糖尿病兔心肌梗死后瞬间外向钾离子通道的变化及缬沙坦干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     糖尿病和冠心病是目前临床常见的两种疾病,糖尿病合并心肌梗死患者室性心律失常发生率明显增加,死亡率也随之增加。国内外研究发现,心肌梗死患者并发室性心律失常与梗死后细胞和组织水平的电重构即离子通道重塑有关。离子通道重塑包括离子通道或转运体的表达、调控和相关蛋白伴侣的改变。这些病理生理重塑主要发生于钠通道、钾通道、钙通道、钙转运体、缝隙连接蛋白、超极化激活的非选择性阳离子通道等。上述变化促使动作电位时程延长,复极离散度增加,传导异常,使得心肌电生理特性发生改变而出现电学的失稳态,最终导致致命性心律失常和心脏性猝死的发生。
     糖尿病是一组由于胰岛素分泌缺陷和(或)胰岛素作用缺陷导致的以慢性血糖水平增高为特征的代谢异常综合征。其中,2型糖尿病约占90%,其病因未明,多数患者确诊时已存在慢性并发症,如心、脑、肾、眼、神经等部位病变,这也是2型糖尿病致残、致死的主要原因。目前公认高血糖是糖尿病各种慢性并发症的主要诱发因素,但高血糖并非直接参与并发症形成,而是高血糖先引起体内多种生化指标的改变,进而损害各个脏器导致并发症的发生。既往国内外研究高血糖引起的生化改变机制复杂多样,如非酶类糖化过程增强、氧化还原应激反应、醛糖还原酶激活、二酰基甘油-蛋白激酶C通路活性增加等。但糖尿病并发症发生机制十分复杂,其具体的病理生理及分子机制至今尚未完全阐明。糖尿病的心血管系统并发症严重影响糖尿病患者的临床预后,而冠心病及自主神经病变则为引起糖尿病患者心力衰竭和猝死发生率增加的重要因素。除了血管病变外,心肌细胞功能本身也存在明显异常,表现为心肌细胞收缩力下降及电生理特性的改变,后者又表现为心肌细胞动作电位时程显著延长。钾通道电流是引起心肌细胞动作电位复极的重要电流,糖尿病对心肌细胞动作电位的影响,部分是通过对钾离子通道的影响而导致。人们应用动物模型来研究糖尿病对心肌的影响,至今已比较成熟的方法是链脲佐菌素或四氧嘧啶所导致的胰岛素缺乏而诱发糖尿病,最常用的模型为链脲佐菌素模型,链脲佐菌素通过选择性破坏胰岛β细胞而诱发糖尿病。在这一模型,心脏很快出现电生理和机械特性的改变,其电生理改变主要表现为动作电位形态和时程的改变,在心电图上则表现为QT间期延长及T波低平。对心肌细胞离子流研究的一个重要发现则为瞬间外向性钾电流密度降低,这一变化在心室的心外膜心肌较心内膜心肌明显。另有动物实验研究也显示糖尿病心肌细胞动作电位时程延长部分系由于外向复极钾电流特别是瞬间外向钾离子电流降低所致。
     现已明确,高血糖和急性心肌梗死后,心脏局部肾素-血管紧张素系统激活,其中心环节是血管紧张素Ⅱ识别其特异性受体,通过一定的信号途径激活G蛋白,进而激活磷脂酶C,使细胞内三磷酸肌酸和二酯酰甘油的合成增加,进而激活心肌蛋白激酶C,过度表达蛋白激酶C激活丝裂素活化蛋白激酶,将信号导入细胞核内,激活转录基因,引起多种生长刺激因子表达异常如C-fOS等,磷酸化非常广泛的蛋白质底物,导致细胞骨架蛋白合成障碍、心肌细胞受损、心肌异常生长、心肌重塑、心功能减低。缬沙坦是一种特异的AT1受体竞争性拮抗剂,具有剂量依赖性,其通过与AT1跨膜区氨基酸作用,阻止血管紧张素Ⅱ与AT1受体结合,阻断血管紧张素Ⅱ诱导的生物学效应。动物研究已证实,缬沙坦可通过拮抗AT1受体减轻或改善心房纤维化所致的局部传导异常,减少去甲肾上腺素的释放,改善心房复极的不均一性,以及抑制心房电重构。最新NAVIGATOR研究发现缬沙坦能有效预防新发糖尿病达14%,显著降低空腹血糖、餐后2小时血糖。国内对心肌梗死大鼠模型的研究证实缬沙坦可改善心肌梗死后心室肌的电重构。但缬沙坦对糖尿病合并心肌梗死的心室肌电重构影响国内外尚未见报道。糖尿病心肌梗死后是否进一步影响心室肌电重构也未见报道。本研究通过构建糖尿病合并心肌梗死兔动物模型,运用实时荧光定量PCR的方法和Western blot方法,对糖尿病合并心肌梗死后心室肌细胞瞬间外向钾离子通道蛋白及基因表达的变化特点进行了探讨,并应用不同剂量的缬沙坦对其进行不同阶段干预研究,以期发现其与室性心律失常的关系,以便指导临床,改善糖尿病合并心肌梗死患者的预后。
     目的:
     探讨糖尿病兔心肌梗死后心室肌瞬间外向钾离子通道蛋白及基因表达的变化以及缬沙坦对此变化的影响。
     方法:
     1.选择健康新西兰兔作为研究对象,通过高脂高糖喂养2个月后由耳缘静脉注射四氧嘧啶(80mg/kg)制作糖尿病模型,成模后改为普通饲料继续单笼喂养4个月,并随机分为糖尿病+心肌梗死组(DM+MI组)、糖尿病假手术组(DM组)和非糖尿病假手术组(对照组),通过结扎冠状动脉前降支制作心肌梗死模型,最终每组14只。手术后所有入选成活兔均常规喂养2个月,在3%戊巴比妥钠(40mg/kg)麻醉下迅速开胸取出心脏,剪取左心室梗死周围区心肌组织,用冷生理盐水冲洗后,DEPC水漂洗,分装于冻存管置于液氮中保存备用。采用实时荧光定量PCR方法和Western blot方法观察心室肌钾离子通道Kv4.2、Kv4.3和Kv1.4的基因及蛋白表达变化。
     2.选择造模成功的新西兰兔随机分为6组:安慰剂组(placebo group, Group P)、低剂量组(low dose Group, Group L)、中等剂量组(moderate dose Group, Group M)、高剂量服药6周组(high dose of medication6weeks Group, Group H,)、高剂量服药8周组(high dose of medication8weeks Group, Group H2)和高剂量服药10周组(high dose of medication10weeks Group, Group H3)每组10只。GroupL组给予5mg/(kg·d)缬沙坦灌胃6周;Group M组给予10mg/(kg·d)缬沙坦灌胃6周;Group H1组给予30mg/(kg·d)缬沙坦灌胃6周;GroupH2组给予30mg/(kg·d)缬沙坦灌胃8周;Group H3组给予30mg/(kg·d)缬沙坦灌胃10周。Group P组给予生理盐水代替缬沙坦灌胃6周。分别在6周、8周或10周后,在3%戊巴比妥钠麻醉下迅速开胸取出心脏,剪取左心室梗死周围区心肌组织,用冷生理盐水冲洗后,DEPC水漂洗,分装于冻存管置于液氮中保存备用,采用实时荧光定量PCR方法和Western blot方法观察心室肌钾离子通道Kv4.2、Kv4.3和Kv1.4的基因及蛋白表达变化。
     结果:
     1. DM+MI组和DM组兔心室肌Kv4.2和Kv4.3mRNA水平均显著低于对照组(P<0.05),而Kv1.4显著高于对照组(P<0.05);DM+MI组兔心室肌Kv4.2和Kv4.3mRNA水平显著低于DM组(P<0.05),而Kv1.4并无显著升高(P>0.05)。
     2. DM+MI组和DM组兔心室肌Kv4.2和Kv4.3蛋白表达量均显著低于对照组(P<0.05),而Kv1.4显著高于对照组(P<0.05);DM+MI组兔心室肌Kv4.2和Kv4.3蛋白表达量显著低于DM组(P<0.05),而Kv1.4并无明显变化(P>0.05)。
     3.分别与Group P比较,各治疗组兔心室肌Kv4.2和Kv4.3mRNA水平均显著升高(P<0.05),而Kv1.4反而显著降低(P<0.05);Group M, Group H1、Group H2和Group H3兔心室肌Kv4.2和Kv4.3mRNA水平均显著高于Group L(P<0.05),而Kv1.4并无显著升高(P>0.05);与Group H1比较,Group H3兔心室肌Kv4.2和Kv4.3mRNA水平均显著升高(P<0.05),而Kv1.4无显著变化(P>0.05);不论是Kv4.2、Kv4.3还是Kv1.4,在Group H1和GroupH2间mRNA水平并无明显变化(P>0.05)。
     4.分别与Group P比较,各治疗组兔心室肌Kv4.2和Kv4.3蛋白表达水平均显著升高(P<0.05),而Kv1.4反而显著降低(P<0.05);Group M、Group H1、Group H2和Group H3兔心室肌Kv4.2和Kv4.3蛋白表达水平显著高于Group L(P<0.05),而Kv1.4并无显著升高(P>0.05);与GroupH1比较,GroupH3组兔心室肌Kv4.2和Kv4.3蛋白表达均显著升高(P<0.05),而Kv1.4无显著变化(P>0.05);不论是Kv4.2、Kv4.3还是Kv1.4,在Group H1和GroupH2间蛋白表达量并无明显变化(P>0.05)。
     5.分别与Group P比较,各治疗组在实验的终末期,其空腹血糖水平明显下降(P<0.05)。
     结论:
     1.糖尿病兔心肌梗死后心室肌瞬间外向钾离子通道基因及蛋白表达发生了改变即电重构现象,可能是心肌梗死后室性心律失常易感性增加机制之一。
     2.缬沙坦可改善糖尿病兔心肌梗死后心室肌瞬间外向钾离子通道基因及蛋白表达,修复糖尿病合并心肌梗死心室肌电重构,这可能是降低室性心律失常发生率的重要原因。
     3.缬沙坦对实验糖尿病心肌梗死兔的空腹血糖有一定改善作用。
     4.缬沙坦疗效呈时间和剂量依赖性,长期治疗效果更明显。
BACKGROUND:
     Diabetes and coronary heart disease are common diseases. And the incidence of ventricular arrhythmias and mortality in diabetic patients with myocardial infarction (MI) increase dramaticly. But their mechanisms are unclear. Electrical remodeling was gradually recognized related with incidence of ventricular arrhythmia in patients with MI. Electrical remodeling includes ion channel or transporter related protein expression, regulation and partner changes, which causes disturbances of heart rhythm and induces various arrhythmias. These pathophysiological remodeling occurs mainly in sodium channels, potassium channels, calcium channels, transporters, gap junction proteins, hyperpolarization activated nonselective cation channels, and so on. All these changes have prompted the extension of action potential duration, increased the dispersion of repolarization, induced abnormal conduction and loss of steady-state of cardiac electrophysiology, and then lead to fatal arrhythmias and sudden cardiac death.
     Diabetes mellitus is a group of chronic metabolic syndrome because of defect of insulin secretion and (or) defects of insulin, characterized by elevated blood sugar levels. Among them, type2diabetes accounts for about90%. Hyperglycemia has injured multiple organs before diabetes being diagnosed, and caused high incidence of disability and mortality. Those chronic complications are not directly caused by high blood sugar but by many biochemical changes in high blood glucose environment. The nuclear mechanism of the complications is very complicated and has not yet been fully elucidated. Cardiovascular complications of diabetes are complex and diversity. Such as complying with coronary heart disease and autonomic neuropathy in diabetic patients cause increasing incidence of sudden death and congestive heart failure and seriously affect clinical prognosis. Additionally, hyperglycemia also impairs cardiac contractility and causes electrophysiological changes, which significantly delay duration of action potential. Potassium channel current is the major current during repolarization. The impact of diabetes on action potential duration may be caused by the effects of potassium ion channel. Diabetic animal models which induced by streptozotocin or alloxan through selective destruction of pancreatic beta cells is skillful. Streptozotocin inducing diabetic model is the usual insulin deficiency model. It leads to the change of cardiac electrical and mechanical properties, which manifests as changes in action potential morphology and duration, QT interval prolongation and T wave flat on the ECG. Moreover, diabetes reduces density of transient outward potassium current and obviously changes outer membrane of endocardial myocardium. Previous study showed that the prolongation of action potential duration partly dued to outward repolarization potassium current and transient outward potassium current was reduced in diabetic cardiac myocytes.
     High blood glucose and MI both activate local cardiac rennin angiotensin aldosterone system (RAAS). Angiotensin Ⅱ (Ang Ⅱ) is very important in this pathological process. It can identify specific receptors through some signaling pathways, such as activating G protein, activating phospholipids enzyme C (PLC), and activating the myocardial protein kinase C (PKC). Excessive expression of PKC activates mitogen-activated protein kinase, then signals into the cell nucleus, activates the transcription gene, causes a variety of growth stimulating factor expression abnormalities like C-fos, which hinders cell protein synthesis, damages myocardial cell and leads to myocardium abnormal growing, myocardial remodeling, and cardiac function reducing. In short, Ang Ⅱ may be an important initiator of arrhythmia by affecting the function of ion channels. Valsartan, as a kind of specific AT1receptor competitive antagonist, prevents Ang Ⅱ through AT1transmembrane amino acids and then blocks the Ang Ⅱ-induced biological negative effects. A few studies have identified that valsartan can improve local abnormal conduction of atrial fibrosis, reduce the release of norepinephrine, improve atrial repolarization heterogeneity, and inhibit electrical remodeling. Moreover, it also can dramatically reduce the incidence of type2diabetes. Whether valsartan impact ventricular electrical remodeling in diabetic patients with MI or not is unknown. In this study, we evaluate the expression profile following MI in a diabetic model, to explore the effects of valsartan on the expression of transient outward potassium channel (Kv1.4, Kv4.2, Kv4.3) in the left ventricle of diabetic rabbits after experimental MI.
     AIM:
     To explore the expression of the transient outward potassium channel in diabetic rabbits after experimental MI and valsartan intervention study.
     METHODS:
     1. New Zealand rabbits were randomly divided into diabetes+MI group(Group DM+MI, n=14), sham operation diabetic group(Group DM, n=14) and non-diabetic sham operation group(Group sham, n=14). And then diabetic rabbit model was produced. High fat and high calorie mixed diet were feeded for2months and then ALX (80mg/kg, Alloxan) was injected through auricular vein. The standards of diabetic animals are the concentrations of fasting blood glucose>14mmol/L by2consecutive analyses72h and7d after injection. If not done, then repeat injection ALX (50mg/kg) above methods. After diabetic model was established, general feed was given for4months in individual cages. MI model was created by ligature of the left anterior descending coronary artery. It was confirmed by regional cyanosis and electrocardiographic change (more than two ST segment elevations of0.1mV or higher and7days later the Q wave appears). After routine feeding for2months, the animals were sacrificed and heart was isolated. Left ventricle tissue around infarction aera was rinsed in saline and DEPC water to remove excess blood, snap-frozen in liquid nitrogen, and stored at-80℃. Real-time quantitative PCR and western blot were used to observe the expression of Kv4.2, Kv4.3, and Kv1.4in ventricle.
     2. Sixty successful models of New Zealand rabbits were randomly divided into six groups:the placebo Group (Group P, n=10), low dose Group (Group L, n=10), moderate dose Group (Group M, n=10), high dose of medication6weeks Group (Group H1, n=10), high dose of medication8weeks Group (Group H2, n=10) and high dose of medication10weeks (Group H3, n=10).The treatment Groups were intragastricly administrated valsartan for6to10weeks. Among them, the Group L give5mg/(kg-d) valsartan for6weeks; Group M give10mg/(kg·d) valsartan for6weeks; Group H1give3Omg/(kg-d) valsartan for6weeks; Group H2give30mg/(kg·d) valsartan for8weeks; Group H3give30mg/(kg·d) valsartan for10weeks. Group P give normal saline instead of valsartan for6weeks. All rabbits were sacrificed6weeks,8weeks or10weeks respectively after the procedure. Then heart was isolated and left ventricle tissue around infarction aera was carefully excised and rinsed in saline and DEPC water to remove excess blood, snap-frozen in liquid nitrogen, and stored at-80℃. Real-time quantitative PCR and western blot were used to observe the expression of Kv4.2, Kv4.3, and Kv1.4in ventricle.
     RESULTS:
     1. Compared with Group sham, the expression levels of Kvl.4mRNA in both Group DM+MI and Group DM were increased significantly, while the expression levels of Kv4.2and Kv4.3mRNA were decreased significantly (P<0.05). The expression levels of Kv4.2and Kv4.3mRNA in Group DM+MI rabbit ventricle were significantly lower than the Group DM (P<0.05). But the expression of Kvl.4mRNA did not change significantly (P>0.05).
     2. Compared with Group sham, the expression levels of Kvl.4protein in both Group DM+MI and Group DM were increased significantly, while the expression levels of Kv4.2and Kv4.3protein were decreased significantly (P<0.05). The expression levels of Kv4.2and Kv4.3protein in Group DM+MI rabbit ventricle were significantly lower than the Group DM (P<0.05). But the expression of Kv1.4protein did not change significantly (P>0.05).
     3. Compared with Group P, the expression levels of Kv1.4mRNA of each treament group were decreased significantly and the expression levels of Kv4.2and Kv4.3mRNA were increased significantly (P<0.05). The expression levels of Kv4.2and Kv4.3mRNA in Group M、Group H1. Group H2or Group H3were significantly higher than Group L (P<0.05), while Kv1.4did not significantly change (P>0.05). The expression levels of Kv4.2and Kv4.3mRNA in Group H3were significantly higher than Group H1(P<0.05), and Kvl.4did not significantly change (P>0.05). But the expression of Kv4.2, Kv4.3and Kv1.4mRNA levels between Group H1and Group H2showed no significant change (P>0.05).
     4. Compared with Group P, the expression levels of Kv1.4protein of each treament group were decreased significantly and the expression levels of Kv4.2and Kv4.3protein were increased significantly (P<0.05). The expression levels of Kv4.2and Kv4.3protein in Group M、Group H1. Group H2or Group H3were significantly higher than Group L (P<0.05), while Kv1.4did not significantly change (P>0.05). The expression levels of Kv4.2and Kv4.3protein in Group H3were significantly higher than Group H1(P<0.05), and Kv1.4did not significantly change (P>0.05). But the expression of Kv4.2, Kv4.3and Kv1.4protein levels between Group H1and Group H2showed no significant change (P>0.05).
     5. Compared with group P respectively, the fasting glucose levels in valsartan treatment groups at the end-stage of the experiment decreased significantly (P<0.05).
     CONCLUSIONS:
     1. The expression of transient outward potassium channel changed obviously in diabetic rabbits after experimental MI. And these suggested there existed electrical remodeling, which probably increased the susceptibility of ventricular arrhythmias after MI with diabetes.
     2. Valsartan treatment partly improved expression of transient outward potassium channel and inhibited electrical remodeling, which was likely to reduce the incidence of ventricular arrhythmias in diabetes after experimental MI.
     3. Polonged valsartan treatment was helpful to decrease fasting blood glucose in diabetic rabbits with experimental MI.
     4. The role of valsartan presented dose and dependent. In addition to these, long-term treatment was more effective.
引文
[1]郑松岭,闫素华,宋忠举,等.糖尿病兔心肌梗死后心脏自主神经的变化及其与室性心律失常的关系[J].中国动脉硬化杂志,2009,17(2):89-92.
    [2]刘野,路军,刘雄涛,等.Ⅱ型糖尿病大鼠心肌梗死后交感神经重构与神经生长因子(NGF)的表达改变[J].心脏杂志,2010,22(3):347-350.
    [3]Gallego M, Alday A, Urrutia J, et al.Transient outward potassium channel regulation in healthy and diabetic heart[J]. Can J Physiol Pharmacol,2009,87 (1):77-83.
    [4]罗涛,李玉明.心肌梗死后心室电重构的细胞和分子生物学机制[J].中国病理生理杂志,2008,24(11):2276-2281.
    [5]Ashton KJ, Headrick JP. Quantitative (real-time) RT-PCR in cardiovascular research[J]. Methods Mol Biol,2007,366:121-143.
    [6]Friedlnan PL, Fenoglio JJ, Wit A L. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs[J]. Circ Res 1975,36:127-144.
    [7]De BaKer JM, van Capelle FJ, Janse MJ, et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease:electrophysiologic and anatomic correlation[J]. Circulation,1988,77:589-606.
    [8]Dillon SM, Allessie MA, Ursell PC, et al. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts[J].Circ Res,1988, 63:182-206.
    [9]Wang Z, Feng J, Shi H, Pond AL, Nerbonne JM, Nattel S. The potential molecular basis of different physiological properties of transient outward K+ current in rabbit and human atrial myocytes[J].Circ Res,1999:84:55-561.
    [10]Van der Heyden MAG, Wijnhoven TJM, Opthof T. Molecular aspects of adrenergic modulation of the transient outward current[J]. Cardiovasc Res,2006,71 (4):430-442.
    [11]Dixon JE, Shi W, Wang HS, et al. Role of Kv 4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current[J]. Circ Res,1996,79 (6):659-668.
    [12]Gidh-Jain M, Huang B, Jain P, et al. Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction [J]. Circ Res, 1996,79 (6):669-675.
    [13]Dhahan N. A transmembrane domain of the sulfonylurea receptor mediates activation of ATP-sensitive K+ channels by K+ openers[J]. Mol Pharmacol,1999,56(2):308-315.
    [14]陈志刚,王佩,徐建华.钾通道药理的研究进展[J].中国药理学通报,1998,14(2):100-102.
    [15]Quarmby LM, Hartzell HC. Molecular biology of G protein and their role in cardiac excitability[A].//Zipes DP, Jalife J.Cardiac Electrophysiology, From Cell to Bedside[M].Philadelphia, Pa:WB Saunders Co,1995:38-48.
    [16]Yellen G. The moving parts of voltage-gated ion channels[J]. Rev Biophys,1998,31(3):239-295.
    [17]Tamargo J, Caballero R, Gomez R, et al. Pharmacology of cardiac potassium channels[J]. Cardiovasc Res,2004,62(1):9-33.
    [18]孙继虎,王春安.电压门控离子通道[J].中国神经科学杂志,2000,16(3):283-289.
    [19]Kenyon JL, Gibbons WR. Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers[J]. J Gen physiol,1979,73:117-138.
    [20]Yuan JS, Wang D, Stewart C, et al. Statistical methods for efficiency adjusted real-time PCR quantification[J]. Biotechnol J, 2008,3(1):112-123.
    [1]An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy[J].Am J Physiol Heart Circ Physiol,2006,291:1489-1506.
    [2]Guo M, Wu MH, Korompai F, et al. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabete[J].Physiol Genomics,2003,12:139-146.
    [3]Shan YX, Yang TL, Mestril R, et al. Hsp10 and Hsp60 supress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signaling in cardiac muscle:implications on decreased myocardial protection in diabetic cardiomyopathy [J]. J Biol Chem,2003,278:45492-45498.
    [4]Bertaso F, Sharpe CC, Hendry BM, et al. Expression of voltage-gated KC channels in human atrium[J].Basic Res Cardiol, 2002,97(6):424-433.
    [5]Kjeldsen SE, Julius S, Mancia G. Effects of valsartan compared to amlodipine on preventing type 2 diabetes in high-risk hypertensive patients:the VALUE trial[J]. J Hypertens,2006,24:1405-1412.
    [6]叶顺传,曾秋棠,刘晓飞.美托洛尔与缬沙坦对大鼠心肌梗死后Kv4.2基因转录的影响[J].中国心脏起博与心电生理杂志,2004,18(2):112-115.
    [7]王迪海.病理生理学[M]。北京:人民卫生出版社,1994.
    [8]Berk BC. Angiotensin Ⅱ receptors and angiotensin II stimulated signal transduction[J].Heart Fail Rev,1998,67(3):653-692.
    [9]Wright JW, Harding JW. Brain angiotensin receptor subtypes AT1, AT2 and AT4 and their functions[J]. Regul Pept,1995, 59(3):269-295.
    [10]Caballero R, Go'mez R, Moreno I, et al. Interaction of angiotensin Ⅱ with the angiotensin type 2 receptor inhibits the cardiac transient outward potassium current[J].Cardiovasc Res,2004,62:86-95.
    [11]Aiello EA, Malcolm AT, Walsh MP, et al. β-adrenoceptor activation and PKA regulate delayed rectifier K+channels of vascular smooth muscle cells[J]. Am J Physiol,1998,275:H448-H459.
    [12]Pan SJ, Zhu MY, Raizada MK, et al. Ang Ⅱ-mediated inhibition of neuronal delayed rectifier K+ current:Role of protein kinase C-a[J]. Am J Physiol Cell Physiol,2001,281(1):C17-C23.
    [13]Hayabuchi Y, Standen NB, Davies NW. Angiotensin Ⅱ inhibits and alters kinetics of voltage-gated K+ channels of rat arterial smooth muscle[J]. Am J Physiol Heart Circ Physiol,2001,281 (6):H2480-H2489.
    [14]Clement-Chomienne O, Walsh MP, Cole WC. Angiotensin Ⅱ activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes[J]. J Physiol,1996, 495(3):689-700.
    [15]Anand-Srivastava MB. Angiotensin Ⅱ receptors negatively coupled to adenylate cyclase in rat aorta[J]. Biochem Biophys Res Commun,1983,117:420-428.
    [16]Zhu MY, Gelband CH, Posner P, et al. Angiotensin Ⅱ decreases neuronal delayed rectifier potassium current:Role of calcium/calmodulin-dependent protein KinaseⅡ[J]. J Neurophysiol, 1999,82(3):1560-1568.
    [17]EI-Adawi H, Deng LL, Tramontano A, et al. The functional role of the JAK-STAT pathway in post-infarction remodeling[J]. Cardiovasc Res,2003,57:129-138.
    [18]Barry DM, Trimmer JS, Merlie JP, et al. Diffierential expression of voltage-gated K+ channel submulits in adult rat heart. Relation to functional K+ channels? [J]. Circ Res,1995,77(2):361-369.
    [19]Califf RM. Late-breaking presentation at the ACC Congress 2010. Abstract No:3010-12.
    [20]Jandeleit-Dahm KAM,Tikellis C,Reid CM.Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes.J Hypertens,2005,23:463-473.
    [1]Nattel S, Maguy A, LeBouter S, et al. Arrhythmogenic ion-channel remodeling in the heart:Heart failure, Myocardial infarction, and Atrial fibrillation[J]. Physiol Rev,2007,87(2):425-456.
    [2]刘泰篷.心肌细胞电生理学[M].北京:北京大学出版社,2000.
    [3]Deal KK, England SK, Tamkun MM. Molecular physiology of cardiac potassium channels[J]. Physiol Rev,1996,76:49-67.
    [4]Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium[J]. J Physiol, 2000,525(2):285-298.
    [5]Shieh CC, Coghlan M, Sullivan JP, et al. Potassium channels: Molecular defects, diseases, and therapeutic opportunities[J]. Pharmacol Rev,2000,52(4):557-594.
    [6]Vladimir, Yarov-Yarovoy et al.Voltage sensor conformations in the open and closed states in ROSETTA structural models of K-channels [J]. Proc Natl Acad Sci,2006,103 (19):7292-7297.
    [7]Noma A. ATP-regulated K+channels in cardiac muscle[J]. Nature, 1983,305:147-148.
    [8]Ishihara K, Ehara T. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-Pig cardiac myocytes[J]. J Physiol,1998,510(3):755-771.
    [9]Bany DM, Nerbonne JM. Myocardial potassium channels: electrophysiological and molecular diversity[J]. Annu Rev Physiol.1996,58:363-394.
    [10]Deal KK, England SK, Tamkun MM. Molecular physiology of cardiac potassium channels[J].Physiol Rev,1996,76(1):49-67.
    [11]Roberds SL, Knoth KM, Po S, et al. Molecular biology of the voltage-gated potassium channels of the cardiovascular system[J]. J Cardiovase Electro Physiol,1993,4:68-80.
    [12]Matsuda H, Saigusa A, Hrisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+[J]. Nature,1987,325:156-159.
    [13]Zaza A, Rocchetti M, Brioschi A, et al. Dynamic Ca2+-induced inward rectification of K+ current during the ventricular action potential[J].Circ Res,1998,82(9):947-956.
    [14]Martin RL, Koumi S, Ten Eick RE. Comparison of the effects of internal [Mg2+] on IK1 in cat and guinea-Pig cardiac ventricular myocytes[J]. J Mol Cell Cardiol,1995,27(1):673-691.
    [15]Biermans G, Vereecke J, Carmeliet E. The mechanism of the inactivation of the inward-rectifying K current during hyperpolarizing steps in guinea-Pig ventricular myocytes[J]. Pflugers Arch,1987,410(6):604-613.
    [16]Yamada M, Kurachi Y. Spermine gates inward-rectifying muscarinic but not ATP-sensitive K+ channels in rabbit atrial myocytes, Intracellular substance-mediated mechanism of inward rectification[J]. J Biol Chem,1995,270(16):9289-9294.
    [17]Horie M, Irisawa H. Rectification of muscarinic K+ current by magnesium ion in guinea-Pig atrial cells[J]. Am J Physio, 1987,253:H210-H214.
    [18]Vandenberg CA. Inward rectification of a potassium channel in cardiac ventricular cells dpends on internal magnesium ions[J]. Proc Natl Acad Sci USA,1987,84:2560-2564.
    [19]Piao L, Li J, McLerie M, et al. Cardiac IK1 underlies early action potential shortening during hypoxia in the mouse heart[J]. J Mol Cell Cardiol,2007,43:27-43.
    [20]Noma A, Shibasaki T. Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-Pig ventricular cells[J]. J Physiol,1985,363:463-480.
    [21]Arenea JP, Kass RS. Enhancement of potassium-sensitive current in heart cells by pinacidil:Evidence for modulation of the ATP-sensitive potassium channel[J]. Circ Res,1989,65:436-445.
    [22]Billman GE. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy[J]. Pharmacol Ther,2008,120:54-58.
    [23]Seino S. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system:a review[J]. J Diabetes Complications,2003,17:2-11.
    [24]Nelson MT, Quayle JM. Physiologyical roles and properties of potassium channels in arterial smooth muscle[J]. Am J Physiol, 1995,268:C799-C822.
    [25]Yokoshiki H. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells[J]. Am J Physiol,1998,274:C25-C37.
    [26]贾宏钧,王钟林,杨期东.离子通道与心脑血管疾病[M],北京:人民卫生出版社,2001.
    [27]Gross GL. Sarcolemmal versus mitochondrial ATP-sensitive K+ channel and myocardial preconditioning[J]. Circ Res,1999,84: 973-979.
    [28]Fryer RM, Eells JT, Hsn AK, et al. Ischemic preconditioning in rats: role of mitochondrial KATP channel in preservation of mitochondrial function[J]. Am J Physiol Heart Circ Physiol,2000,278(1): H305-H312.
    [29]Sanada S, Kitakaze M, Asanuma H, et al. Role of mitochondrial and sarcolemmal K(ATP) channels in ischemic preconditioning of the canine heart[J]. Am J Physiol Heart Circ Physiol,2001,280(1): H256-H263.
    [30]Grover GJ. Pharmacology of ATP-sensitive potassium channel(KATP) openers in models of myocardial ischemia and reperfusion[J]. Can J Pharmacol,1997,75:309-315.
    [31]Bernardo NL. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart[J]. Am J Physiol,1999,276:H1323-H1330.
    [32]Patel HJ. Cardio protective by opening of the KATP channel in unstable angina:is this a clinical manifestation of myocardial preconditioning? Results of a randomized study with nicorandil[J]. Eur Heart J,1999,20:51-57.
    [33]Dhahan N. A transmembrane domain of the sulfonylurea receptor mediates activation of ATP-sensitive K+ channels by K+ openers[J]. Mol Pharmacol,1999,56(2):308-315.
    [34]陈志刚,王佩,徐建华.钾通道药理的研究进展[J].中国药理学通报,1998,14(2):100-102.
    [35]Quarmby LM, Hartzell HC. Molecular biology of G protein and their role in cardiac excitability[A].//Zipes DP, Jalife J. Cardiac Electrophysiology, From Cell to Bedside[M].Philadelphia, Pa:WB Saunders Co,1995:38-48.
    [36]Yellen G. The moving parts of voltage-gated ion channels[J]. Rev Biophys,1998,31(3):239-295.
    [37]Tamargo J, Caballero R, Gomez R, et al. Pharmacology of cardiac potassium channels[J]. Cardiovasc Res,2004,62(1):9-33.
    [38]孙继虎,王春安.电压门控离子通道[J].中国神经科学杂志,2000,16(3):283-289.
    [39]Kenyon JL, Gibbons WR. Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers[J]. J Gen physiol,1979,73:117-138.
    [40]Kenyon JL, Gibbons WR.4-Aminopyridine and the early outward current of sheep Purkinje fiber[J]. J Gen Physiol,1979,73:139-157.
    [41]Coraboeuf E, Carmeliet E. Existence of two transient outward currents in sheep Purkinje fibers[J]. Pflugers Archiv,1982, 392:352-359.
    [42]Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes[J]. Circ Res,1991,68:424-437.
    [43]Wang Z, Feng J, Shi H, et al. The Potential molecular basis of different physiological properties of transient outward K+ current in rabbit and human atrial myocytes[J].Cir Res,1999,84:555-561.
    [44]Wickenden AD, Lee P, Sah R, et al. Targeted expression of adominant-negative K(v) 4.2 K+ channel subunit in the mouse heart[J]. Cir Res,1999,85:1067-1076.
    [45]Xu H, Guo W, Nerbonne JM. Four kinetically distinct depolarization activated K+ channel current in mouse ventricular myocytes[J]. J Gen Physiol,1999,113:666-678.
    [46]Grant AO. Cardiac ion channels[J]. Circ Arrhythmia Electrophysiol, 2009,2(2):185-194.
    [47]Nattel S. New ideas about atrial fibrillation 50 years on[J]. Nature,2002,415:219-226.
    [48]Wang Z, Femini B, Nattel S. Sustain depolarization-induced outward current in human atrial myocytes:Evidence for a novel delayed rectifier K+ current similar to Kvl.5 cloned channel current[J]. Circ Res,1993,73:1061-1076.
    [49]Feng J, Wible B, Li GR, et al. Antisense oligonucleotides directed against Kvl.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes[J].Circ Res, 1997,80:572-579.
    [50]Bou-Abboud E, Nerbonne JM. Molecular correlates of the Ca2+-independent, depolarization-activated K+ currents in rat atrial myocytes[J]. J Physiol,1999,517:407-420.
    [51]Van Wagoner DR, Pond AL, McCarthy PM, et al. Outward K+currentdensities and Kvl.5 expression are reduced in chronic human atrial fibrillation[J]. Circ Res,1997,80:772-781.
    [52]Friedlnan PL, Fenoglio JJ, Wit AL. Time course for reversal of electro physiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs[J]. Circ Res 1975,36:127-144.
    [53]De BaKKer JM, van Capelle FJ, Janse MJ, et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease:electrophysiologic and anatomic correlation[J]. Circulation,1988,77:589-606.
    [54]Dillon SM, Allessie MA, Ursell PC, et al. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts[J].Circ Res,1988,63: 182-206.
    [55]Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction[J]. Physiol Rev,1989,69:1049-1069.
    [56]Friedman PL, Fenoglio JJ, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Puxkinje fibers surviving extensive myocardial infarction in dogs[J].Circ Res,1975,36:127-144.
    [57]Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current[J]. Circulation,1992,85:1175-1188.
    [58]Dun W, Baba S, Yagi T, et al. Dynamic remodeling of K+ and Ca2+ currents in cells that survived in the epicardial border zone of canine healed infarcted heart[J]. Am J Physiol Heart Circ Physiol, 2004,287:H1046-H1054.
    [59]Jiang M, Cabo C, Yao J, et al. Delayed rectifier K+ currents have reduced amplitudes and altered kineties in myocytes from infarcted canine ventricle[J]. Cardiovase Res,2000,48:34-43.
    [60]Kaprielian R, Sah R, Nguyen T, et al. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K+ currents, [Ca2+]i transients[J]. Am J Physiol Heart Circ Physiol,2002, 283:H1157-H1168.
    [61]Qin D, Zhang ZH, Caref EB, et al. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium[J]. Circ Res,1996,79:461-73.
    [62]Liu N, Niu H, LI Y, et al. The changes of potassium currents in rabbit ventricle with healed myocardial infarction[J]. J Hua Zhong Univ Sci Technolog Med Sci,2004,24:128-131.
    [63]Rozanski GJ, Xu Z. Glutathione and K+ channel remodeling in postinfarction rat heart[J]. Am J Physiol Heart Circ Physiol,2002, 282:H2346-H2355.
    [64]Huang B, Qin D, El-Sherif N. Spatial alterations of Kv channels expression and K(+) currents in Post-MI remodeled rat heart[J]. Cardiovase Res,2001,52:246-254.
    [65]Wettwer E, Amos GJ, Posival H, et al. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin[J]. Circ Res,1994,75:473-482.
    [66]Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity within the ventricular wall:electrophysiology and pharmacology of epicardial, endocardial, and M cell[J]. Circ Res,1991,69:1427-1449.
    [67]Tomita F, Bassett AL, Myerburg RJ, et al. Diminished transient outward currents in rat hypertrophied ventricular myocytes[J].Circ Res,1994,75:296-303.
    [68]Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current[J]. Circulation,1992,85(3):1175-1188.
    [69]Thollon C, Kleher P, Charlon V, et al. Hypertrophy induced alteration of action potential and effeets of the inhibition of angiotensin converting enzyme by perindopril in infarcted rat heart[J]. Cardlovase Res,1989,23:224-230.
    [70]Aimond F, Alvarez JL, Rauzier JM, et al. Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction[J]. Cardiovase Res,1999,42(2):402-415.
    [71]Gidh-Jain M, Huang B, Jain P, et al. Differential expression of voltage-gated K+channel genes in left ventricular remodeled myocardium after experimental myocardial infarction[J]. Circ Res, 1996,79(4):669-675.
    [72]Benitah JP, Gomez AM, Bailly P, et al. Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts[J]. J Physiol,1993,469:111-138.
    [73]Barry DM, Trirnmer JS, Merlie JP, et al. Differential expression of voltage-gated K+ channel subunits in adult rat heart relation to functional K+ channels? [J].Circ Res,1995,77:361-369.
    [74]Apkon M, Nerbonne JM. Characterization of two distinct depolarization-activated K currents in isolated adult rat ventricular myocytes[J]. J Gen Physiol,1991,97:973-1011.
    [75]Pinto JM, Boyden PA. Reduced inward rectifying and increased E-4031-sensitive K+ current density in arrhythmogenic subendocardial purkinje myocttes from the infarcted heart[J]. J Cardiovasc Electrophysiol,1998,9(3):299-311.
    [76]Jeck C, Pinto JM, Boyden PA, et al. Transient outward currents in subendocardial Purkinje myocytes surviving in the 24 and 48 h infarcted heart[J].Circulation,1995,92(3):465-473.
    [77]Dun W, Boyden PA. Diverse phenotypes of outward currents in cells that have survived in the 5-day-infarcted heart[J]. Am J Physiol,2005,289(2):H667-673.
    [78]Cabo C, Boyden PA. Electrical remodeling of the epicardial border zone in the canine infarcted heart:a computational analysis[J].Am J Physiol,2003,284(1):H372-384.
    [79]Matsubara H, Suzuki J, Inada M. Shaker-related potassium channel kv1.4 mRNA regulation in cultured rat heart myocytes and differential expression of kvl.4 and kv1.5 genes in myocardial development and hypertrophy[J]. J Clin Invest,1993,92(4): 1659-1666.
    [80]Yuan F,Pinto JM,Li Q,et al.Characteristics of Ik and its response to quinidine in experimental healed myocardial infarction[J]. J Cardiovasc Electrophysiol,1999,10(6):844-854.
    [1]Shehadeh A, Regan TJ. Cardiac consequences of diabetes mellitus[J]. Clin Cardiol,1995,18:301-305.
    [2]Rodrigues B, Cam MC, McNeill JH. Myocardial substrate metabolism:implications for diabetic cardiomyopathy[J]. J Mol Cell Cardiol,1995,27:169-179.
    [3]Ren J, Davidoff AJ. Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes[J]. Am J physiol,1997, 272:H148-H158.
    [4]Shimoni Y, Severson D, Giles W. Thyroid status and diabetes modulate regional differences in potassium current in rat ventricle[J]. J physiol,1995,488:673-688.
    [5]Wang DW, Kiyosue T, Shigematsu S, et al. Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes[J]. Am J Physiol,1995,268:H1288-296.
    [6]Qin DY, Huang BY, Deng LL, et al. Downregulation of K+channel genes expression in type 2 diabetic cardiomyopathy[J]. Biochem Biophys Res Commun,2001,283:549-553.
    [7]刘泰篷.心肌细胞电生理学[M].北京:北京大学出版社,2000.
    [8]Deal KK, England SK, Tamkun MM. Molecular Physiology of cardiac Potassium channels[J]. Physiol Rev,1996,76:49-67.
    [9]Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium[J]. J Physiol,2000, 525(2):285-298.
    [10]Roberds SL, Knoth KM, Po S, et al. Molecular biology of the voltage-gated potassium channels of the cardiovascular system[J]. J Cardiovase Electro Physiol,1993,4:68-80.
    [11]Matsuda H, Saigusa A, Hrisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+[J]. Nature,1987,325:156-159.
    [12]Piao L, Li J, McLerie M, et al. Cardiac IK1 underlies early action potential shortening during hypoxia in the mouse heart[J]. J Mol Cell Cardiol,2007,43(1):27-38.
    [13]Masahiro A, Takako Y. Electrophysiological properties of ventricular muscle obtained from spontaneously diabetic mice[J]. Exp Anim, 2000,49(1):23-33.
    [14]Ren YJ, Xu XH, Wang XL. Altered mRNA expression of ATP-sensitive and inward rectifier potassium channel subunits in streptozotocin-induced diabetic rat heart and aort[J]. J Pharmacol Sci,2003,93:478-483.
    [15]Noma A. ATP-regulated K+ channels in cardiac muscle[J]. Nature 1983,305:147-148.
    [16]Hisashi Y, Masanori S, Takashi S, et al. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells[J] Am J Physiol Cell Physiol,1998,274 (1):C25-C37.
    [17]Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels[J]. Prog Biophys Mol Biol,2003, 81(2):133-176.
    [18]Ashcroft SJ, Ashcroft FM. Properties and functions of ATP-sensitive K+ channels. Cell Signal,1990,2:197-214.
    [19]Billman GE. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy[J]. Pharmacol Ther,2008,120(1):54-70.
    [20]Seino S. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system:a review[J]. J Diabetes Complications,2003,17(2):2-5.
    [21]Kane GC, Liu XK, Yamada S, et al. Cardiac K(ATP) channels in health and disease[J]. J Mol Cell Cardiol,2005,38(6):937-943.
    [22]Tukugama Y, Fan Z, Furuta H, et al. Rat inwardly rectifying potassium channal Kir 6.2:cloning electrophysiological characterization and decreased expression in pancreatic islet of male Zucker diabetic fatty rats [J]. Biochem Biophys Res Commun,1996, 220:523-528.
    [23]Schram G, Pourrier M, Melnyk P, et al. Differential distribution of cardiac ion channel expression as a basis for regional specialization inelectrical function[J].Circ Res,2002,90(9):939-950.
    [24]Zang WJ, Yu XJ, Zang YM. Effect of halothane on the muscarinic potassium current of the heart[J]. Acta Physiolo Sini,2000,52: 175-178
    [25]Boyett MR, Kirby MS, Orchard CH, et al. The negative inotropic effect of acetylcholine on ferret ventricular myocardium[J]. J Physiol,1988,404:613-615.
    [26]Tamargo J, Caballero R, Gomez R, et al. Pharmacology of cardiac potassium channels[J]. Cardiovasc Res,2004,62(1):9-33.
    [27]Vinik Al, Ziegler D. Diabetic cardiovascular autonomic neuropathy [J]. Circulation,2007,115(3):387-397.
    [28]Nichols GA, Reinier K, Chugh SS. Independent contribution of diabetes to increased prevalence and incidence of atrial fibrillation[J]. Diabetes Care,2009,32 (10):1851-1856.
    [29]Dublin S, Glazer NL, Smith NL, et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation[J]. J Gen Intern Med,2010, 25(8):853-858.
    [30]Lengyel C, Virag L, Biro T, et al. Diabetes mellitus attenuates the repolarization reserve in mammalian heart[J]. Cardiovasc Res,2007, 73:512-520.
    [31]Cosis O, Echevarria E. Diabetic cardiomyopathy:Electromechani cal cellular alteration[J]. Curr Vas Pharmacol,2004,2:237-248.
    [32]Shimoi Y, Ewart HS, Severrson D. Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton[J]. J physiol,1999,514:735-745.
    [33]Shimoni Y, Ewart HS, and Severson D. Type Ⅰ and Ⅱ models of diabetes produce different modifications of K+ currents in rat heart:role of insulin[J]. J Physiol,1998,507:485-496.
    [34]Nishiyama A, Ishii DN, Backx PH, et al. Altered K+ channel gene expression in diabetic rat ventricle:isoform switching between Kv4.2 and Kv1.4[J]. AM J Physiol Heart Circ Physiol,2001, 281:H1800-H1807.
    [35]Gallego M, Setien R, Puebla L, et al. al-Adrenoceptors stimulate a Gas protein and reduce the transient outward K+ current via a cAMP/PKA-mediated pathway in the rat heart[J]. Am J Physiol Cell Physiol,2005,288:C577-C585.
    [36]Tamargo J, Caballero R, Gomez R, et al. Pharmacology of cardiac potassium channels[J]. Cardiovasc Res,2004,62(1):9-33.
    [37]Gallego M, Casis O. Regulation of cardiac transient outward potassium current by norepinephrine in normal and diabetic rats[J]. Diabetes Metab Res Rev,2001,17:304-309.
    [38]Gallego M, Alday A, Urrutia J, et al. Transient outward potassium channel regulation in healthy and diabetic hearts[J]. Can J Physiol Pharmacol,2009,87:77-83.
    [39]Xu Z, Patel KP, Lou MF, et al. Up-regulation of K(+) channels in diabetic rat ventricular myocytes by insulin and glutathione[J]. Cardiovasc Res,2002,53(l):80-88.
    [40]Zhang L, Parratt JR, Beastall GH, et al. Streptozotocin diabetes protects against arrhythmias in rat isolated hearts:role of hypothyroidism[J]. Eur J Pharmacol,2002,435 (2-3):269-276.
    [41]Lengyel C, Virag L, Kovacs PP, et al. Role of slow delayed rectifier K+ current in QT prolonggation in the alloxan-induced diabetic rabbit heart[J]. Acta Physiol,2008,192 (3):359-368.
    [42]Andreas SB, Gordon FT. Cardiac metabolism and arrhythmias[J]. Circ Arrhythm Electrophysiol,2009,2(3):327-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700