含胺基聚电解质复合纳米粒子的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米生物技术是生物技术和纳米科技相结合的一个交叉领域,通过模拟或利用生物体系来制造纳米尺度的器件,或者是利用微器件在纳米尺度上来研究或改变生物体的结构和性能。聚合物纳米粒子具有比表面积大、易于分离、表面可修饰多种官能团、分散性好和生物相容性好等优势;无机纳米粒子,如金属纳米粒子和半导体纳米粒子,更具有很多独特的性能。功能性聚合物复合微球在药物输送、生物分离、生物标记、光热治疗及生物催化等生物医学领域有巨大的应用潜力。
     本论文是以含有胺基的聚电解质为基础,分别研究了聚电解质共聚物(h-PAM-g-PEG)的自组装和聚电解质与无机纳米粒子的复合与组装,对得到的组装体与复合微球的形成因素进行了探讨。全文主要可以分为以下三个方面:
     (1)在第二章中,我们合成了不同聚乙二醇接枝密度的亲水性聚电解质共聚物-聚乙二醇接枝的超支化聚酰胺胺(h-PAMAM-g-PEG),其在THF中自组装为球形胶束,使用1,6二溴己烷对胶束进行交联,在转到水相后可形成稳定的空心/实心微球;PEG的接枝密度会对胶束的尺寸、胶束的形成时间及转到水相后的形态产生影响。基于h-PAMAM的自身荧光性能,微球具有pH依赖的荧光性能,且不随自组装和相转变过程改变。综上所述,我们获得了稳定的、形状规整的、生物相容的和具有荧光性能的聚电解质微球。
     (2)在第三章中,继续沿用第二章中制备的聚电解质h-PAMAM-g-PEG,使用pH敏感的顺式乌头酸酐作为中间体,共价连接DOX和h-PAMAM-g-PEG;产物仍然可在THF中组装形成胶束,交联转到水相成为稳定的载药聚合物微球,DOX的载药率为12.4%。由于h-PAMAM-g-PEG上有大量的胺基,形成的微球仍带有正电;载药聚合物微球具有pH敏感性:这些均有利于此载药聚合物微球用于肿瘤靶向药物载体。
     (3)在第四章中,我们通过还原法制备了柠檬酸钠稳定的金纳米粒子,通过水热法制备了稳定的CdTe荧光纳米粒子。利用带有胺基的聚电解质与带有羧基的无机纳米粒子之间的静电作用,分别研究了AuNPs/PLL、QDs/PLL和QDs/CS的静电组装行为。通过改变纳米粒子种类、聚电解质和纳米粒子的摩尔比,可控制复合组装体的形貌。此外,引入EDC/NHS活化量子点表面的羧基,使其与聚电解质PLL或h-PAMAM-g-PEG上的胺基发生酰胺反应,得到复合组装体。还将量子点和酞菁同时接枝在h-PAMAM-g-PEG上,得到一类线性网状结构体。研究表明,得到的聚电解质组装体具有较好的稳定性,且保留了无机纳米粒子本身的特性。
Nano-biotechnology is the interdisciplinary field of nanotechnology and bio-technology, that is, to manufacture the nano-scale devices through simulation or biological systems, or to research and change the structure and properties of organisms by using micro-devices at nano-scale. Polymer nanoparticles have large specific surface areas, easy separation, ability of anchoring with various functional groups, good separation, biocompatibility and lots of other advantages, inorganic nanoparticles, such as metals and semiconductors, have unique properties. So the functional polymer composite microspheres have large potential in biomedical field such as medical delivery, bio-separation, bio- label, therapeutic, and bio-catalysis.
     This paper is based on the amino polyelectrilyte, focus on the self-assembly of the copolymer (h-PAMAM-g-PEG) and the composition and assembly between the polyelectrilyte and inotganic nanoparticles, discussed the formation of the assembly and the composite microspheres. The results can be divided into three parts as follows:
     (1) In the second chapter, we synthesized hydrophilic polyelectrolyte copolymer PEG grafted hyperbranched polyamidoamine (h-PAMAM-g-PEG) with different PEG graft density, the copolymer was micellization in selective solvent (THF). Hollow/Solid microspheres were obtained when the micelle was crosslinked with 1,6-dibromohexane in THF and transferred into water phase. The grafting density of PEG will impact the dimension, the formation time, and the morphology transformation of the micelle. Meanwhile,h-PAMAM had pH dependent fluorescent characteristic which do not change with the self-assemble and phase transition. Above all, we get a polyelectrolyte microspheres with stable, regular shape, biological compatibility and fluorescent properties.
     (2) In the third chapter, continue to use the polyelectrolyte h-PAMAM-g-PEG prepared ahead. Acid-sensitive cis-aconityl linkage was introduced between DOX and h-PAMAM-g-PEG to produce PPCD conjugates. Drug-loaded polymer microspheres were obtained when the self-assembly micelle was crosslinked in THF and transferred into water phase, the loading rate of adriamycin(DOX) was 12.4%. Since there is a large number of amine on the h-PAMAM-g-PEG, positive microspheres was obtained after the assembly. The drug-loaded microspheres possessed the pH sensitivity, all of these will promote the application of drug-loaded polymeric microspheres (PPCD) as tumor targeting drug carrier.
     (3) In the chapter four, we prepared gold nanoparticles by the method sodium citrate reduction,and stable CdTe fluorescence quantum dots were prepared by hydrothermal method. Through the electrostatic interaction between the amino groups of polyelectrolyte and carboxyl groups of inorganic nanoparticles, we studied the electrostatic assembly behavior of AuNPs/PLL, QDs/PLL and QDs/CS respective. The morphology of composite assembly can be controlled by changing the type of the Nanoparticles, and the molar ratio of the polyelectrolyte and the nanoparticles. In addition, EDC/NHS was introduced by activating the surface carboxyl of the quantum dots, the amidation occurred between the amino groups of the polyelectrolyte PLL or h-PAMAM-g-PEG and the carboxyl group to formed composite assembly. What's more, both quantum dots and phthalocyanine was grafted on h-PAMAM-g-PEG to obtain the linear network structure. It showed that we formed stabile polyelectrolyte assembly remained the characteristic of the inorganic nanoparticles.
引文
[1]WELLER H. Colloidal Semiconductor Q-Particles-Chemistry in the Transition Region between Solid-State and Molecules [J]. Angewandte Chemie-International Edition in English,1993,32(1):41-53.
    [2]BAWA R. Patents and nanomedicine [J]. Nanomedicine,2007,2(3):351-74.
    [3]KAHAN D M. NANOTECHNOLOGY AND SOCIETY The evolution of risk perceptions [J]. Nature Nanotechnology,2009,4(11):705-6.
    [4]SAHOO S K, LABHASETWAR V. Nanotech approaches to delivery and imaging drug [J]. Drug Discovery Today,2003,8(24):1112-20.
    [5]MARTIN C R. Nanomaterials-a Membrane-Based Synthetic Approach [J]. Science,1994,266(5193):1961-6.
    [6]GRABAR K C, ALLISON K J, BAKER B E, et al. Two-dimensional arrays of colloidal gold particles:A flexible approach to macroscopic metal surfaces [J]. Langmuir,1996,12(10):2353-61.
    [7]JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. Journal of Physical Chemistry B,2001, 105(19):4065-7.
    [8]SLOT J W, GEUZE H J. A New Method of Preparing Gold Probes for Multiple-Labeling Cyto-Chemistry [J]. European Journal of Cell Biology,1985,38(1): 87-93.
    [9]YU Y Y, CHANG S S, LEE C L, et al. Gold nanorods:Electrochemical synthesis and optical properties [J]. Journal of Physical Chemistry B,1997,101(34):6661-4.
    [10]KIM F, SONG J H, YANG P D. Photochemical synthesis of gold nanorods [J]. Journal of the American Chemical Society,2002,124(48):14316-7.
    [11]OKITSU K, ASHOKKUMAR M, GRIESER F. Sonochemical synthesis of gold nanoparticles:Effects of ultrasound frequency [J]. Journal of Physical Chemistry B, 2005,109(44):20673-5.
    [12]BRUST M, WALKER M, BETHELL D, et al. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System [J]. Journal of the Chemical Society-Chemical Communications,1994,7):801-2.
    [13]SHI F, ZHANG Q H, MA Y B, et al. From CO oxidation to CO2 activation:An unexpected catalytic activity of polymer-supported nanogold [J]. Journal of the American Chemical Society,2005,127(12):4182-3.
    [14]THANH N T K, ROSENZWEIG Z. Development of an aggregation based immunoassay for anti protein a using gold nanoparticles. [J]. Abstracts of Papers of the American Chemical Society,2002,223(U74-U.
    [15]YU A M, LIANG Z J, CHO J H, et al. Nanostructured electrochemical sensor based on dense gold nanoparticle films [J]. Nano Letters,2003,3(9):1203-7.
    [16]DUNG T N, KIM D J, KIM K S. Controlled synthesis and biomolecular probe application of gold nanoparticles [J]. Micron,2011,42(3):207-27.
    [17]TORCHILIN V P. Multifunctional nanocarriers [J]. Advanced Drug Delivery Reviews,2006,58(14):1532-55.
    [18]DE DIOS A S, DIAZ-GARCIA M E. Multifunctional nanoparticles:Analytical prospects [J]. Analytica Chimica Acta,2010,666(1-2):1-22.
    [19]ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996,271(5251):933-7.
    [20]ALIVISATOS A P. Perspectives on the physical chemistry of semiconductor nanocrystals [J]. Journal of Physical Chemistry,1996,100(31):13226-39.
    [21]MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science,2005,307(5709):538-44.
    [22]HAN M Y, GAO X H, SU J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nature Biotechnology,2001,19(7): 631-5.
    [23]MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and Characterization of Nearly Monodisperse Cde (E=S, Se, Te) Semiconductor Nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-15.
    [24]ROGACH A L, FRANZL T, KLAR T A, et al. Aqueous synthesis of thiol-capped CdTe nanocrystals:State-of-the-art [J]. Journal of Physical Chemistry C,2007, 111(40):14628-37.
    [25]QIAN H F, QIU X, LI L, et al. Microwave-assisted aqueous synthesis:A rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots [J]. Journal of Physical Chemistry B,2006,110(18):9034-40.
    [26]ZHANG H, WANG L P, XIONG H M, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. Advanced Materials,2003,15(20):1712-+.
    [27]LU A H, SALABAS E L, SCHUTH F. Magnetic nanoparticles:Synthesis, protection, functionalization, and application [J]. Angewandte Chemie-International Edition,2007,46(8):1222-44.
    [28]GUPTA A K, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26(18):3995-4021.
    [29]HUBER D L. Synthesis, properties, and applications of iron nanoparticles [J]. Small,2005,1(5):482-501.
    [30]HEDRICK J L. Application of complex macromolecular architectures for advanced microelectronic materials. [J]. Abstracts of Papers of the American Chemical Society,2005,229(U930-U1.
    [31]WAGNER E, KLOECKNER J. Gene delivery using polymer therapeutics [J]. Polymer Therapeutics I:Polymers as Drugs, Conjugates and Gene Delivery Systems, 2006,192(135-73.
    [32]SEIJO B, FATTAL E, ROBLOTTREUPEL L, et al. Design of Nanoparticles of Less Than 50 Nm Diameter-Preparation, Characterization and Drug Loading [J]. International Journal of Pharmaceutics,1990,62(1):1-7.
    [33]SZUROMI P D. Handbook of nanostructured materials and nanotechnology [J]. Science,2000,288(5471):1596-.
    [34]WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales [J]. Science, 2002,295(5564):2418-21.
    [35]WHITESIDES G M, BONCHEVA M. Beyond molecules:Self-assembly of mesoscopic and macroscopic components [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(8):4769-74.
    [36]SCHROEDER U, SOMMERFELD P, ULRICH S, et al. Nanoparticle technology for delivery of drugs across the blood-brain barrier [J]. Journal of Pharmaceutical Sciences,1998,87(11):1305-7.
    [37]KATAOKA K, HARADA A, NAGASAKI Y. Block copolymer micelles for drug delivery:design, characterization and biological significance [J]. Advanced Drug Delivery Reviews,2001,47(1):113-31.
    [38]TORCHILIN V P. Structure and design of polymeric surfactant-based drug delivery systems [J]. Journal of Controlled Release,2001,73(2-3):137-72.
    [39]CHEN Z. Small-molecule delivery by nanoparticles for anticancer therapy [J]. Trends in Molecular Medicine,2010,16(12):594-602.
    [40]TOMALIA D A, FRECHET J M. Introduction to "Dendrimers and dendritic polymers" [J]. Progress in Polymer Science,2005,30(3-4):217-9.
    [41]SEALE-GOLDSMITH M M, LEARY J F. Nanobiosystems [J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2009,1(5):553-67.
    [42]CHITHRANI D B. Nanoparticles for Improved Therapeutics and Imaging in Cancer Therapy [J]. Recent Patents on Nanotechnology,2010,4(3):171-80.
    [43]MU B, WANG T M, WU Z H, et al. Fabrication of functional block copolymer grafted superparamagnetic nanoparticles for targeted and controlled drug delivery [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2011,375(1-3): 163-8.
    [44]MACKAY J A, CHEN M N, MCDANIEL J R, et al. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection [J]. Nature Materials,2009,8(12):993-9.
    [45]PRABAHARAN M, GRAILER J J, PILLA S, et al. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery [J]. Biomaterials,2009,30(29):5757-66.
    [46]DONGMEI REN F K, SZU-WEN WANG. Protein Nanocapsules Containing Doxorubicin as a pH-Responsive Delivery System [J]. Small,2011,7(8):1051-60.
    [47]TALLURY P, PAYTON K, SANTRA S. Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications [J]. Nanomedicine,2008, 3(4):579-92.
    [48]DEBBAGE P, JASCHKE W. Molecular imaging with nanoparticles:giant roles for dwarf actors [J]. Histochemistry and Cell Biology,2008,130(5):845-75.
    [49]ALTINOGLU E I, AD AIR J H. Near infrared imaging with nanoparticles [J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2010,2(5): 461-77.
    [50]KOBAYASHI H, HAMA Y, KOYAMA Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots [J]. Nano Letters,2007,7(6): 1711-6.
    [51]MYKHAYLYK O, ZELPHATI O, ROSENECKER J, et al. siRNA delivery by magnetofection [J]. Current Opinion in Molecular Therapeutics,2008,10(5): 493-505.
    [52]MEDAROVA Z, PHAM W, FARRAR C, et al. In vivo imaging of siRNA delivery and silencing in tumors [J]. Nature Medicine,2007,13(3):372-7.
    [53]HAUKANES B I, KVAM C. Application of Magnetic Beads in Bioassays [J]. Bio-Technology,1993,11(1):60-3.
    [54]RYE P D. Sweet and sticky:Carbohydrate coated magnetic beads [J]. Bio-Technology,1996,14(2):155-7.
    [55]BAO F, YAO J L, GU R A. Synthesis of Magnetic Fe2O3/Au Core/Shell Nanoparticles for Bioseparation and Immunoassay Based on Surface-Enhanced Raman Spectroscopy [J]. Langmuir,2009,25(18):10782-7.
    [56]PELOUS J, FORET M, VACHER R. Colloidal Vs Polymeric Aerogels Structure and Vibrational-Modes [J]. Journal of Non-Crystalline Solids,1992, 145(1-3):63-70.
    [57]KOETZ J K, S. Polyelectrolytes and Nanoparticles. [J]. Springer-Verlag,2007,
    [58]MENGER F M. Structure of Micelles [J]. Accounts of Chemical Research,1979, 12(4):111-4.
    [59]YAN D Y, ZHOU Y F, HOU J. Supramolecular self-assembly of macroscopic tubes [J]. Science,2004,303(5654):65-7.
    [60]TUNG S H, LEE H Y, RAGHAVAN S R. A facile route for creating "Reverse" vesicles:Insights into "Reverse" self-assembly in organic liquids [J]. Journal of the American Chemical Society,2008,130(27):8813-7.
    [61]MIYAKE M, YAMADA K, OYAMA N. Self-assembling of guanidine-type surfactant [J]. Langmuir,2008,24(16):8527-32.
    [62]GANTA S, DEVALAPALLY H, SHAHIWALA A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery [J]. Journal of Controlled Release,2008,126(3):187-204.
    [63]GHOSH S, IRVIN K, THAYUMANAVAN S. Tunable disassembly of micelles using a redox trigger [J]. Langmuir,2007,23(15):7916-9.
    [64]COMBARIZA M Y, SAVARIAR E N, VUTUKURI D R, et al. Polymeric inverse micelles as selective peptide extraction agents for MALDI-MS analysis [J]. Analytical Chemistry,2007,79(18):7124-30.
    [65]SANDANARAJ B S, DEMONT R, AATHIMANIKANDAN S V, et al. Selective sensing of metalloproteins from nonselective binding using a fluorogenic amphiphilic polymer [J]. Journal of the American Chemical Society,2006,128(33):10686-7.
    [66]KARAS M, HILLENKAMP F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons [J]. Analytical Chemistry,1988,60(20): 2299-301.
    [67]TANAKA T, SLAMON D J, SHIMODA H, et al. Expression of Ha-Ras Oncogene Products in Human Neuroblastomas and the Significant Correlation with a Patients Prognosis [J]. Cancer Research,1988,48(4):1030-4.
    [68]STULTS J T. Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry (Maldi-Ms) [J]. Current Opinion in Structural Biology,1995,5(5):691-8.
    [69]SEYREK E, DUBIN P L, TRIBET C, et al. Ionic strength dependence of protein-polyelectrolyte interactions [J]. Biomacromolecules,2003,4(2):273-82.
    [70]SAVARIAR E N, GHOSH S, GONZALEZ D C, et al. Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing [J]. Journal of the American Chemical Society,2008,130(16):5416-+.
    [71]LIU M X, SUN Y, GAN L H, et al. Fabrication of ultrathin films of CdTe quantum dots by electrostatic self-assembly method [J]. Journal of Inorganic Materials,2008,23(3):557-61.
    [72]TAN W B, ZHANG Y. Multifunctional quantum-dot-based magnetic chitosan nanobeads [J]. Advanced Materials,2005,17(19):2375-+.
    [73]KIM B S, QIU J M, WANG J P, et al. Magnetomicelles:Composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers [J]. Nano Letters,2005,5(10):1987-91.
    [74]KANG Y J, TATON T A. Core/shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells [J]. Angewandte Chemie-International Edition,2005,44(3):409-12.
    [75]SHENHAR R, ROTELLO V M. Nanoparticles:Scaffolds and building blocks [J]. Accounts of Chemical Research,2003,36(7):549-61.
    [76]MURRAY C B, KAGAN C R, BAWENDI M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Annual Review of Materials Science,2000,30(545-610.
    [77]GOLE A, MURPHY C J. Biotin-streptavidin-induced aggregation of gold nanorods:Tuning rod-rod orientation [J]. Langmuir,2005,21(23):10756-62.
    [1]LI Y Y, ZHANG X Z, CHENG H, et al. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery [J]. Biomacromolecules,2006,7(11):2956-60.
    [2]TIAN H Y, XIONG W, WEI J Z, et al. Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid segment PBLG [J]. Biomaterials,2007,28(18): 2899-907.
    [3]WITTEMANN A, AZZAM T, EISENBERG A. Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin [J]. Langmuir,2007,23(4):2224-30.
    [4]MOTORNOV M, ROITER Y, TOKAREV I, et al. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems [J]. Progress in Polymer Science,2010,35(1-2):174-211.
    [5]ZHOU Y F, YAN D Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes [J]. Angewandte Chemie-International Edition,2004,43(37): 4896-9.
    [6]ZHOU Y F, YAN D Y, DONG W Y, et al. Temperature-responsive phase transition of polymer vesicles:Real-time morphology observation and molecular mechanism [J]. Journal of Physical Chemistry B,2007,111(6):1262-70.
    [7]ZHU G Q, WANG F G, LIU Y Y, et al. Factors influencing aggregation behavior of poly(gamma-benzyl 1-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents [J]. Chemical Papers,2010,64(5):657-62.
    [8]GUO B, SUN X Y, ZHOU Y F, et al. Supramolecular self-assembly and controllable drug release of thermosensitive hyperbranched multiarm copolymers [J]. Science China-Chemistry,2010,53(3):487-94.
    [9]HONG H Y, MAI Y Y, ZHOU Y F, et al. Self-assembly of large multimolecular micelles from hyperbranched star copolymers [J]. Macromolecular Rapid Communications,2007,28(5):591-6.
    [10]MAI Y Y, ZHOU Y F, YAN D Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether [J]. Macromolecules,2005, 38(21):8679-86.
    [11]GUO W Z, LI J J, WANG Y A, et al. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging [J]. Chemistry of Materials,2003,15(16):3125-33.
    [12]ZHANG Y W, HUANG W, ZHOU Y F, et al. A physical gel made from hyperbranched polymer gelator [J]. Chemical Communications,2007,25):2587-9.
    [13]BARNETT K G, COSGROVE T, VINCENT B, et al. Measurement of the Polymer-Bound Fraction at the Solid-Liquid Interface by Pulsed Nuclear Magnetic-Resonance [J]. Macromolecules,1981,14(4):1018-20.
    [14]BRONICH T K, KEIFER P A, SHLYAKHTENKO L S, et al. Polymer micelle with cross-linked ionic core [J]. Journal of the American Chemical Society,2005, 127(23):8236-7.
    [15]JIA X, CHEN D Y, JIANG M. Preparation of PEO-b-P2VPH(+)-S2O82-micelles in water and their reversible UCST and redox-responsive behavior [J]. Chemical Communications,2006,16):1736-8.
    [16]WEAVER J V M, TANG Y Q, LIU S Y, et al. Preparation of shell cross-linked micelles by polyelectrolyte complexation [J]. Angewandte Chemie-International Edition,2004,43(11):1389-92.
    [17]KOJIMA C, KONO K, MARUYAMA K, et al. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs [J]. Bioconjugate Chemistry,2000,11(6):910-7.
    [18]YANG H, MORRIS J J, LOPINA S T. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water [J]. Journal of Colloid and Interface Science,2004,273(1):148-54.
    [19]DOU H J, JIANG M, PENG H S, et al. pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers [J]. Angewandte Chemie-International Edition,2003,42(13):1516-9.
    [20]CAI C H, LIN J P, CHEN T, et al. Aggregation Behavior of Graft Copolymer with Rigid Backbone [J]. Langmuir,2010,26(4):2791-7.
    [21]LEE W I, BAE Y J, BARD A J. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles [J]. Journal of the American Chemical Society,2004,126(27):8358-9.
    [22]WANG D, IMAE T, MIKI M. Fluorescence emission from PAMAM and PPI dendrimers [J]. Journal of Colloid and Interface Science,2007,306(2):222-1.
    [23]WANG D J, IMAE T. Fluorescence emission from dendrimers and its pH dependence [J]. Journal of the American Chemical Society,2004,126(41):13204-5.
    [24]WANG D J, IMAE T, MIKI M. Reprint of "Fluorescence emission from PAMAM and PPI dendrimers [J. Colloid Interface Sci.306 (2007) 222-227] [J]. Journal of Colloid and Interface Science,2007,312(1):8-13.
    [25]CAO L, YANG W L, WANG C C, et al. Synthesis and striking fluorescence properties of hyperbranched poly(amido amine) [J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,2007,44(4-6):417-24.
    [1]RIEHEMANN K, SCHNEIDER S W, LUGER T A, et al. Nanomedicine-Challenge and Perspectives [J]. Angewandte Chemie-International Edition,2009,48(5):872-97.
    [2]VLERKEN LE A M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery [J]. Expert Opin Drug Deliv,2006,3(205-13.
    [3]STEFANADIS C, CHRYSOCHOOU C, MARKOU D, et al. Increased temperature of malignant urinary bladder tumors in vivo:The application of a new method based on a catheter technique [J]. Journal of Clinical Oncology,2001,19(3): 676-81.
    [4]GERWECK L E, SEETHARAMAN K. Cellular pH gradient in tumor versus normal tissue:Potential exploitation for the treatment of cancer [J]. Cancer Research, 1996,56(6):1194-8.
    [5]PATRI A K, MAJOROS I J, BAKER J R. Dendritic polymer macromolecular carriers for drug delivery [J]. Current Opinion in Chemical Biology,2002,6(4): 466-71.
    [6]CALABRETTA M K, KUMAR A, MCDERMOTT A M, et al. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups [J]. Biomacromolecules,2007,8(6):1807-11.
    [7]LUO D, HAVERSTICK K, BELCHEVA N, et al. Polyethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery [J]. Macromolecules,2002,35(9):3456-62.
    [8]EMILITRI E, RANUCCI E, FERRUTI P. New poly(amidoamine)s containing disulfide linkages in their main chain [J]. Journal of Polymer Science Part a-Polymer Chemistry,2005,43(7):1404-16.
    [9]HONG C Y, YOU Y Z, WU D C, et al. Thermal control over the topology of cleavable polymers:From linear to hyperbranched structures [J]. Journal of the American Chemical Society,2007,129(17):5354-+.
    [10]SHEN W C, RYSER H J P. Cis-Aconityl Spacer between Daunomycin and Macromolecular Carriers-a Model of Ph-Sensitive Linkage Releasing Drug from a Lysosomotropic Conjugate [J]. Biochemical and Biophysical Research Communications,1981,102(3):1048-54.
    [11]ZHU S J, HONG M H, ZHANG L H, et al. PEGylated PAMAM Dendrimer-Doxorubicin Conjugates:In Vitro Evaluation and In Vivo Tumor Accumulation (vol 27, pg 161,2010) [J]. Pharmaceutical Research,2010,27(9): 2030-.
    [12]SUN Y X, ZENG X, MENG Q F, et al. The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes [J]. Biomaterials,2008,29(32):4356-65.
    [13]LUO M, GUAN P, LIU W H. The identification of several saturated fatty acids and their salts by means of infrared spectrometry [J]. Spectroscopy and Spectral Analysis,2007,27(2):250-3.
    [14]LUO Y, BERNSHAW N J, LU Z R, et al. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates [J]. Pharmaceutical Research,2002, 19(4):396-402.
    [1]RAO CNR M A, CHEETHAM AK. The Chemistry of Nanomaterials: Synthesis, Properties and Applications [J]. Weinheim:Wiley-VCH,2004,
    [2]ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996,271(5251):933-7.
    [3]GHOSH S K, PAL T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications [J]. Chemical Reviews, 2007,107(11):4797-862.
    [4]MURRAY R W. Nanoelectrochemistry:Metal nanoparticles, nanoelectrodes, and nanopores [J]. Chemical Reviews,2008,108(7):2688-720.
    [5]ROSI N L, MIRKIN C A. Nanostructures in biodiagnostics [J]. Chemical Reviews,2005,105(4):1547-62.
    [6]GLOTZER S C, SOLOMON M J. Anisotropy of building blocks and their assembly into complex structures [J]. Nature Materials,2007,6(8):557-62.
    [7]MAO Z W, XU H L, WANG D Y. Molecular Mimetic Self-Assembly of Colloidal Particles [J]. Advanced Functional Materials,2010,20(7):1053-74.
    [8]NIE Z H, PETUKHOVA A, KUMACHEVA E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles [J]. Nature Nanotechnology,2010,5(1):15-25.
    [9]MURTHY V S, CHA J N, STUCKY G D, et al. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres [J]. Journal of the American Chemical Society,2004,126(16):5292-9.
    [10]CHOUHAN R S, VINAYAKA A C, THAKUR M S. Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoroimmunochromatographic technique [J]. Analytical and Bioanalytical Chemistry,2010,397(4):1467-75.
    [11]GE S G, ZHANG C C, ZHU Y N, et al. BSA activated CdTe quantum dot nanosensor for antimony ion detection [J]. Analyst,2010,135(1):111-5.
    [12]LI M Y, GE Y X, CHEN Q F, et al. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes [J]. Talanta,2007,72(1): 89-94.
    [13]HENDERSON T J D, BARBARA W HENDERSON. Photodynamic Therapy: Basic Principles and Clinical Applications [J]. CRC Press,1992,484.
    [14]GOWDA K, MARKS B D, ZIELINSKI T K, et al. Development of a coactivator displacement assay for the orphan receptor estrogen-related receptor-gamma using time-resolved fluorescence resonance energy transfer [J]. Analytical Biochemistry, 2006,357(1):105-15.
    [15]MATHIS G. Rare-Earth Cryptates and Homogeneous Fluoroimmunoassays with Human Sera [J]. Clinical Chemistry,1993,39(9):1953-9.
    [16]SUGAWA M, ARAI Y, IWANE A H, et al. Single molecule FRET for the study on structural dynamics of biomolecules [J]. Biosystems,2007,88(3):243-50.
    [17]TOMISHIGE M, STUURMAN N, VALE R D. Single molecule FRET observations of structural changes in the neck linker of kinesin [J]. Biophysical Journal,2007,201 a-a.
    [18]WEI O D, LEE M, YU X, et al. Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer [J]. Analytical Biochemistry,2006,358(1):31-7.
    [19]SLOT J W, GEUZE H J. A New Method of Preparing Gold Probes for Multiple-Labeling Cyto-Chemistry [J]. European Journal of Cell Biology,1985,38(1): 87-93.
    [20]GUO J, YANG W L, WANG C C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. Journal of Physical Chemistry B,2005,109(37):17467-73.
    [21]CHEN D, WANG G, LI J H. Interfacial bioelectrochemistry:Fabrication, properties and applications of functional nanostructured biointerfaces [J]. Journal of Physical Chemistry C,2007,111(6):2351-67.
    [22]NIRMAL M, BRUS L. Luminescence photophysics in semiconductor nanocrystals [J]. Accounts of Chemical Research,1999,32(5):407-14.
    [23]FRANKAMP B L, UZUN O, ILHAN F, et al. Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers [J]. Journal of the American Chemical Society,2002,124(6):892-3.
    [24]VAMVAKAKI M, UNALI G F, BUTUN V, et al. Effect of partial quaternization on the aqueous solution properties of tertiary amine-based polymeric surfactants:Unexpected separation of surface activity and cloud point behavior [J]. Macromolecules,2001,34(20):6839-41.
    [25]CONG R M, LUO Y J, YU H Q. Effect of Polymer Templates on the Preparation and Photocatalytic Activity of CdS Quantum Dots [J]. Acta Chimica Sinica,2010, 68(19):1971-6.
    [26]FREY B L, CORN R M. Covalent attachment and derivatization of poly(L-lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy [J]. Analytical Chemistry,1996,68(18): 3187-93.
    [27]SEHGAL D, VIJAY I K. A Method for the High-Efficiency of Water-Soluble Carbodiimide-Mediated Amidation [J]. Analytical Biochemistry,1994,218(1):87-91.
    [28]LO P C, HUANG J D, CHENG D Y Y, et al. New amphiphilic silicon(IV) phthalocyanines as efficient Photosensitizers for photodynamic therapy:Synthesis, photophysical properties, and in vitro photodynamic activities [J]. Chemistry-a European Journal,2004,10(19):4831-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700