease of83%comparedwith the control samples. The investigation of the interfacial structure revealed that thegraphene sheets were uniformly dispersed in the matrix and the microscale Ag flakes werejointed together by the connection of graphene sheets, thus leading to the formation ofeffective conductive paths.
     The edge-functionalized graphene with4-aminobenzoyl group located at the edges wasprepared by edge functionalization method. The AgNWs with diameters of50±10nm andlength of8±5μm were prepared by using glycerol as reducing agent and PVP as stabilizer.The AgNWs display network structure. The graphene/AgNW hybrid was prepared throughthe simultaneous sedimentation process when the graphene were combined with AgNWs. Theinteractions between graphene and AgNWs resulted in the occurrence of co-assembling process and the simultaneous sediments. The investigation of the hybrid structure revealedthat the graphene sheets embedded in the AgNW network, leading to formation ofthree-dimensional (3D) network structure. The interactions between the graphene andAgNWs were investigated. The graphene sheets were separated by the AgNW network andthe graphene sheets can prevent the AgNWs from oxidation. Since the AgNWs can providedmany conductive paths at low percolation threshold and the graphene sheets enhanced theinterfacial contacts between the AgNWs, there was effective3D electrical conductivenetwork formed in the hybrid structure. The graphene sheets also enhanced the strength ofAgNW network. Thus there were synergistic effects on the reinforcement of the electricalconductivity and shear strength of the ECAs. The covalent interfacial bonding between theamino-group at the edge of edge-functionalized graphene and epoxy resin leaded to theeffective load transfer from the matrix to fillers, thus significantly improving the shearstrength of ECAs.
引文
[1] Tummala R., Rytmaszewski E., Klopfenstein A. Microelectronics Packaging Handbook:Technology drivers[M]. Kluwer Academic Publishers,1997:1-128
    [2] Lau J. H., Wong C. P., Lee N.-C., et al. Electronics Manufacturing: with Lead-Free,Halogen-Free, and Conductive-Adhesive Materials. New York: Mcgraw-HillProfessional,2003:220
    [3] Tummala R. Fundamentals of microsystems packaging[M]. McGraw-Hill Professional,2001:44-80
    [4]谈发堂.银填充导电胶中表面与界面研究[D].武汉:华中科技大学,2006
    [5] Abtew M., Selvaduray G. Lead-free solders in microelectronics[J]. Materials Science&Engineering R-Reports,2000,27(5-6):95-141
    [6] Hwang J. Implementing lead-free Electronics[M]. McGraw-Hill Professional,2004:4-10
    [7] Li Y., Wong C.P. Recent advances of conductive adhesives as a lead-free alternative inelectronic packaging: Materials, processing, reliability and applications[J]. MaterialsScience&Engineering R-Reports,2006,51(1-3):1-35
    [8] Li Y., Yim M.J., Moon K.S., Wong C.P. Novel nanoscale conductive films withenhanced electrical performance and reliability for high performance fine pitchinterconnect[J]. IEEE Transactions on Advanced Packaging,2009,32(1):123-129
    [9] Li Y., Moon K.S., Wong C.P. Materials science. Electronics without lead[J]. Science,2005,308(5727):1419-1420
    [10] Chen D., Qiao X., Qiu X. Synthesis and electrical properties of uniform silvernanoparticles for electronic applications[J]. J Mater Sci,2009,44:1076-1081
    [11] Liu J. Conductive adhesives for electronics packaging[M]. Electrochemical PublicationsLtd.,1999:1-432
    [12] Li H.Y., Wong C.P. A reworkable epoxy resin for isotropically conductive adhesive[J].IEEE Transactions on Advanced Packaging,2004,27(1):165-172
    [13] Yim MJ., Li Y., Moon K.S., et al. Review of recent advances in electrically conductiveadhesive materials and technologies in electronic packaging [J]. Journal of AdhesionScience and Technology,2008,22(14):1593-1630
    [14] Li Y., Moon K.S., Wong C.P. Electrical Property Improvement of ElectricallyConductive Adhesives Through In-Situ Replacement by Short-Chain DifunctionalAcids[J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGINGTECHNOLOGIES,2006,29:173-178
    [15] Kirkpatrick S. Percolation and Conduction[J]. Reviews of Modern Physics,1973,45(4):574-588
    [16] Breeze A.J., Carter S.A., Alers G.B., et al.1/F Noise Through the Metal--NonmetalTransition in Percolating Composites[J]. Applied Physics Letters,2000,76(5):592-594
    [17] Ioselevich A.S., Kornyshev A.A. Approximate Symmetry Laws for Percolation inComplex Systems: Percolation in Polydisperse Composites[J]. Physical ReviewE(Statistical, Nonlinear, and Soft Matter Physics),2002,65(2):021301-11
    [18] Ruschau G.R., Yoshikawa S., Newnham R.E. Resistivities of conductive composites[J].J Appl Phys,1992,72(3):953-95
    [19]苏辉煌,钟新辉,詹国柱,余英丰导电胶的研究进展[J].粘结,2008,29(6):28-33
    [20]马振彦.高性能环氧导电银胶研究与开发[D].大连:大连海事大学,2009
    [21] Black J.L., Gyorffy B.L. Interaction of the Conduction Electrons with Tunneling Statesin Metallic Glasses[J]. Physical Review Letters,1978,41(23):1595-1598
    [22] Camporese D.S., Pulfrey D.L. The Effect of Metal Work Function on CurrentConduction in Metal-Insulator-Semiconductor Tunnel Junctions[J]. Journal of AppliedPhysics,1985,57(2):373-376
    [23] D Lu D., Tong Q.K., Wong C.P. Conductivity Mechanisms of Isotropic ConductiveAdhesives (ICA’s)[J]. IEEE Transactions on electronics packaging manufacturing,1999,22(3):223-227
    [24] Lai S.L., Guo J.Y., Petrova V., et al. Size-Dependent Melting Properties of Small TinParticles: Nanocalorimetric Measurements[J]. Phys. Rev. Lett.,1996,77,99-102
    [25] Alcoutlabi M., McKenna G.B. Effects of confinement on material behaviour at thenanometre size scale[J]. J. Phys.: Condens. Matter,2005,17:R461-R524
    [26] Ao Z., Zheng W., Jiang Q. Size effects on the Kauzmann temperature and relatedthermodynamic parameters of Ag nanoparticles[J]. Nanotechnology,2007,18:255706
    [27] Hendy S. A thermodynamic model for the melting of supported metal nanoparticles[J].Nanotechnology,2007,18:175703
    [28] Buffat P., Borel J.P. Size effect on the melting temperature of gold particles[J]. Phys.Rev. A: At., Mol., Opt. Phys.,1976,13:2287-2298
    [29] Nanda K.K., Sahu S.N., Behera S.N. Liquid-drop model for the size-dependent meltingof low-dimensional systems[J]. PHYSICAL REVIEW A,2002,66,013208-013215
    [30] Allen G.L., Bayles R.A., Gile W.W., et al. Small particle melting of pure metals[J].Thin Solid Films,1986,144:297-308
    [31] Qi W.H., Wang M.P. Size effect on the cohesive energy of nanoparticle[J]. J. Mater. Sci.Lett.,2002,21:1743-1745
    [32] Lee H.H., Chou K.S., Shih Z.W. Effect of nano-sized silver particles on the resistivityof polymeric conductive adhesives[J]. Int. J. Adhes. Adhes.,2005,25:437-441
    [33] Ye L., Lai Z., Liu J., et al. Effect of Ag particle size on electrical conductivity ofisotropically conductive adhesives[J]. IEEE Transactions on Electronics PackagingManufacturing1999,22(4):299-302
    [34] Jiang H.J., Moon K.S., Lu J.X., et al. Conductivity enhancement of nano silver-filledconductive adhesives by particle surface functionalization[J]. Journal of ElectronicMaterials,2005,34(11):1432-1439
    [35] Chen M.; Wang L.Y.; Han J.T.; et al. Preparation and study ofpolyacryamide-stabilized silver nanoparticles through a one-pot process[J]. J. Phys.Chem. B,2006,110:11224-11231
    [36] Washio I.; Xiong Y.; Yin Y.; et al. Reduction by the End Groups of Poly(vinylpyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of AgTriangular Nanoplates[J]. Adv. Mater.,2006,18:1745-1749
    [37] Zhou Y.; Yu S.H.; Wang C.Y.; et al. A Novel Ultraviolet Irradiation PhotoreductionTechnique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites[J]. Adv.Mater.,1999,11:850-852
    [38] Yamamoto M.; Nakamoto M. Novel preparation of monodispersed silver nanoparticlesvia amine adducts derived from insoluble silver myristate in tertiary alkylamine[J]. J.Mater. Chem.,2003,13:2064-2065
    [39] Yamamoto M.; Kashiwagi Y.; Nakamoto M. Size-controlled synthesis ofmonodispersed silver nanoparticles capped by long-chain alkyl carboxylates fromsilver carboxylate and tertiary amine[J]. Langmuir,2006,22:8581-8586
    [40] Dong T.Y.; Chen W.T.; Wang C.W.; et al. One-step synthesis of uniform silvernanoparticles capped by saturated decanoate: direct spray printing ink to form metallicsilver films[J]. Phys. Chem. Chem. Phys.,2009,11:6269-6275
    [41] Nguyen B.T.; Gautrot J.E.; Nguyen M.T.; et al. Nitrocellulose-stabilized silvernanoparticles as low conversion temperature precursors useful for inkjet printedelectronics[J]. J. Mater. Chem.2007,17:1725-1730
    [42] Perelaer J.; de Laat A.W.M.; Hendriks C.E.; et al. Inkjet-printed silver tracks: lowtemperature curing and thermal stability investigation[J]. J. Mater. Chem.,2008,18:3209-3215
    [43] Untereker D.; Lyu S.; Schley J.; et al. Maximum Conductivity of Packed Nanoparticlesand Their Polymer Composites[J]. ACS Appl.Mater. Interfaces,2009,1:97-101
    [44] Zhang R.W., Lin W., Moon K.S., et al. Fast Preparation of Printable Highly ConductivePolymer Nanocomposites by Thermal Decomposition of Silver Carboxylate andSintering of Silver Nanoparticles[J]. Acs Applied Materials&Interfaces,2010,2(9):2637-2645
    [45] Greer J.R.; Street R.A. Thermal cure effects on electrical performance of nanoparticlesilver inks[J]. Acta Mater.,2007,55:6345-6349
    [46] Jiang H.J., Moon K.S., Li Y., et al. Surface functionalized silver nanoparticles forultrahigh conductive polymer composites[J]. Chemistry of Materials,2006,18(13):2969-2973
    [47] Long Y., Wu J., Wang H., et al. Rapid sintering of silver nanoparticles in an electrolytesolution at room temperature and its application to fabricate conductive silver filmsusing polydopamine as adhesive layers[J]. J. Mater. Chem.,2011,21:4875-4881
    [48] Moon K.S., Dong H., Maric R., et al. Thermal behavior of silver nanoparticles forlow-temperature interconnect applications[J]. J. Electron. Mater.,2005,34:168-175
    [49] Jeong W.J., Nishikaw H., Itou D., et al. Electrical Characteristics of a New Class ofConductive Adhesive[J]. Mater. Trans.,2005,46:2276-2281
    [50] Zhang R.W., Moon K.S., Lin W., et al. Preparation of highly conductive polymernanocomposites by low temperature sintering of silver nanoparticles[J]. Journal ofMaterials Chemistry,2010,20(10):2018-2023
    [51] Gao H., Liu L., Liu K., et al. Preparation of highly conductive adhesives by in situgenerated and sintered silver nanoparticles during curing process[J]. J. Mater. Sci.:Mater. Electron.,2011,23:22-30
    [52] Lim H.S., Kim S.N., LimJ.A., et al. Low temperature-cured electrically conductivepastes for interconnection on electronic devices[J]. J. Mater. Chem.,2012,22:20529-20534
    [53] Amoli B.M., Gumfekar S., Hu A., et al. Thiocarboxylate functionalization of silvernanoparticles: effect of chain length on the electrical conductivity of nanoparticles andtheir polymer composites[J]. J. Mater. Chem.,2012,22:20048-20056
    [54] Li Y., Moon K.S., Whitman A., et al. Enhancement of electrical properties ofelectrically conductive adhesives (ECAs) by using novel aldehydes[J]. IEEETransactions on Components and Packaging Technologies,2006,29(4):758-763
    [55] Lu D., Wong C.P. Thermal decomposition of silver flake lubricants[J]. Journal ofThermal Analysis and Calorimetry,2000,61(1):3-12
    [56] Abe K., Hanada T., Yoshida Y., et al. Two-dimensional array of silver nanoparticles[J].Thin Solid Films,1998,327:524-527
    [57] Logvinenko V., Polunina O., Mikhailov Y., et al. Study of thermal decomposition ofsilver acetate[J]. Journal of Thermal Analysis and Calorimetry,2007,90(3):813-816
    [58] Yang Y., Matsubara S., Xiong L.M., et al. Solvothermal synthesis of multiple shapes ofsilver nanoparticles and their SERS properties[J]. Journal of Physical Chemistry C,2007,111(26):9095-9104
    [59] Panigrahi S., Praharaj S., Basu S., et al. Self-Assembly of Silver Nanoparticles:Synthesis, Stabilization, Optical Properties, and Application in Surface-EnhancedRaman Scattering[J]. The Journal of Physical Chemistry B,2006,110(27):13436-13444
    [60] Xia Y., Xiong Y.J., Lim B., et al. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie-InternationalEdition,2009,48(1):60-103
    [61] Navaladian S., Viswanathan B., Varadarajan T.K., et al. Microwave-assisted rapidsynthesis of anisotropic Ag nanoparticles by solid state transformation[J].Nanotechnology,2008,19(4):045603
    [62] Gao H., Liu L., Luo Y., Jia D. In-situ preparation of epoxy/silver nanocomposites bythermal decomposition of silver-imidazole complex[J]. Materials Letters,2011,65:3529-3532
    [63] Chen S., Liu K., Luo Y., et al. In situ preparation and sintering of silver nanoparticlesfor low-cost and highly reliable conductive adhesive[J]. International Journal ofAdhesion&Adhesives,2013,45:138-143
    [64] Yang C., Wong C.P., Yuen M.M.F. Printed electrically conductive composites:conductive filler designs and surface engineering[J]. J. Mater. Chem. C,2013,1:4052-4069
    [65] Karttunen M.; Ruuskanen P.; Pitkanen V.; et al. Electrically Conductive Metal PolymerNanocomposites for Electronics Applications[J]. J. Electron. Mater.,2008,37:951-954
    [66] Sandler J.K., Kirk W., Kinloch J.E., et al. Ultra-low Electrical Percolation Threshold inCarbon-Nanotube-Epoxy Composites[J]. Polymer,2003,44:5893-5899
    [67] Wu H.P., Wu X.J., Ge M.Y., et al. Properties Investigation on Isotropical ConductiveAdhesives Filled with Silver Coated Carbon Nanotubes[J]. Compos. Sci. Technol.,2007,67:1182-1186
    [68] Moniruzzaman M., Winey K.I. Polymer Nanocomposites Containing CarbonNanotubes[J]. Macromolecules,2006,39:5194-5205
    [69] Grossiord N., Loos J., Regev O., et al. Toolbox for Dispersing Carbon Nanotubes intoPolymers To Get Conductive Nanocomposites[J]. Chem. Mater.,2006,18:1089-1099
    [70] Kyrylyuk A.V., van der Schoot P. Continuum percolation of carbon nanotubes inpolymeric and colloidal media[J]. Proc. Natl. Acad. Sci. U. S. A.,2008,105,8221–8226.
    [71] Santamaria A., Munoz M.E., Fernandez M., et al. Electrically Conductive Adhesiveswith a Focus on Adhesives that Contain Carbon Nanotubes[J]. J. APPL. POLYM. SCI.2013,129:1643-1652
    [72] Cui H.W., Kowalczyk A., Li D., Fan Q. High performance electrically conductiveadhesives from functional epoxy,micronsilver flakes, micronsilver spheres and acidifiedsingle wall carbon nanotube for electronic package[J]. International Journal ofAdhesion&Adhesives,2013,44:220-225
    [73]吴海平,吴希俊,刘金芳,等填充碳纳米管各向同性导电胶的性能[J].复合材料学报,2006,23(2):9-13
    [74] Oh Y., Suh D., Kim Y., Lee E., et al. Silver-plated carbon nanotubes forsilver/conducting polymer composites[J]. Nanotechnology,2008,19:495602-495609
    [75] Marcq F., Demont P., Monfraix P., et al. Carbon nanotubes and silver flakes filledepoxy resin for new hybrid conductive adhesives[J]. Microelectronics Reliability,2011,51:1230-1234
    [76] Oh Y., Chun K.Y., Lee E., et al. Functionalized nano-silver particles assembled onone-dimensional nanotube scaffolds for ultra-highly conductive silver/polymercomposites[J]. J. Mater. Chem.,2010,20:3579-3582
    [77] Ma R., Kwon S., Zheng Q., et al. Carbon-Nanotube/Silver Networks in NitrileButadiene Rubber for Highly Conductive Flexible Adhesives[J]. Adv. Mater.,2012,24:3344-3349
    [78] Liu K., Liu L., Gao H., et al. In situ Preparation of Epoxy-Based ConductiveNanocomposites Containing Nanosilver-Decorated Carbon Nanotubes[J]. Acta Phys.-Chim. Sin.2012,28(3):711-719
    [79] Pang Y.T., Meng G.W., Fang Q., et al. Silver nanowire array inrfared polarizers[J].Nanotechnology,2003,14:20-24
    [80] Caswell K.K., Bender C.M., MurPhy C.J. Seedless, Surafctantless Wet ChemiealSynthesis of Silver Nanowires[J]. Nano Lett,2003,3:667-669
    [81] Wiley B., Sun Y., Xia Y. Synthesis of Silver Nanostructures with Controlled Shapes andProperties[J]. Acc. Chem. Res.,2007,40:1067-1076
    [82] Wiley B., Sun Y.G., Mayers B., et al. Shape-Controlled Synthesis of MetalNanostructures: The Case of Silver[J]. Chem. Eur. J.2005,11:454-463
    [83] Sun Y.G., Mayers B., Herricks T., et al. Polyol Synthesis of Uniform SilverNanowires: A Plausible Growth Mechanism and the Supporting Evidence Nano Lett.2003,3,955-960
    [84] Xia Y.N., Yang P.D., Sun Y.G., et al. One-Dimensional Nanostructures: Synthesis,Characterization, and Applications[J]. Adv. Mater.,2003,15:353-389
    [85] Korte K.E., Skrabalak S.E., Xia Y., Rapid synthesis of silver nanowires through aCuCl-or CuCl2-mediated polyol process[J]. J. Mater. Chem.,2008,18:437-441
    [86] Yang C., Gu H., Lin W., et al. Silver Nanowires: From Scalable Synthesis toRecyclable Foldable Electronics[J]. Adv. Mater.,2011,23:3052-3056
    [87] Zhu S., Gao Y., Hu B., et al. Transferable self-welding silver nanowire network as highperformance transparent flexible electrode[J]. Nanotechnology,2013,24:335202-335209
    [88] Miller M.S., O’Kane J.C., Niec A., et al. Silver Nanowire/Optical Adhesive Coatings asTransparent Electrodes for Flexible Electronics[J]. ACS Appl. Mater.Interfaces,2013,5(20):10165-10172
    [89] De S., Higgins T.M., Lyons P.E., et al. Silver Nanowire Networks asFlexible,Transparent, Conducting Films:Extremely High DC to Optical ConductivityRatios[J]. ACS Nano,2009,3:1767-1774
    [90] Preston C., Fang Z., Murray J., et al. Silver Nanowire Transparent ConductingPaper-based Electrode with High Optical Haze[J]. J. Mater. Chem. C,2014,2:1248-1254
    [91] Peng P., Hu A., Huang H., et al. Room-temperature pressureless bonding with silvernanowire paste: towards organic electronic and heat-sensitive functional devicespackaging[J]. J. Mater. Chem.,2012,22:12997-13001
    [92] Zhang Z.X., Chen X.Y., Xiao F. The Sintering Behavior of Electrically ConductiveAdhesives Filled with Surface Modified Silver Nanowires[J]. J. Adhes. Sci. Technol.,2011,25:1465-1480
    [93] Wu H.P., Liu J.F., Wu X.J., et al. High conductivity of isotropic conductive adhesivesfilled with silver nanowires[J]. International Journal of Adhesion and Adhesives,2006,26(8):617-621
    [94] Novoselov K.S., Geim A.K., Morozov, S.V., et al., Electric field effect in atomicallythin carbon films [J]. Science,2004.306(5296):666-669
    [95] Novoselov K.S., Jiang D., Schedin F., et al., Two-dimensional atomic crystals [J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10451-10453
    [96] Geirn A.K., Novoselov K. The rise of graphene[J]. Nat. Mater.,2007,6(3):183-19
    [97]朱宏伟,徐志平,谢丹,石墨烯结构制备方法与性能表征[M].北京,清华大学出版社,2011
    [98] Bolotin, K.I., Sikes K., Jiang Z., et al., Ultrahigh electron mobility in suspendedgraphene [J]. Solid State Communications,2008.146(9):351-355
    [99] Lee C., We X. i, Kysar J.W., et al., Measurement of the Elastic Properties and IntrinsicStrength of Monolayer Graphene [J]. Science,2008.321(5887):385-388
    [100] Novoselov K., Jiang D., Sehedin F., et al. Two-dimensional atomic crystals[J]. Proc.Natl. Aead. Sei. USA,2005,102(30):10451-10453
    [101] Ghosh S., Calizo l., Teweldebrhanetal D., et al. Extremely high thermal conduetivityof graphene: ProsPeets for thermalman agement a PPlieations in nanoeleetronieeireuits[J]. APPI. Phys. Lett.,2008,92(15):151911-15191
    [102] Zhang Y., Tan Y., Stormer H., et al., Experimental observation of the quantum Halleffect and Berry's phase in graphene [J]. Nature,2005.438(7065):201-204.
    [103] Wang Y., Huang Y., Song Y., et al. Room-Temperature Ferromagnetism ofGraphene[J]. Nano Lett,2009,9:220-224
    [104] Xu Y.F., Liu Z.B., Zhang X.L., et al., A Graphene Hybrid Material CovalentlyFunctionalized with Porphyrin: Synthesis and Optical Limiting Property [J].Advanced Materials,2009.21(12):1275-1279.
    [105] Ghosh S., Calizo I., Teweldebrhan D., et al., Extremely high thermal conductivityofgraphene: Prospects for thermal management applications in nanoelectronic circuits[J].Applied Physics Letters,2008.92(15):121911-121913.
    [106] Stoller M., S. Park Y. Zhu, et al., Graphene-based ultracapacitors [J]. Nano Letters,2008.8(10):3498-3502.
    [107] Wu Z.S., Ren W.C., Wen L., et al., Graphene Anchored with Co3O4Nanoparticles asAnode of Lithium Ion Batteries with Enhanced Reversible Capacity and CyclicPerformance [J]. ACS Nano,2010.4(6):3187-3194.
    [108] Kang X., Wang J., Wu H., et al., Glucose Oxidase-graphene-chitosan modifiedelectrode for direct electrochemistry and glucose sensing [J]. Biosensors andBioelectronics,2009.25(4):901-905.
    [109] Li F.H., Chai J., Yang H.F., et al., Synthesis of Pt/ionic liquid/graphenenanocomposite and its simultaneous determination of ascorbic acid and dopamine [J].Talanta,2010.81(3):1063-1068.
    [110] Su C.Y., Xu Y.P., Zhang W.J., et al., Electrical and Spectroscopic Characterizations ofUltra-Large Reduced Graphene Oxide Monolayers [J]. Chemistry of Materials,2009.21(23):5674-5680.
    [111] Liang J.J., Huang Y., Zhang L., et al., Molecular-Level Dispersion of Graphene intoPoly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites [J].Advanced Functional Materials,2009.19(14):2297-2302.
    [112] Kuilla T., Yao S. Bhadra D., et al., Recent advances in graphene based polymercomposites [J]. Progress in Polymer Science,2010.35(11):1350-1375.
    [113] Coleman J.N. Liquid Exfoliation of Defect-Free Graphene[J]. Acc. Chem.Res.,2013,46(1):14-22
    [114] Hamilton C.E., Lomeda J.R., Sun Z., et al. High-Yield Organic Dispersions ofUnfunctionalized Graphene[J]. Nano Lett.,2009,9:3460-3462
    [115] Bourlinos A.B., Georgakilas V., Zboril R., et al. Liquid-Phase Exfoliation of GraphiteTowards Solubilized Graphenes[J]. Small,2009,5:1841-1845
    [116] Economopoulos S.P., Rotas G., Miyata Y., et al. Exfoliation and ChemicalModification Using Microwave Irradiation Affording Highly FunctionalizedGraphene[J]. ACS Nano,2010,4:7499-7507
    [117] Khan U., O’Neill A., Lotya M., High-Concentration Solvent Exfoliation ofGraphene[J]. Small,2010,6(7):864-871
    [118] Khan U., May P., O’Neill A., et al. Development of stiff, strong, yet tough compositesby the addition of solvent exfoliated graphene to polyurethane[J]. Carbon,2010,48:4035-4041
    [119] Lotya M., Hernandez Y., King P.J, et al. Liquid phase production of graphene byexfoliation of graphite in surfactant/water solutions[J]. J. Am. Chem. Soc.,2009,131(10):3611-3620
    [120] De S, King P.J., Lotya M., et al. Flexible, transparent, conducting films of randomlystacked graphene from surfactant-stabilized, oxide-free graphene dispersions[J]. Small,2010,6(3):458-64
    [121] Vadukumpully S., Paul J., Valiyaveettil S. Cationic surfactant mediated exfoliation ofgraphite into graphene flakes[J]. Carbon,2009,47:3288-3294
    [122] Hasan T., Torrisi F., Sun Z., et al. Solution-phase exfoliation of graphite for ultrafastphotonics[J]. Phys. Status Solidi B,2010,247:2953-2957
    [123] Green A.A., Hersam M.C. Solution Phase Production of Graphene with ControlledThickness via Density Differentiation[J]. Nano Lett.,2009,9:4031-4036
    [124] De S., King P.J., Lotya M., et al. Flexible, Transparent, Conducting Films ofRandomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free GrapheneDispersions[J]. Small,2010,6:458-464
    [125] Englert J.M., Rohrl J., Schmidt C.D., et al. Soluble Graphene: Generation of AqueousGraphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile[J]. Adv.Mater.,2009,21:4265-4269
    [126] Guardia L., Fernandez-Merino M.J., Paredes J.I., et al. High-throughput production ofpristine graphene in an aqueous dispersion assisted by non-ionic surfactants[J].Carbon,2011,49:1653-1662
    [127] Smith R.J., Lotya M., Coleman J.N. The importance of repulsive potential barriers forthe dispersion of graphene using surfactants[J]. New J. Phys.,2010,12:125008-125018
    [128] Wang X.Q., Fulvio P.F., Baker G.A., et al. Direct exfoliation of natural graphite intomicrometre size few layers graphene sheets using ionic liquids[J]. Chem. Commun.,2010,46:4487-4489
    [129] Nuvoli D., Valentini L., Alzari V., et al. High concentration few-layer graphene sheetsobtained by liquid phase exfoliation of graphite in ionic liquid[J]. J. Mater. Chem.,2011,21:3428-3431
    [130] An X., Simmons T., Shah R., et al. Stable Aqueous Dispersions of NoncovalentlyFunctionalized Graphene from Graphite and their Multifunctional High-PerformanceApplications[J]. Nano Lett.,2010,10:4295-4301
    [131] Qian W., Hao R., Hou Y., et al. Solvothermal-assisted exfoliation process to producegraphene with high yield and high quality[J]. Nano Res.,2009,2:706-712
    [132] Jiang B.J., Tian C.G., Wang L., et al. Facile fabrication of high quality graphene fromexpandable graphite: simultaneous exfoliation and reduction[J]. Chem. Commun.,2010,46:4920-4922
    [133] Dhakate S., Chauhan N., Sharma S., et al. An approach to produce single and doublelayer graphene from re-exfoliation of expanded graphite[J]. Carbon,2011,9(6):1946-1954
    [134] Zhang J.L., Yang H.J., Shen G.X., et al. Reduction of graphene oxide via L-ascorbicacid[J]. Chemical Communications,2010,6(7):1112-1114
    [135] Park S., Ruoff R.S. Chemical methods for the production of graphenes[J]. NatureNanotechnology,2009,4(4):217-224
    [136] Dreyer D.R., Park S., Bielawski C.W., et al. The chemistry of graphene oxide [J].Chemical Society Reviews,2010,39(1):228-240
    [137] Tung, V.C.; Allen, M.J.; Yang, Y.; Kaner, R.B. Nat. Nanotechnol.,2009,4:25-29
    [138] Li X., Cai W., An J., et al. Large-area synthesis of high-quality and uniform graphenefilms on copper foils[J]. Science,2009,324(5932):1312-1314
    [139] McAllister M.J., Li J.L., Adamson D.H., et al. Single sheet functionalized grapheneby oxidation and thermal expansion of graphite[J]. Chemistry of Materials,2007,19(18):4396-4404
    [140] Berger C., Song Z., Li T., et al. Ultrathin epitaxial graphite:2D electron gasproperties and a route toward graphene-based nanoelectronics[J]. The Journal ofPhysical Chemistry B,2004,108(52):19912-19916
    [141] Jiao L., Zhang L., Wang X., et al. Narrow graphene nanoribbons from carbonnanotubes[J]. Nature,2009,458(7240):877-880
    [142] Mohanty N., Nagaraja A., Armesto J., et al. High-throughput, ultrafast synthesis ofsolution-dispersed graphene via a facile hydride chemistry[J]. Small,2010,6(2):226-231
    [143] Fang M., Wang K., Lu H. Covalent polymer functionalization of graphene nanosheetsand mechanical properties of composites[J]. J. Mater. Chem.,2009,19:7098-7105
    [144] Niyogi S., Bekyarova E., Itkis M.E., et al. Solution properties of graphite andgraphene[J]. J. Am. Chem. Soc.,2006,128(24):7720-7721
    [145] Stankovich S., Piner R.D., Nguyen S.T., et al. Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347
    [146] Zheng Q., Geng Y., Wang S., et al. Effects of functional groups on the mechanical andwrinkling properties of graphene sheets[J]. Carbon,2010,48:4315-4322
    [147] Chen C.; Zhai W.; Lu D.; et al. A facile method to prepare stable noncovalentfunctionalized graphene solution by using thionine[J]. Mater. Res. Bull.,2011,46:583-587
    [148] Qi X.Y., Pu K.Y., Li H., et al. Amphiphilic Graphene Composites[J]. AngewandteChemie-International Edition,2010,49(49):9426-9429
    [149] Yang H., Zhang Q., Shan C.,et al. Stable, Conductive Supramolecular Composite ofGraphene Sheets with Conjugated Polyelectrolyte[J]. Langmuir,2010,26(9):6708-6712
    [150] Ghosh, A.; Rao, K.V.; George, S.J.; Rao, C.N.R. Noncovalent Functionalization,Exfoliation, and Solubilization of Graphene in Water by Employing a FluorescentCoronene Carboxylate[J]. Chem.Eur. J.2010,16,2700-2704
    [151] Choi Y., Bae H., Seo E., et al. Hybrid gold nanoparticle-reduced graphene oxidenanosheets as active catalysts for highly efficient reduction of nitroarenes[J]. J. Mater.Chem.,2011,21:15431-15436
    [152] Jeon K., Lee Z. Size-dependent interaction of Au nanoparticles and graphene sheet[J].Chem. Commun.,2011,47:3610-3612
    [153] Pandey P.A., Bell G,R., et al. Physical Vapor Deposition of Metal Nanoparticles onChemically Modifi ed Graphene: Observations on Metal-Graphene Interactions[J].Small,2011,7(22):3202-3210
    [154] Xiong Z., Zhang L., Ma J., et al. Photocatalytic degradation of dyes overgraphene-gold nanocomposites under visible light irradiation[J]. Chem. Commun.,2010,46:6099-6101
    [155] Lee J., Shim S., Kim B., et al. Surface-Enhanced Raman Scattering of Single-andFew-Layer Graphene by the Deposition of Gold Nanoparticles[J]. Chem. Eur. J.2011,17:2381-2387
    [156] Zhou X.Z., Huang X., Qi X.Y., et al. In Situ Synthesis of Metal Nanoparticles onSingle-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces[J]. J. Phys.Chem. C,2009,113:10842-10846
    [157] Lu G., Li H., Liusman C., et al. Surface enhanced Raman scattering of Ag or Aunanoparticle-decorated reduced graphene oxide for detection of aromatic molecules[J].Chem. Sci.,2011,2:1817-1821
    [158] Xu Z., Gao H., Hu G. Solution-based synthesis and characterization of a silvernanoparticle-graphene hybrid film[J]. Carbon,2011,49:4731-4738
    [159] Ma J., Zhang J., Xiong Z., et al. Preparation, characterization and antibacterialproperties of silver-modified graphene oxide[J]. J. Mater. Chem.,2011,21:3350-3352
    [160] Kamat P.V., Graphene-Based Nanoarchitectures. Anchoring Semiconductor and MetalNanoparticles on a Two-Dimensional Carbon Support[J]. J. Phys. Chem. Lett.2010,1(2):520-527
    [161] Hu Z.L., Aizawa M., Wang Z.M., et al. Synthesis and characteristics of grapheneoxide-derived carbon nanosheet-Pd nanosized particle composites[J]. Langmuir,2010,26(9):6681-6689
    [162] Chen X., Wu G., Chen J., et al. Synthesis of “Clean” and Well-Dispersive PdNanoparticles with Excellent Electrocatalytic Property on Graphene Oxide[J]. J. Am.Chem. Soc.,2011,133:3693-3695
    [163] ZengQ., ChengJ., Liu X., et al. Palladium nanoparticle/chitosan-grafted graphenenanocomposites for construction of a glucose biosensor[J]. Biosensors andBioelectronics,2011,26:3456-3463
    [164] Claussen J., Kumar A., Jaroch D., et al. Nanostructuring Platinum Nanoparticles onMultilayered Graphene Petal Nanosheets for Electrochemical Biosensing[J]. Adv.Funct. Mater.,2012,22:3399-3405
    [165] Li Y., Li Y., Zhu E., et al. Stabilization of High-Performance Oxygen ReductionReaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon BlackComposite[J]. J. Am. Chem. Soc.,2012,134:12326-12329
    [166] Guo S., Wen D., Zhai Y., et al. Platinum Nanoparticle Ensemble-on-Graphene HybridNanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material forElectrochemical Sensing[J]. ACS Nano,2010,4(7):3959-3968
    [167] Muszynski R., Seger B., Kamat P.V. Decorating Graphene Sheets with GoldNanoparticles[J]. J. Phys. Chem. C,2008,112:5263-5266
    [168] Fang M., Chen Z., Wang S., et al. The deposition of iron and silver nanoparticles ingraphene-polyelectrolyte brushes[J]. Nanotechnology,2012,23:085704-085715
    [169] Jasuja K., Berry V. Implantation and Growth of Dendritic Gold Nanostructures onGraphene Derivatives: Electrical Property Tailoring and Raman Enhancement[J]. ACSNano,2009,3(8):2358-2366
    [170] Vadukumpully S., Gupta J., Zhang Y., et al. Functionalization of surfactant wrappedgraphene nanosheets with alkylazides for enhanced dispersibility[J]. Nanoscale,2011,3:303-308
    [171] Lin Y., Baggett D., Kim J., et al. Instantaneous Formation of Metal and Metal OxideNanoparticles on Carbon Nanotubes and Graphene via Solvent-Free MicrowaveHeating[J]. ACS Appl. Mater. Interfaces,2011,3:1652-1664
    [172] Liu Y., Chang Q., Huang L. Transparent, Flexible Conducting Graphene HybridFilms with a Subpercolating Network of Silver Nanowires[J]. J. Mater. Chem. C,2013,1:2970-2974
    [173] Kholmanov I.N., Magnuson C.W., Aliev A., et al. Improved Electrical Conductivity ofGraphene Films Integrated with Metal Nanowires[J]. NanoLett.,2012,12(11):5679-5683
    [174] Lee D., Lee H., Ahn Y., et al. Highly Stable and Flexible Silver Nanowire-GrapheneHybrid Transparent Conducting Electrode for Emerging Optoelectronic Devices[J].Nanoscale,2013,5:7750-7755
    [175] Lee M., Lee K., Kim S., et al. High-Performance, Transparent, and StretchableElectrodes Using Graphene-Metal Nanowire Hybrid Structures[J]. Nano Lett.,2013,13:2814-2821
    [176] Zeng F., Zimmerman S.C. Dendrimers in supramolecular chemistry: from molecularrecognition to self-assembly[J]. Chemieal Reviews,1997,97:1681-1712
    [177] Tomalia, D.A., Baker H., Dewald J., et al. A new class of polymers: starburst dendriticmacromolecules[J]. Polym. J.,1985,17:117-132
    [178] Tomalia, D.A. Starburst dendrimers-nanoscopic supermolecules according to dendriticrules and principles[J]. Macromol. Symp.,1996,101:243-255
    [179] Esfand R., Tomalia D.A. Poly(amidoamine)(PAMAM) dendrimers: from biomimicryto drug delivery and biomedical applications[J]. Drug Discovery Today,2001,6(8):427-436
    [180]李国平,罗运军,谭惠民以树形分子为模板制备银纳米颗粒[J].化学学报,2004,62(12):1158-1161
    [181] Zhu Y., Murali S., Cai W.,et al. Graphene and Graphene Oxide: Synthesis, Properties,and Applications[J]. Adv. Mater.,2010,22:3906-3924
    [182] Weiss N.O., Zhou H., Liao L., et al. Graphene: An Emerging Electronic Material[J].Adv. Mater.,2012,24(43):5782-825
    [183] Rao C.N.R., Sood A.K., Subrahmanyam K.S., et al. Graphene: The NewTwo-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed.2009,48:7752-7777
    [184] Stankovich S., Dikin D.A., Piner R.D., et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565
    [185] Hernandez Y., Nicolosi V., Lotya M., et al., High-yield production of graphene byliquid-phase exfoliation of graphite [J]. Nature Nanotechnology,2008.3(9):563-568
    [186] Khan U., Porwal H., O’Neill A., et al. Solvent-Exfoliated Graphene at ExtremelyHigh Concentration[J]. Langmuir,2011,27:9077-9082
    [187] Zhou X., Wu T., Ding K., et al. Dispersion of graphene sheets in ionic liquid[bmim][PF6] stabilized by an ionic liquid polymer[J]. Chem. Commun.,2010,46:386-388
    [188] Chen I-W.P., Huang C.Y., Jhou S-H.S., et al. Exfoliation and Performance Propertiesof Non-Oxidized Graphene in Water[J]. Scientific reports4:3928DOI:10.1038/srep03928
    [189] Das R.N., Egitto, F.D., Markovich V.R. Nano-and micro-filled conducting adhesivesfor z-axis interconnections: new direction for high-speed, high-density, organicmicroelectronics packaging[J]. Circuit World,2008,34:3-12
    [190] Chun K.Y., Oh Y., Rho J., et al. Highly conductive, printable and stretchablecomposite films of carbon nanotubes and silver[J]. Nature Nanotechnology,2010,5:853-857
    [191] Cai M., Thorpe D., Adamson D., et al. Methods of graphite exfoliation[J]. J. Mater.Chem.,2012,22:24992-25002
    [192] Stankovich S., Dikin D.A., Dommett G.H.B., et al. Graphene-based compositematerials[J]. Nature,2006,442:282-286
    [193] Eda G., Fanchini G., Chhowalla M. Large-area ultrathin films of reduced grapheneoxide as a transparent and flexible electronic material[J]. Nat. Nanotechnol.,2008,3,270-274
    [194] Ferrari A.C., Meyer J.C., Scardaci V., et al. Raman Spectrum of Graphene andGraphene Layers[J]. Phys. Rev. Lett.,2006,97,187401-187404
    [195] Graf D., Molitor F., Ensslin K., et al. Spatially Resolved Raman Spectroscopy ofSingle-and Few-Layer Graphene[J]. Nano Lett.,2007,7:238-242
    [196] Rao C.N.R., Biswas K., Subrahmanyam K.S., et al. Graphene, the new nanocarbon[J].J. Mater. Chem.,2009,19:2457-2469
    [197] Geng J., Kong B., Yang S.B., et al. Preparation of graphene relying on porphyrinexfoliation of graphite[J]. Chem. Commun.,2010,46:5091-5093
    [198] Das B., Voggu R., Rout C.S., et al. Changes in the electronic structure and propertiesof graphene induced by molecular charge-transfer[J]. Chem. Commun.,2008,5155-5157
    [199] Park S., Dikin D.A., Nguyen S.T., et al. Graphene Oxide Sheets ChemicallyCross-Linked by Polyallylamine[J]. J. Phys. Chem. C.,2009,113:15801-15804
    [200] Shao Y., Zheng S., Engelhard M.H., et al. Nitrogen-doped graphene and itselectrochemical applications[J]. J. Mater. Chem.,2010,20:7491-7496
    [201] Becerril H.A., Mao J., Liu Z., et al. Evaluation of Solution-Processed ReducedGraphene Oxide Films as Transparent Conductors[J]. ACS Nano.,2008,2(3):463-470
    [202] Huang X., Qi X., Boey F., et al. Graphene-based composites[J]. Chem. Soc. Rev.,2012,41:666-686
    [203] Luo B., Liu S., Zhi L. Chemical approaches toward graphene-based nanomaterialsand their applications in energy-related areas[J]. Small,2012,8:630-646
    [204] Cui X., Zhang C., Hao R., et al. Liquid-phase exfoliation, functionalization andapplications of graphene[J]. Nanoscale,2011,3:2118-2126
    [205] Yan D., Zhang H., Jia Y., et al. Improved electrical conductivity of polyamide/graphenenanocomposites with maleated polyethylene-octene rubber prepared by meltcompounding[J]. ACS Appl. Mater. Interfaces,2012,4:4740-4745
    [206] Zaman I., Kuan H.C., Meng Q., et al. A facile approach to chemically modifi edgraphene and its polymer nanocomposites[J]. Adv. Funct. Mater.,2012,22:2735-2743.
    [207] Shen X., Liu Y., Xiao H., et al. The reinforcing effect of graphene nanosheets on thecryogenic mechanical properties of epoxy resins[J]. Compos Sci Technol,2012,72:1581-1587
    [208] Verdejo R., Bernal M.M., Romasanta L.J., et al. Graphene filled polymernanocomposites[J]. J. Mater. Chem.,2011,21:3301-3310
    [209] Georgakilas V., Otyepka M., Bourlinos A.B., et al. Functionalization of Graphene:Covalent and Non-Covalent Approaches, Derivatives and Applications[J]. Chem.Rev.,2012,112(11):6156-6214
    [210] Adeli M., BeyranvandS., Kabiri R. Preparation of hybrid nanomaterials bysupramolecular interactions between dendritic polymers and carbon nanotubes.[J]Polym. Chem.,2013,4:669-674
    [211] Mehdipoor E., Adeli M., Bavadi M., et al. A possible anticancer drug delivery systembased on carbon nanotube-dendrimer hybrid nanomaterials[J]. J. Mater. Chem.,2011,21:15456-15463
    [212] Wu C., Huang X., Wang G., et al. Hyperbranched-polymer functionalization ofgraphene sheets for enhanced mechanical and dielectric properties of polyurethanecomposites[J]. J. Mater. Chem.,2012,22:7010-7019
    [213] Lu X., Imae T. Size-Controlled in situ Synthesis of Metal Nanoparticles onDendrimer-Modified Carbon Nanotubes[J]. J. Phys. Chem. C,2007,111:2416-2420
    [214] Yuan W., Jiang G., Che J., et al. Deposition of Silver Nanoparticles on MultiwalledCarbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and TheirAntimicrobial Effects[J]. J. Phys. Chem. C,2008,112:18754-18759
    [215] Shau S., Juang T., Lin H., et al. Individual graphene oxide platelets through directmolecular exfoliation with globular amphiphilic hyperbranched polymers[J]. Polym.Chem.,2012,3:1249-1259
    [216] Li H.Q., Jo J.K., Zhang L., et al. A general and efficient method for decoratinggraphene sheets with metal nanoparticles based on the non-covalently functionalizedgraphene sheets with hyperbranched polymers[J]. Adv. Funct. Mater.,2010,20:3864-3873
    [217] Scott R.W.J., Wilson O.M., Crooks R.M. Synthesis, Characterization, andApplications of Dendrimer-Encapsulated Nanoparticles[J]. J. Phys. Chem. B,2005,109:692-704
    [218] Kavitha M., Parida M.R., Prasad E., et al. Generation of Ag Nanoparticles byPAMAM Dendrimers and their Size Dependence on the Aggregation Behavior ofDendrimers[J]. Macromol. Chem. Phys.,2009,210:1310-1318
    [219] Wuesta J.D., Rochefort A. Strong adsorption of aminotriazines on graphene[J]. Chem.Commun.,2010,46:2923-2925
    [220] Leon V., Quintana M., Herrero M.A., et al. Few-layer graphenes from ball-milling ofgraphite with melamine[J]. Chem. Commun.,2011,47:10936-10938
    [221] Tsuzuki S., Honda K., Uchimaru T., et al. Origin of the Attraction and Directionalityof the NH/π Interaction:Comparison with OH/π and CH/π Interactions[J]. J. Am.Chem. Soc.,2000,122:11450-11458
    [222] Che J., Yuan W., Jiang G., et al. Epoxy Composite Fibers Reinforced with AlignedSingle-Walled Carbon Nanotubes Functionalized with Generation0-2DendriticPoly(amidoamine)[J]. Chem. Mater.,2009,21:1471-1479
    [223] Xu C., Wu X., Zhu J.W., et al. Synthesis of amphiphilic graphite oxide[J]. Carbon,2008,46:386-389
    [224] Alonso M.H., Abdada A.A., McAllister M.J., et al. Intercalation and Stitching ofGraphite Oxide with Diaminoalkanes[J]. Langmuir,2007,23:10644-10649
    [225]周婷,聚酰胺-胺的合成表征及其对氯酸钠溶液的影响[D].长沙:中南大学,2010
    [226]张永文,超支化聚酰胺胺的合成及其功能化研究[D].上海:上海交通大学,2008
    [227] Ottaviani M.F., Valluzzi R., Balogh L. Internal Structure of Silver-Poly(amidoamine)Dendrimer Complexes and Nanocomposites[J]. Macromolecules,2002,35:5105-5115
    [228] Liu H., Wang H., Guo R., et al. Size-controlled synthesis of dendrimer-stabilizedsilver nanoparticles for X-ray computed tomography imaging applications[J]. Polym.Chem.,2010,1:1677-1683.
    [229] Li G., Luo Y., Tan H. PVP and G1.5PAMAM dendrimer co-mediated synthesis ofsilver nanoparticles[J]. Journal of Solid State Chemistry,2005,178:1038-1043
    [230] Zhang C., Ren L., Wang X., et al. Graphene Oxide-Assisted Dispersion of PristineMultiwalled Carbon Nanotubes in Aqueous Media[J]. J. Phys. Chem. C,2010,114:11435-11440
    [231] Zhang C., Huang S., Tjiu W., et al. Facile preparation of water-dispersible graphenesheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinylalcohol) composites[J]. J. Mater. Chem.,2012,22:2427-2434
    [232] Tang Z., Wei Q., Lin T., et al. The use of a hybrid consisting of tubular clay andgraphene as a reinforcement for elastomers[J]. RSC Adv.,2013,3:17057-17064
    [233] Nam S., Cho H., Lim S., et al. Enhancement of Electrical and ThermomechanicalProperties of Silver Nanowire Composites by the Introduction of NonconductiveNanoparticles: Experiment and Simulation[J]. ACS Nano,2013,7(1):851-856
    [234] Lee J., Lee P., Lee H., et al. Very long Ag nanowire synthesis and its application in ahighly transparent, conductive and flexible metal electrode touch panel[J]. Nanoscale,2012,4:6408-6414
    [235] Xia Y., Yang P., Sun Y., et al. One dimensional nanostructures:synthesis,characterization, and application[J]. Adv. Mater.,2003,15(5):353-389
    [236] Lee H., Hwang J., Choi K., et al. Effective Indium-Doped Zinc Oxide Buffer Layer onSilver Nanowires for Electrically Highly Stable, Flexible, Transparent, andConductive Composite Electrodes[J]. ACS Appl. Mater.Interfaces,2013,5(21):10397-10403
    [237] Xu F., Zhu Y. Highly Conductive and Stretchable Silver Nanowire Conductors[J]. Adv.Mater.,2012,24:5117-5122
    [238] Wu Y.; Xiang J.; Yang C.; et al. Single-crystal Metallic Nanowires andMetal/semiconductor Nanowire Heterostructures[J]. Nature,2004,430:61-65
    [239] Hu L.; Kim H.S.; Lee J.Y.; et al. Scalable Coating and Properties of Transparent,Flexible, Silver Nanowire Electrodes[J]. ACS Nano,2010,4:2955-2963
    [240] Fang M., Zhang Z., Li J., et al. Constructing hierarchically structured interphases forstrong and tough epoxy nanocomposites by amine-rich graphene surfaces[J]. J. Mater.Chem.,2010,20:9635-9643
    [241] Wang X., Xing W., Zhang P., et al. Covalent functionalization of graphene withorganosilane and its use as a reinforcement in epoxy composites[J]. CompositesScience and Technology,2012,72:737-743
    [242] Sun Z. Kohama S., Zhang Z., et al. Soluble Graphene Through Edge-SelectiveFunctionalization[J]. Nano Res,2010,3:117-125
    [243] Choi E., Jeon I., Bae S., et al. High-yield exfoliation of three-dimensional graphiteinto two-dimensional graphene-like sheets[J]. Chem. Commun.,2010,46:6320-6322
    [244] Jeon I., Yu D., Bae S., et al. Formation of Large-Area Nitrogen-Doped Graphene FilmPrepared from Simple Solution Casting of Edge-Selectively Functionalized Graphiteand Its Electrocatalytic Activity[J]. Chem. Mater.,2011,23:3987-3992
    [245] Kim K., Jeon I., Ahn S. Edge-functionalized graphene-like platelets as a co-curingagent and a nanoscale additive to epoxy resin[J]. J. Mater. Chem.,2011,21:7337-7342
    [246] Jeon I., Choi H., Jung S., et al. Large-Scale Production of Edge-SelectivelyFunctionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-FreeElectrocatalysts for Oxygen Reduction Reaction[J]. J. Am. Chem. Soc.,2013,135:1386-1393
    [247] Sohn G., Choi H., Jeon I., et al. Water-Dispersible, Sulfonated HyperbranchedPoly(ether-ketone) Grafted Multiwalled Carbon Nanotubes as Oxygen ReductionCatalysts[J]. ACS Nano,2012,6(7):6345-6355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700