基于亚胺键的超支化共轭聚合物的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物由于具有良好的光电性能,目前已成为高分子科学研究领域的前沿方向。各种不同发光波长、不同结构的共轭聚合物正在被源源不断地开发出来。其中,超支化共轭聚合物合成简单,其独特的高度支化和球状结构能够抑制分子聚集体和激基缔合物的产生,因此引起了人们的关注。
     本论文经充分调研文献后,结合课题组在超支化聚合物和超分子化学方面的研究基础,设计并合成了一类含亚胺键的超支化共轭聚合物,也称超支化共轭聚甲亚胺,并对该类超支化共轭聚合物的光学性能和功能进行了较为系统地探索,本文主要研究内容分为以下两个部分:
     (1)提出了利用末端-主链间相互作用调节超支化共轭聚合物光学性能的新策略:采用3, 3-对二氨基联苯与对苯二甲醛的A2+B4缩聚反应体系成功合成了具有一定溶解性的超支化共轭聚甲亚胺。超支化聚甲亚胺具有高度支化的三维空间结构,其大量末端氨基易与主链中的亚胺键形成很强的分子间相互作用,从而对其光学性质产生了非常大的影响。改变反应单体的摩尔配比,可以调节超支化聚甲亚胺末端端基的种类和数目,因此改变了聚合物末端-主链间相互作用和相应的光学性质。此外,通过加入掺杂物,如加入质子酸将末端氨基和亚胺键质子化,加入金属离子与亚胺键上氮原子螯合,加入环糊精将末端端基包覆在其空腔内形成“绝缘层”等手段,改变了超支化聚甲亚胺末端-主链间相互作用,实现了对其光学性质的调控。
     (2)利用所合成的超支化共轭聚甲亚胺作为纳米反应器,成功制备了尺寸小且均一、分散性好的CdS纳米量子点。亚胺键上的氮原子含有未成键的孤对电子,能够将Cd2+很好地稳定在超支化聚甲亚胺(HPPAM)空腔内的位点上,然后通过加入S2-,原位生成CdS量子点,得到了CdS/HPPAM纳米复合物。透射电镜、动态光散射、荧光光谱、红外光谱等分析结果表明,我们的确得到了CdS/HPPAM纳米复合物。延长陈化时间,CdS/HPPAM纳米复合物荧光强度几乎没有发生变化,说明超支化聚合物的致密包覆防止了量子点的聚集,从而避免了荧光淬灭。
Conjugated polymers have received considerable attention in both academic research and industrial applications because of their fantastic photoelectric properties. A variety of conjugated polymers with different light-emitting wavelengths and structures are being developed. Due to the simple preparation process together with the unique highly branched and globular structure which helps to suppress the aggregation and excimer, hyperbranched structure has been introduced into the conjugated polymers.
     In the present work, a new kind of hyperbranched conjugated polymers based on imine bond, which is also known as polyazomethine, has been designed and synthesized. Furthermore, two aspects including optical properties and functionalities of this kind of polymers have been studied. The dissertation is consisted of two parts as follows:
     (1) A kind of hyperbranched conjugated polyazomethine has been successfully prepared by the polycondensation of 3, 3'-diaminobenzidine with terephthalaldehyde. Because of the highly branched architecture, the terminal amino groups and the imine linkages in the backbone can easily form intra- or inter-molecular interactions, which affect the optical properties greatly. Based on this point, a simple approach to tune optical properties of the hyperbranched conjugated polymers has been developed via only adjusting the terminal-backbone interactions. Not only varying monomers feeding ratio to change the species and quantity of end-groups of hyperbranched polymer, but also adding some dopants, such as adopting acid to protonate the terminal amino groups and imine bonds in the main chain, adopting metal ions to coordinate the nitrogen atom of imine bonds, or adopting cyclodextrin to encapsulate the terminal groups which act as an insulating layer, can alter the terminal-backbone interactions. Correspondingly, the optical properties of hyperbranched conjugated polymers have been controlled.
     (2) The hyperbranched conjugated polyazomethine (HPPAM) has been used as a nanoreactor to prepare CdS quantum dots with small size and good dispersion. Since the nitrogen atom in the imine bond contains lone-pair electron, it can coordinate Cd2+ stably in the hyperbranched cavity. After adding S2-, the CdS can be synthesized in-situ. The CdS/HPPAM nanocomposites have been confirmed by Transmission Electron Microscope (TEM), Dynamic Light Scattering (DLS), Fourier Transform Infrared Spectroscopy (FTIR), Fluorescence (FL) tests. Furthermore, the effect of aging time on the fluorescence intensity of CdS/HP-PAM nanocomposites has also been studied. The results show that due to the encapsulation of hyperbranched polymer, the fluorescence intensity is almost unchanged, indicating no fluorescence quenching with the aging time increasing.
引文
[1]刘宽,功能共轭聚合物的设计合成及其性能, [博士论文],杭州,浙江大学, 2008.
    [2] Xu J.K., Liu H.T., Pu S.Z., et al., A novel electrochromic poly-acetylene derivative with good fluorescence properties electrodeposited by direct anodic oxidaton of 1,2-methylene-dioxybenzene, Macromolecules 2006, 39(17), 5611-5616.
    [3] Lam J.W.K., Dong Y.P., Kwok H.S., et al., Light-emitting polyacetylenes: Synthesis and electrooptical properties of poly(1-phenyl-1-alkyne)s bearing naphthyl pendants, Macromolecules 2006, 39(20), 6997-7003.
    [4] Suresh P., Balaraju P., Sharma S.K., et al., Photovoltaic devices based on PPHT: ZnO and dye-sensitized PPHT: ZnO thin films, Sol. energ. mat. Sol. C 2008, 92(8), 900-908.
    [5] Medeirosa M., Gorgyb K., Alain Deronzier A., et al., Design of new electropolymerized polypyrrole films of polyfluorinated Zn(II) and Mn(III) porphyrins: towards electrochemical sensors, Mater. Sci. Eng. C 2008, 28(5-6), 731-738.
    [6] Itoh T., Matsubaraa I., Shin W., et al., Characterizations of interlayer organic-inorganic nanohybrid of molybdenum trrioxide with polyaniline and poly(o-anisidine), Mater. Chem. Phys. 2008, 110(1), 115-119.
    [7] Zhou G., Cheng Y.X., Wang L.X., et al., Novel polyphenylenes containing phenol-substituted oxadiazole moieties as fluorescent chemosensors for fluoride ion, Macromolecules 2005, 38(8), 2148-2153.
    [8] Huo L.J., Houa J.H., He C., et al., Synthesis, characterization and photovoltaic properties of poly{[1',4'-bis-(thienyl-vinyl)]-2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene}, Syn. Met. 2006, 156(2-4), 276-281.
    [9] Kimura M., Sato M., Adachi N., et al., Poly(p-phenylene vinylene)s wrapped with 1,3,5-phenylene-based rigid dendrons, Chem. Mater. 2007, 19 (11), 2809-2815.
    [10] Pucci A., Biver T., Ruggeri G. et al., Green-blue luminescence dichroism of cyano-containing poly[(m-phenylene ethynylene)-alt-(p-phenylene ethynylene)] aggregates dispersed in oriented polyethylene, Polymer 2005, 46(25), 11198-11205.
    [11] Sun J., Chen J.W., Zou J.H., et al.,π-Conjugated poly(anthraeene-alt-fluorene)s with X- shaped repeating units: New blue-lightemitting polymers, Polymer 2008, 49(9), 2282-2287.
    [12] Zhu Y., Rabindranath A.R., Beyerlein T., et al., Highly luminescent l,4-diketo-3,6-diphenyl pyrrolo[3,4-c]pyrrole-(DPP-) based on conjugated polymers prepared up on Suzuki coupling, Macromolecules 2007, 40(19), 6981-6989.
    [13]马谆,共轭聚合物的合成、自组装行为及其光电性能的研究, [博士论文],上海,复旦大学, 2007.
    [14] Heeger A.J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture), Angew. Chem. Int. Ed. 2001, 40(14), 2591-2611.
    [15] Jiang H., Zhao X.Y., Schanze K.S., Amplified fluorescence quenching of a conjugated polyelectrolyte mediated by Ca2+, Langmuir 2006, 22 (13), 5541-5543.
    [16] Lu S.L., Yang M.J., Luo J., et al., Novel alternating dioetyloxyphenylene vinylene- benzothiadiazole copolymer: Synthesis and photovoltaic Performance, Macromol. Chem. Phys. 2005, 206(6), 664-671.
    [17] Lee J.H., Hwang D.H., Polymer light-emitting diode using a new trialkoxyalkyl substituted PPV derivativesy, Syn. Met. 2008, 158(7), 273-277.
    [18] Banishoeib F., Adriaensens P., Berson S., et al., The synthesis of regio-regular poly(3-alkyl-2,5-thienylene vinylene) derivatives using lithium bis(trimethylsilyl) amide (LHMDS) in the dithiocarbamate precursor route, Sol. Energ. Mat. Sol. C. 2007, 91(11), 1026-1034.
    [19] Ryu H., Subramanian L.R., Hanack M., Photo- and electroluminescent properties of cyano-substituted styryl derivatives and synthesis of CN-PPV model compounds containing an alkoxy spacer for OLEDs, Tetrahedron 2006, 62(26), 6236-6247.
    [20] Liang F.S., Pu Y.J., Kurata T., et al., Synthesis and electroluminescent property of poly(p- phenylenevinylene)s bearing triarylamine pendants, Polymer 2005, 46(11), 3767-3775.
    [21] Flory, P.J., Molecular size distribution in three dimensional polymers. VI. branched polymers containing A-R-Bf-1 type units, J. Am. Chem. Soc. 1952, 74, 2718-2723.
    [22] Fréchet, J.M.J., Tomalia, D.A., Dendrimer and other dendritic polymers, New York: John Wiley & Sons Ltd, 2002.
    [23] Gao, C., Yan, D., Hyperbranched polymers: from synthesis to applications, Prog. Polym. Sci. 2004, 29, 183-275.
    [24]文志红,石葆莹,超支化聚合物的研究进展,杭州化工2007, 37(3), 11-15.
    [25]肖又清,胡剑青,涂伟萍,超支化聚合物合成方法与应用研究进展,化工进展2007, 26(9), 1253-1257.
    [26]曲忠先,焦剑,王软洁等,超支化聚合物的研究进展,材料导报2006, 20(3), 25-28.
    [27]郭哲,端基改性制备超支化聚酰胺胺功能材料, [硕士论文],上海,上海交通大学, 2009.
    [28]万会师,利用环糊精控制聚合产物的支化结构, [硕士论文],上海,上海交通大学, 2008.
    [29]张永文,超支化聚酰胺胺的合成及其功能化研究, [博士论文],上海,上海交通大学, 2008.
    [30] Kim Y.H., Webster O.W., Hyperbranched polyphenylenes, Polym. Prepr. 1988, 29, 310-311.
    [31] Kim Y.H., Webster O.W., Water-soluble hyperbranched polyphenylene: A unimolecular micelle, J. Am. Chem. Soc. 1990, 112, 4592-4593.
    [32] Kim Y.H., Webster O.W., Hyperbranched polyhenylenes, Macromolecules 1992, 25, 5561-5572.
    [33] Hawker C.J., Lee R., Fréchet J.M.J., One-step synthesis of hyperbranched dendritic polyesters, J. Am. Chem. Soc. 1991, 113, 4583-4588.
    [34] Malmstrom E., Johansson M., Hult A., Hyperbranched aliphatic polyesters, Macromolecules 1995, 28, 1698-1703.
    [35] Mock A., Burgath A., Frey H., et al., Synthesis of hyperbranched aromatic homo and copolyesters via the slow monomer addition method, Macromolecules 2001, 34, 7692-7698.
    [36] Uhrich K.E., Hawker C.J., Fréchet J.M.J., et al., One-pot synthesis of hyperbranched polyethers. Macromolecules 1992, 25, 4583-4587.
    [37] Jayakannan M., Ramakrishnan S.A., Novel hyperbranched polyether by melt transetherification, Chem. Commun. 2000, 1967-1968.
    [38] Kumar A., Ramakrishnan S., Hyperbranched polyurethanes with varying spacer segments between the branching points, J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 839-848.
    [39] Kumar A., Meijer E.W., Novel hyperbranched polymer based on urea linkages, Chem. Commun. 1998, 1629-1630.
    [40] Feast W.J., Aldersley S.J., Findlay P., et al., Approaches to water-soluble aliphatic hyperbranched polyamides, Polym. Mater. Sci. Eng. 2001, 84, 712-713.
    [41] Brenner A.R., Schmaljohann D., Voit B.I., et al., Hyperbranched polyesters and polyamides by the AB(x) polycondensation process, Macromol. Symp. 1997, 122, 217-222.
    [42] Miravet J.F., Fréchet J.M.J., New hyperbranched poly(siloxysilanes): Variation of the branching pattern and end-functionalization, Macromolecules 1998, 31, 3461-3418.
    [43] Mathias L.J., Carothers T.W., Hyperbranched poly(siloxysilanes), J. Am. Chem. Soc. 1991, 113, 4043-4044.
    [44] Yan D., Gao, C., Hyperbranched polymers made from A(2) and BB’(2) Type Monomers. 1. Polyaddition of 1-(2-Aminoethyl)piperazine to divinyl sulfone. Macromolecules 2000, 33, 7693-7699.
    [45] Gao C., Yan D., Synthesis of hyperbranched polymers from commercially available A(2) and BB’(2) type monomers, Chem. Commun. 2001, 107-108.
    [46]高超,超支化聚合物的分子设计、合成、表征及功能化研究, [博士论文],上海,上海交通大学, 2001.
    [47] Fréchet J.M.J., Henmi M., Gitsov I., et al., Self-condensing vinyl polymerization: An approach to dendritic materials, Science 1995, 269, 1080-1083.
    [48] Suzuki M., Li A., Saegusa T., Multibranching polymerization: Palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendriticpolyamine, Macromolecuels 1992, 25, 7071-7072.
    [49] Sunder A., Kramer M., Frey H., et al., Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999, 32, 4240-4246.
    [50] Sunder A., Kramer M., Frey H, et al., Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols, Angew. Chem. Int. Ed. 1999, 38, 3552-3555.
    [51] Bednarek M., Biedron T., Helinski J., et al., Branched polyether with multiple primary hydroxyl groups: Polymerization of 3-ethyl-3-hydroxymethyloxetane, Macromol. Rapid Commum. 1999, 20, 369-372.
    [52] Magnusson H., Malmstr?m E., Hult A., Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane, Macromol. Rapid Commum. 1999, 20, 453-457.
    [53] Yan, D.; Hou, J.; Zhu, X.; et al. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization, Macromol. Rapid Commum. 2000, 21, 557-561.
    [54] Yuichi I., Mitsutoshi J., Masaaki K, et al., Synthesis of hyperbranched aromatic polyesters prepared by the palladium catalyzed CO insertion reaction, Kobunshi Ronbunshu 1997, 54(12), 891-895.
    [55] Chang H.T., Frechet J.M.J., Proton-tranfer polymerization: A new approach to hyperbranched polymers, J. Am. Chem. Soc. 1999, 121(10), 2313-2314.
    [56] Gauthier M., Moller M., Unirorm highly branched polymers by anionic grafting: arborescent graft polymers, Macromolecules 1991, 24, 4548.
    [57] Voit B.I., Dendritic polymers: From aesthetic macromolecules to commercially interesting materials, Acta Polym., 1995, 46, 87-99.
    [58] Tao X.T., Zhang Y.D., Wada T., et al., Hyperbranched polymers for electroluinecence applications, Adv. Mater. 1998, 10, 226-230.
    [59]覃春杨,功能性超支化共轭聚合物的合成、表征及光物理性能的研究, [博士论文],上海,复旦大学, 2008.
    [60]贺庆国,林童,白凤莲,线性及超支化共轭聚合物的合成及光物理性质,科学通报, 2000, 45(22), 2376-2383.
    [61] Grigoras M., Catanescu C.O., Imine oligomers and polymers, J. Macromol. Sci. C Polym. Rev. 2004, 44(2), 131-173.
    [62] Iwan A., Sek D., Processible polyazomethines and polyketanils: From aerospace to light-emitting diodes and other advanced applications, Prog. Polym. Sci. 2008, 33(3), 289-345.
    [63] Meyer C.D., Joiner C.S., Stoddart J.F., Template-directed synthesis employingreversible imine bond formation, Chem. Soc. Rev. 2007, 36(11), 1705-1723.
    [64] Adams J.P., Imines, enamines and oximes, J. Chem. Soc., Perkin Trans. 1 2000, 2, 125-139.
    [65]蒋逸,基于酰腙键的智能动态聚合物的设计与表征, [硕士论文],上海,上海交通大学, 2009.
    [66] Adams R., Bullok J.E., Wilson W.C., Contribution to the structure of benzidine, J. Am. Chem. Soc. 1923, 45, 521-527.
    [67] Marvel C.S., Hill H.W., Polyazines, J. Am. Chem. Soc. 1950, 72(10), 4819-4820.
    [68] Morgan P.W., Kwolek S.L., Pletcher T.C., Aromatic azomethine polymers and fibers, Macromolecules 1987, 20(4), 729-739.
    [69] Chen J.Y., Jenekhe S.A., Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes, Chem. Mater. 1991, 3(5), 878-887.
    [70] Yang J.Y., Jenekhe S.A., Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines, Macromolecules 1995, 28, 1180-1196.
    [71] El-Shekeil A.G., Al-Yusufy F.A., Saknidy S., DC conductivity of some polyazomethines, Polym. Int. 1997, 42 (1), 39-44.
    [72] El-Shekeil A.G., Ai-Saady H.A., Al-Yusufy F.A., Synthesis and characterization of some soluble conducting polyazomethine polymers, Polym. Int. 1997, 44 (1) 78-82.
    [73] El-Shekeil A.G., Hamid S., Ali D.A., Synthesis and characterization of some polyazomethine conducting polymers and oligomers, Polym. Bull. 1997, 39 (1), 1-7.
    [74] El-Shekeil A.G., Hamid S., Ali D.A., Synthesis and characterization of polyazomethine conducting polymers and oligomers, Angew. Makromol. Chem. 1997, 253, 99.
    [75] McElvain J., Tatura S., Wudl F., et al., Linear and nonlinear optical spectra of polyazomethines fabricated by chemical vapor deposition, Syn. Met. 1998, 95(2), 101-105.
    [76] Grimm B., Krüger R., Schrader S., et al., Molecular structure investigations on fluorine containing polyazomethines by means of MALDI-TOF-MS technique, J. Fluorine Chem. 2002, 113, 85-91.
    [77] Matsumoto T., Matsuoka T., Suzuki Y. Synthesis of fully conjugated aromatic polyazomethine from AB-type monomer using soluble precursor method, Macromol. Symp. 2003, 19, 83-96.
    [78]牛海军,黄玉东,白续铎,聚甲亚胺(Schiff base)的研究进展,功能材料2004, 35, 341-343.
    [79]杨晨,聚甲亚胺类的合成、结构表征及性能研究, [硕士论文],延吉,延边大学, 2007.
    [80]刘振良,电子施体、受体共轭高分子:理论分析、合成、特性研究与元件应用, [博士论文],台湾,国立台湾大学, 2007.
    [81] D’Alelio G.F., Crivello J.V., Schoenig, R.K., et al., Polymeric schiff bases. I. The synthesis and evaluation of polymeric schiff bases prepared by schiff base exchange reactions, J. Macromol. Sci. Chem. 1967, 1, 1161-1249.
    [82] D’Alelio G.F., Crivello J.V., Schoenig R.K., et al., Polymeric schiff bases. VI. The direct synthesis of poly schiff bases, J. Macromol. Sci. Chem. 1967, 1, 1321-1330.
    [83] D’Alelio G.F., Crivello J.V., Dehner T.R., et al., Polymeric schiff bases. VII. Some parameters in the evaluation of the thermal stability of poly(p-xylylidene-p-phenylenediamine, J. Macromol. Sci. Chem. 1967, 1 (7), 1331-1364.
    [84] D’Alelio G.F., Kurosaki T., Ostdick T., Polymeric schiff bases. IX. Syntheses of polymeric Schiff bases from acetals and amine compounds. J. Macromol. Sci. Chem. 1968, 2, 285-333.
    [85] D’Alelio G.F., Strazik W.F., Feigl D.M., et al., Polymeric schiff bases. XVII. Azomethine copolymers, J. Macromol. Sci. Chem. 1968, 2, 1457-1490.
    [86] Antony R., Tembe G.L., Ravindranathan, et al., Polymer supported Ru(III) complexes, synthesis and catalytic activity, Polymer 1998, 39(18), 4327-4333.
    [87] Antony R., Tembe G.L., Ravindranathan, et al., Synthesis and catalytic activity of Fe(III) anchored to a polystyrene-schiff base support, J. Mol. Catal. A Chem. 2001, 171, 159-168.
    [88] Bhowon M.G., Kam W.H.L., Narain R., Schiff base complexes of ruthenium (II) and their use as catalytic oxidants, Polyhedron 1998, 18, 341-345.
    [89] Pomarzańsk E.S., Hasik M., Turek W., et al., Preparation, spectroscopic and catalytic studies of poly(1,4-phenylenemethylidynenitrilo-1,4-phenylenenitrilomethylidyne) protonated with selected heteropolyacids, J. Mol Cat. A 1996, 114, 267-275.
    [90] Yurt A., Balaban A., Ustun K.S., et al., Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel, Mater. Chem. Phys. 2004, 85, 420-426.
    [91] Shokry H., Yuasa M., Sekine I., et a. Corrosion inhibition of mild steel by Schiff base compounds in various aqueous solutions: Part 1, Corros. Sci. 1998, 40(12), 2173-2186.
    [92] Hosseini M., Mertens S.F.L., Ghorbani M., et al., Asymmetrical schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys. 2003, 78, 800-808.
    [93] Li S.L., Wang Y.G., Chen S.H., et al., Some aspects of quantum chemical calculations for the study of schiff base corrosion inhibitors on copper in NaCl solutions, Corros. Sci. 1999, 41, 1769-1782.
    [94] Li S., Chen S., Lei S., et al., Investigation on some schiff bases as HCl corrosion inhibitors for copper, Corros. Sci. 1999, 41, 1273-1287.
    [95] Quan Z., Chen S., Li S., Protection of copper corrosion by modification of self-assembled films of schiff bases with alkanethiol, Corros. Sci. 2001, 43, 1071-1080.
    [96] Quan Z., Chen S., Li Y., et al., Adsorption behaviour of schiff base and corrosion protectionof resulting films to copper substrate, Corros. Sci. 2002, 44, 703-715.
    [97] Aytac A., Ozmen U., Kabasakaloglu, Investigation of some schiff bases as acidic corrosion of alloy AA3102, Mater. Chem. Phys. 2005, 89, 176-181.
    [98] Donnio B., Barbera J., Gimenez R., et al., Controlled molecular conformation and morphology in poly(amidoamine) (PAMAM) and poly(propyleneimine) (DAB) dendrimers, Macromolecules 2002, 35, 370-381.
    [99] Kannan P., Paja S., Sakthivel P., Synthesis and characterization of thermotropic liquid crystalline poly(azomethine ether)s, Polymer 2004, 45, 7895-7902.
    [100] Aly K.I., Khalaf A.A., Alkskas I.A., Liquid crystalline polymers VII. Thermotropic liquid crystalline poly(azomethine-ether)s containing dibenzylidene derivatives in the main chain, Eur. Polym. J. 2003, 39, 1035-1044.
    [101] Sauer B.B., Kampert W.G., McLean R.S., Thermal and morphological properties of main chain liquid crystalline polymers, Polymer 2003, 44, 2721-2738.
    [102] Marcos M., Gimenez R., Serrano J.L., et al., Dendromesogens: liquid crystal organizations of poly(amidoamine) dendrimers versus starburst structures, Chem. Eur. J. 2001, 7(5), 1006-1013.
    [103] Sun W.L., Gao X.S., Lu F.C., Synthesis and properties of poly-Schiff base containing bisthiazole rings, J. App. Poly. Sci., 1997, 64(12), 2309-2315.
    [104] Chen H., Rhodes J., Schiff base forming drugs: mechanisms of immune potentiation and therapeutic potential, J. Mol. Med. 1996, 74, 497–504.
    [105] Das A., Trousdale M.D., Ren S., et al., Inhibition of herpes simplex virus type 1 and adenovirus type 5 by heterocyclic Schiff bases of aminohydroxyguanidine tosylate. Antiviral Res. 1999, 44, 201–208.
    [106] Geronikaki A., Hadjipavlou-Litina D., Amourgianou M., Novel thiazolyl, thiazolinyl and benzothiazolyl Schiff bases as possible lipoxygenase’s inhibitors and anti-inflammatory agents. II. Farmaco 2003, 58, 489–495.
    [107] Ramesh R, Maheswaran S., Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes, J.Inorg. Biochem. 2003, 96, 457–62.
    [108] Yang C.J., Jenekhe S.A., Effects of structure on refractive index of conjugated polyimines, Chem. Mater. 1994, 6, 196-203.
    [109]李昕,黄玉东,牛海军等,含三芳胺聚西夫碱空穴输送材料结晶性、热稳定性和传输性研究,分子科学学报2001, 17(3), 161-165.
    [110] Yamamoto K., Higuchi M., Shlki S., et al., Stepwise radial complexation of imine groups in phenylazomethine dendrimers, Nature 2002, 415, 509-511.
    [111] Burroughes J.H., Bradley D.D.C., Brown A.R., et al., Light-emitting diodes based on conjugated polymers, Nature, 1990, 347: 539-541.
    [112] Kraft A., Grimsdale A.C., Holmes A.B., Electroluminescent conjugated polymers-seeing polymers in a new light, Angew. Chem. Int. Ed. 1998, 37, 402-428.
    [113] Bernius M.T., Iubasekaran M., O’Brien J., et al., Progress with light-emitting polymers, Adv. Mater. 2000, 12(23), 1737-1750.
    [114] Pron A., Rannou P., Processible conjugated polymers: from organic semiconductors to organic metals and superconductors, Prog. Polym. Sci. 2002, 27(1), 135-190.
    [115] Maeussler H., Tang B.Z., Functional hyperbranched macromolecules constructed from acetylenic triple-bond building blocks, Adv. Polym. Sci. 2007, 209, 1-58.
    [116] Pérez L.P., ChenY., Shen Z., et al., Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: Polymer architectures and pH-effectsa, Macromol. Rapid Commun. 2007, 28, 1404-1409.
    [117] Grimsdale A.C., Chan K.L., Martin R.E., et al., Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices, Chem. Rev. 2009, 109(3), 897-1091.
    [118] Abbel R., Schenning A.P.H.J., Meijer E.W., Highlight fluorene-based materials and their supramolecular properties, J. Polym. Sci. A Polym. Chem. 2009, 47(15), 4215-4233.
    [119] H?lter D., Frey H., Degree of branching in hyperbranched polymers. 2. Enhancement of the db: Scope and limitations, Acta Polym. 1997, 48(8), 298-309.
    [120] Kim Y.H., Hyperbranched polymers 10 years after, J. Polym. Sci. A Polym. Chem. 1998, 36(11), 1685-1698.
    [121] Halim M., Pillow J.N.G., Samuel I.D.W., et al., Conjugated dendrimers for light-emitting diodes: Effect of generation, Adv. Mater. 1999, 11(5), 371-374.
    [122] Hult A., Johansson M., Malmstr?m E., Hyperbranched polymers, Adv. Polym. Sci. 1999, 143, 1-34.
    [123] Voit B., New developments in hyperbranched polymers, J. Polym. Sci. Polym. Chem. Ed. 2000, 38(14), 2505-2525.
    [124] Pogantsch A., Wenzl F.P., List E.J.W., et al., Polyfluorenes with dendron side chains as the active materials for polymer light-emitting devices, Adv. Mater. 2002, 14(15), 1061-1064.
    [125] Furuta P., Brooks J., Thompson M.E., et al., Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: A model for single-layer multichromophoric organic light-emitting diodes, J. Am. Chem. Soc., 2003, 125(43), 13165-13172.
    [126] Tolosa J., Kub C., Bunz U.H.F., Hyperbranched: A universal conjugated polymer platform, Angew. Chem. Int. Ed. 2009, 48, 4610-4612.
    [127] Yang J.X., Tao X.T., Yuan C.X., et al., A facile synthesis and properties of multicarbazole molecules containing multiple vinylene bridges, J. Am. Chem. Soc., 2005, 127(10), 3278-3279.
    [128] Giuseppone N., Fuks G., Lehn J.M., Tunable fluorene-based dynamers through constitutional dynamic chemistry, Chem. Eur. J. 2006, 12(6), 1723-1735.
    [129] Sek D., Iwan A., Jarzabek B., et al., Hole transport triphenylamine-azomethine conjugated system: Synthesis and optical, photoluminescence, and electrochemical properties, Macromolecules 2008, 41(18), 6653-6663.
    [130] Sek D., Iwan A., Kaczmarczyk B., et al., New conjugated azomethines containing triphenylamine core-characterization and properties, High Perform. Polym. 2007, 19(4), 401-426.
    [131] Sek D., Iwan A., Jarzabek B., et al., Characterization and optical properties of oligoazomethines with triphenylamine moieties exhibiting blue, blue-green and green light, Spectrochim. Acta A 2009, 72(1), 1-10.
    [132] Zhong W., Ouyang X., Huang P., The synthesis of a novel aromatic hyperbranched polymer, Polym. Mater. Sci. Eng. (Chinese) 2004, 20(6), 90-93.
    [133] Lehn J.M., Perspectives in supramolecular chemistry-From molecular recognition towards molecular information processing and self-organization, Angew. Chem. Int. Ed. 1990, 29(11), 1304-1319.
    [134] Lehn J.M., Supramolecular Chemistry: Concepts and Perspectives, Weinheim, Wiley-VCH, 1995.
    [135] Lehn J.M., Atwood J.L., Davies J.E.D., et al. Eds. Comprehensive Supramolecular Chemistry. Oxford, Pergamon, 1996.
    [136] Lehn J.M., Supramolecular polymer chemistry - Scope and perspective, Polym. Int. 2002, 51(10), 825-839.
    [137] Lehn J.M., Dynamers: dynamic molecular and supramolecular polymers, Prog. Polym. Sci. 2005, 30(8-9), 814-831.
    [138] Lehn J.M., From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry, Chem. Soc. Rev. 2007, 36(2), 151-160.
    [139] Lehn J.M., Toward self-organization and complex matter, Science 2002, 295(5564), 2400-2403.
    [140] Yang C.J., Jenekhe S.A., Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines, Macromolecules 1995, 28(4), 1180-1196.
    [141] Liu C.L., Tsai F.C., Chang C.C., et al., Theoretical analysis on the geometries and electronic structures of coplanar conjugated poly(azomethine)s, Polymer 2005, 46(13), 4950-4957.
    [142] Higuchi M., Tsuruta M., Chiba H., et al., Control of stepwise radial complexation in dendritic polyphenylazomethines, J. Am. Chem. Soc. 2003, 125(33), 9988-9997.
    [143] Yamamoto K., Takanashi K., Synthesis and functionality of dendrimer with finely controlledmetal assembly, Polymer 2008, 49(19), 4033-4041.
    [144] Yamamoto K., Higuchi M., Shlki S., et al., Novel linear and hyperbranched aromatic polyamide with phenylazometine units for chemical recycling, Chem. Letters 2002, 31(7), 692-693.
    [145] Cacialli F., Wilson J.S., Michels J.J., et al., Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions, Nature Mater. 2002, 1, 160-164.
    [146] Liu Y., Zhao L., Zhang H.Y., et al., Supramolecular polypseudorotaxane with conjugated polyazomethine prepared directly from two inclusion complexes ofα-cyclodextrin with tolidine and phthaldehyde, Macromolecules 2004, 37(17), 6362-6369.
    [147] Farcas A., Grigoras M., Synthesis and characterization of a fully aromatic polyazomethine with rotaxane architecture, Polym. Int. 2003, 52(8), 1315-1320.
    [148] Farcas A., Grigoras M., Synthesis and characterization of a fully aromatic polyazomethine with main chain rotaxane architecture, High Perform. Polym. 2001, 13(3), 201-210.
    [149] Wang D.J., Imae T., Fluorescence emission from dendrimers and its pH dependence, J. Am. Chem. Soc. 2004, 126(41), 13204-13205.
    [150] Cushing B.L., Kolesnichenko V.L., O’Connor C.J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 2004, 104, 3893-3946.
    [151] Burda C., Chen X., Narayanan R., et al., Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 2005, 105(4), 1025-1102.
    [152] Murray C.B., Norris D.J., Bawendi M.G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706-8715.
    [153] Qu L., Peng X., Control of photoluminescence properties of CdSe nanocrystals in growth, J. Am. Chem. Soc. 2002, 124, 2049-2055.
    [154] Gaponik N., Talapin D.V., Rogach A.L., et al., Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes, J. Phys. Chem. B 2002, 106, 7177-7185.
    [155] Zhang H., Wang L.P., Xiong H.M., et al., Hydrothermal synthesis for high-quality CdTe nanocrystals, Adv. Mater. 2003, 15(20), 1712-1715.
    [156] Talapin D.V., Rogach A.L., Shevchenko E.V., et al., Dynamic distribution of growth rates within the ensembles of colloidal II?VI and III?V semiconductor nanocrystals as a factor governing their photoluminescence efficiency, J. Am. Chem. Soc. 2002, 124(20), 5782-5790.
    [157] Huynh W.U., Dittmer J.J., Alivisatos A.P., Hybrid nanorod-polymer solar cells, Science 2002, 295, 2425-2427.
    [158] Schlamp M.C., Peng X., Alivisatos A.P., Improved efficiencies in light emitting diodes madewith CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer, J. Appl. Phys. 1997, 82(11), 5837-5842.
    [159] Mattoussi H., Radzilowski L.H., Dabbousi B.O., et al., Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals, J. Appl. Phys. 1998, 83(12), 7965-7974.
    [160] Gao M., Lesser, C., Kirstein S., et al., Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films, J. Appl. Phys. 2000, 87, 2297-2302.
    [161] Greenham N.C., Peng X., Alivisatos A.P., Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B 1996, 54(24), 17628-17637.
    [162] Barnham K., Marques J. L., Hassard J., et al., Quantum-dot concentrator and thermodynamic model for the global redshift, Appl. Phys. Lett. 2000, 76, 1197-1199.
    [163] Chan W.C.W., Nie S., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 1998, 281, 2016-2018.
    [164] Bruchez M.P., Moronne M., Gin P., et al.,Semiconductor nanocrystals as fluorescent biological labels , Science 1998, 281, 2013-2015.
    [165] Li L., Qian H.F., Fang N. H., et al., Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions, J. Lumin. 2006, 116(1-2), 59-66.
    [166] Gao M.Y., Kirstein S., Mohwald H., et al., Strongly photoluminescent CdTe nanocrystals by proper surface modification, J. Phys. chem. B. 1998, 102, 8360-8363.
    [167]李晓晔,王文一,聚合物/无机纳米粒子复合材料的研究进展,中国粉体工业2006, (2), 9-13.
    [168]董朝青,荧光相关光谱系统及其荧光纳米材料表征新方法研究, [博士论文],上海,上海交通大学, 2007.
    [169] Zhang H., Cui Z., Wang Y., et al., From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants, Adv. Mater. 2003, 15, 777-780.
    [170] Li L., Qian H.F., Ren J., Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature, Chem. Commun. 2005, (4), 528-530.
    [171] Sooklal K., Hanus L.H., Ploehn H.J., et al., Blue-emitting CdS/dendrimer nanocomposite, Adv. Mater. 1998, 10(14), 1083-1087.
    [172] Lemon B., Crooks R.M., Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots, J. Am. Chem. Soc. 2000, 122(51), 12886-12887.
    [173] Qi L., C?lfen H., Antonietti M., Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers, Nano. Lett. 2001, 1, 61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700