大鼠黑质致密部多巴胺神经元的膜共振现象及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经振荡性电活动是指在生理状态下核团内及神经网络中的神经元的电生理活动特点。振荡性电活动是电流/电压的周期性变化,分为同步振荡和异步振荡两种情况。其中,能够保持同步而稳定运行的振荡称为同步振荡。膜共振是用来描述神经元对输入信号的频率选择性能力的物理量,同时也是神经元振荡活动的内在机制之一。频率选择性是神经元膜共振活动所具有的一种内在特性。神经元的膜共振特性和频率选择性在调节脑内神经网络的节律性活动中发挥重要作用,其调控作用尤其体现在神经元相互之间进行信息传递的过程中。不同的神经元具有不同的膜共振特性是神经网络共振的基础。多巴胺能神经元是黑质致密部中的主要神经元。了解多巴胺能神经元的膜共振特性,将有助于增进我们对基底节区神经元细胞对信息处理过程的认识。黑质致密部的多巴胺神经元输出的信息涉及运动、学习和记忆等生理功能。这些信息的输出,对我们认知黑质致密部DA神经元及其损害后引起的神经系统疾病,特别是帕金森病,具有重要的意义。在前期研究中,已发现帕金森病患者基底节区存在病理性同步振荡现象,其主要表现是过度的同步振荡。一般认为,同步振荡与神经系统信息的检测、处理及整合密切相关,因此,过度的同步振荡也可能成为帕金森病感觉、运动信息紊乱并导致出现不同临床症状的内在机制之一。“振荡模型”是新近提出的一种帕金森病的发病机制,目前仍有很多机制尚不明确。此外,既往临床和基础研究已经表明,黑质致密部的多巴胺神经元的病理性的退行性改变是PD、抑郁症等多种疾病的发生和发展的重要特征。故研究探索PD的DA(dopamine)神经元的膜共振特性及机制将有助于我们从一个新的角度去认识PD的发病机制。
     本课题分成二个部分,其一是在大鼠脑片水平上利用红外线可视全细胞膜片钳技术观察记录多巴胺神经元的电活动及其膜共振性质;其二是对膜共振特性潜在的离子机制进行更深入的探讨,以期在正常大鼠脑片水平上,了解多巴胺能神经元的膜共振特性,为进一步研究帕金森大鼠脑片水平的多巴胺神经元膜共振特性的改变,提供坚实的理论依据。一、黑质致密部多巴胺神经元的膜共振
     神经元的振荡是神经系统电活动一个重要的生物节律,无论单个神经元的振荡,还是神经网络的振荡,对脑的功能都具有重要意义。神经元的膜共振是用来描述神经元对输入信号的频率选择性,是神经元网络振荡的内在机制之一。目前已在海马CA1区锥体神经元、海马下托锥体神经元及内嗅皮质Ⅱ层星形细胞等不同类型神经元中检测到θ膜共振。多巴胺神经元作为在黑质致密部结构中最主要的神经元,对神经网络的作用是通过直接、间接通路与其它核团神经元的相互作用而产生的结果,然而对于黑质致密部DA神经元是否也存在膜共振,尚未见报道。因此,本课题的第一部分实验内容就是给予黑质致密部DA神经元一个随时间增加频率连续变化的正弦电流(ZAP,0Hz~16Hz,20s)作为刺激电流,观察并检测出DA神经元的是否存在膜共振,及其膜共振的频率范围,并对其结果进行进一步的分析讨论。
     主要结果如下:
     1、使用红外线可视全细胞膜片钳技术在黑质致密部冠状脑片水平上记录到多巴胺神经元电生理活动,同时用TH染色证实DA神经元其形态为梭形神经元。
     2、我们发现在给予SNc的DA神经元去极化电流刺激时,记录到的SNc的DA神经元放电模式为规则的低频的放电模式。实验还发现,我们利用电生理方法可以明确鉴定DA神经元,在给予ZAP电流刺激时,在-55mV到-85mV范围内DA神经元表现出膜共振反应。
     3、DA神经元的膜共振频率具有温度依赖性,即膜共振频率随温度的升高而升高,在33℃~38℃为2Hz~4Hz左右,证实其频率值处在θ频率范围内。
     4、DA神经元的膜共振频率具有电压依赖性,表现为当钳制在不同的超极化膜电位水平,其膜共振频率有所不同。
     二、黑质致密部多巴胺神经元的膜共振特性的离子机制
     DA神经元的离子通道主要有K~+、Na~+、Ca~(2+)离子通道。Ih电流是由HCN通道所介导一种混合性的阳离子流,由Na~+、K~+及其它阳离子共同组成,是一种缓慢激活的阳离子电流。目前已经证实这种电流对神经元细胞膜的兴奋性和节律性具有重要的调节作用,这在各个脑区的中枢神经元系统已经得到了充分验证。研究结果显示,Ih电流对神经元的调节,主要是通过对突触的传递的调节,而去调节神经元细胞膜的兴奋性及节律性,并且证实其参与了膜共振的形成。这在海马神经元、皮层等神经元业已被证实,其作为主动电流参与形成阈下膜共振。但其是否作为主动电流也参与形成DA神经元阈下膜共振,尚不明确。同时是否有其它离子通道也参与或调节了DA神经元的阈下膜共振,目前也不明确。另外,有文献报道,小电导钙依赖性钾通道(the small-conductance calcium-dependent potassiumchannel, SK)和Ca~(2+)通道参与了膜振荡的形成,其中SK通道的阻断和激活能够显著影响DA神经元的节律和兴奋性。但是能否证实其在膜共振方面的作用,还有待进一步研究。
     主要结果如下:
     1、超极化激活的阳离子流(Hyperpolarization-activated cation current,Ih)是DA神经元产生θ频率膜共振的主动电流成分,作用范围大概在-65mV~-85mV之间。
     2、钙依赖性钾通道(SK)也是DA神经元产生θ频率膜共振的主动电流成分,其作用范围大概在-60mV~-70mV之间。
     3、持续性钠电流(Persistent sodium currents,INap)可以水平放大膜共振。
     主要结论
     1、使用红外线可视全细胞膜片钳技术在大鼠黑质致密部冠状脑片水平上记录到梭形神经元,存在神经元膜共振。
     2、大鼠黑质致密部DA神经元的膜共振具有温度依赖性和电压依赖性。
     3、证实了大鼠黑质致密部多巴胺神经元在-65mV左右,产生膜共振的主动电流是SK通道电流。
     4、证实了大鼠黑质致密部多巴胺神经元在-75mV左右,产生膜共振的主动电流是Ih电流。
     5、证实了I_(Nap)可以增强膜共振峰,但对膜共振频率没有影响。
     6、钙离子参与了膜共振的产生,具体机制尚需进一步研究。
     我们的研究表明黑质致密部多巴胺神经元具有θ频率膜共振,其离子机制具有一定的特殊性,这种独特的离子机制,对于我们进一步了解黑质致密部DA神经元及其在脑内神经网络中的地位具有重要的作用,并且为进一步研究PD患者的DA电生理功能特性提供了基础。
Neural oscillation activity is the feature of neural network on physiological state.Different neuron resonance characteristics are the basic of neural networkresonance. Oscillatory electrical activity is the periodic changes of electricalcurrent, which can be divided into two types: synchronous oscillation andasynchronous oscillation. Synchronous oscillation is an operational oscillationwhich could keep stable synchronizing to the input stimulation. In contrast,asynchronous oscillation is characterized by the loss of synchronization and thuscannot oscillate to the input stimulation. Resonance is a phenomenon thatdescribes the frequency-selective ability of neurons to respond the input signal.Frequency selectivity represents an intrinsic property of neurons. Resonance andfrequency selectivity of neurons are very important because they serve as an important basis for coordinating network activity in the brain. Besides, they playa vital role in the information transmission among the neurons. Dopaminergicneuron is the main neuron of the substantia nigra compacta components. It hassignificant functions in processing the information of basal ganglia structuresand the output of dopaminergic neuron, referring to many physiologicalfunctions of the substantia nigra compacta, such as moving, learning andmemory. At present, Pathological synchronous oscillation has been observed inthe Parkinson's disease patients, and the main symptom is excessivesynchronization oscillation. Synchronous oscillation theory is thought to beclosely related to information detection, analysis and integration. And the theorymight be the internal mechanism of the sensational and movement informationdisorder and thus leading to different clinical symptoms of the Parkinson'sdisease.“Oscillation model” is one of newly raised pathogeneses of the PD.However, the pathogenesis of PD remains unclear. In addition, clinical and basicstudies show that the pathological changes of dopaminergic neuron in thesubstantia nigra compacta have involved in the emergence and development ofvariety diseases including Parkinson’s disease and depression. Therefore, thestudy on resonance property and neurons mechanism of DA resonance of PDwill discover the PD pathogenesis from a new perspective. This research includetwo parts: in the first part we recorded the electrical activity of dopaminergicneurons with infrared visual whole-cell patch clamp in rat horizontal brain slices;in the second part we studied its resonant characteristic and ionic mechanisms.
     1.Membrane resonance of dopaminergic neurons in substantia nigracompacta.
     Oscillation is an important biological rhythm in the brain. Whether a singleneurons or the whole neural network, the oscillation is of great significance for the functions of the brain. Resonance is used to describe the frequency-selectiveability of neurons to respond the input signal, and is one of the internalmechanisms of oscillation. As one of these intrinsic neuronal properties, θresonance has been found in hippocampal CA1pyramidal neurons, horizontalinterneurones in the stratum oriens, and stellate cells from layer II of the medialentorhinal cortex. As the one of the main type neurons in the brain, thedopaminergic neurons have unique physiological significance and functions insubstantia nigra compacta structure, as well as its direct and indirect pathways inbrain network. However, there is no data to show that membrane resonanceexists in DA neurons of substantia nigra compacta. Therefore, the first step ofthe research is to give the sine current (ZAP,0Hz~16Hz,20s) stimulation, whichwas continuously changed by the increasing frequency over time, to DA neuronsof substantia nigra compactan. Then we calculated the membrane resonantfrequency of neurons, and discuss the properties of DAergic neuronsmembrane resonance.
     Main results:
     1). The electrophysiological activities of dopaminergic neurons were recordedby whole-cell patch clamp in substantia nigra compacta in horizontal slices. Theresults with TH staining showed that these neurons were fusiform neurons.
     2). According to the different firing patterns evoked by depolarizing currentstimulation, the DA neurons of SNc can be defined as regular spiking neurons.The experiment showed that all the DA neurons presentresonant response to theZAP stimulation in the range of-55mV and-85mV.
     3). Membrane resonance frequency of the DA neurons were temperaturedependent. In other words, the frequency would increase with the rising of thetemperature. The frequency was increased from2Hz to4Hz with the temperature changed from33℃to38℃.And the frequency was in θ frequencyrange.
     4). Membrane resonance of DA neurons was voltage dependent. In differentmembrane potential levels, it showed different frequency of resonance.
     2. The Ionic mechanism of membrane resonance for dopaminergic neuronsin substantia nigra compacta
     As reported, the main ionic channels related to DA neurons are K+, Na+and Ca2+ionic channels. Ih current is a mixture current which involves K+, Na+and otherpositive ionic components. Several studies have confirmed its modulation role inthe research of the neuron membrane excitability and its rhythms activities inseveral regions of neurons system. The research shows that Ih current havedifferent ways of modulation to synaptic transmission in presynaptic andpostsynaptic neurons. In addition, it has been confirmed in hippocampal neuronsand cortex. As an active current, it has participated in and thus formedsubthreshold membrane resonance. However, it is not clear that whether itparticipates in the formation of subthreshold membrane resonance of DAneurons as an active current. Besides, whether other ion channels have alsoinvolved in or mediated the properties of the subthreshold membrane resonanceof DA neurons was still unclear. At present, researches have shown that theblocking and activating of the small-conductance calcium-dependent potassiumchannel have some effect on the pacing and excitability of the DA neurons. Butits functions on the properties of membrane resonance still need furtherresearch.
     Main results:
     1). Hyperpolarization-activated cation current is the active current component toproduce theta frequency membrane resonance in DA neurons. The current component takes effect in the range of-65to-85mV.
     2). The small-conductance calcium-dependent potassium channel is also theactive current component to produce theta frequency membrane resonance inDA neurons. It ranges from-60to70mV.
     3). Persistent sodium currents, INap could magnify the amplitude of themembrane resonance at the level of depolarized transmembrane potential.
     Main conclusions:
     1). Dopaminergic neurons in substantia nigra compacta is about-65mV, theactive current which can produce membrane resonance is SK channel current.
     2). Dopaminergic neurons in substantia nigra compacta is about-75mV, theactive current which can produce membrane resonance is h current.
     3). INapcan diminish the membrane resonance amplitude in the hyperpolarizedlevel, but it has no effect on resonance frequency.
     4).Calcium ions involved in membrane resonance, but the specificmechanisms need further study.
     Our study showed that the membrane resonance of dopamine neurons insubstantia nigra pars compacta belonged to the θ frequency. Its ionic mechanismhad some particularity feature. This unique ionic mechanisms was better tounderstand the membrane resonance of DA neurons in substantia nigra parscompacta and important roles in the network. By the way, it provide a basicstudy for PD patients in electrophysiological features.
引文
1.李敏,朱俊玲等,6-OHDA帕金森病大鼠模型清醒静止状态下基底节-皮层环路振荡性电活动的特征,中国神经免疫学和神经病学杂志,.2009.04(6):1006-2963
    2. Vinogradova0S. Expression,control,and probable functional significanceof the neuronal theta-rhythm.Prog Neurobiol,1995,45:523–583.
    3. Buzsaki G. The oscillations in the hippocampus.Neuron,2002,33:325–340.
    4. Da Silva L (1991) Neural mechanisms underlying brain waves: from neuralmembranes to networks. Electroencephalogr Clin Neurophysiol79(2):81–93
    5. Bull more E, Sporns O (2009) Complex brain networks: graph theoreticalanalysis of structural and functional systems. Nat Rev Neurosci10(3):186–198.
    6. Hutchison WD (2004) Neuronal oscillations in the basal ganglia andmovement disorders: evidence from whole animal and human recordings.JNeurosci24(42):9240–9243.
    7. Hasselmo, ME (2005). What is the Function of Hippocampal ThetaRhythm?-Linking Behavioral Data to Phasic Properties of Field Potentialand Unit Recording Data. Hippocampus15(7):936–49.doi:10.1002/hipo.20116. Retrieved31October2011.
    8. Bland BH.The physiology and pharmacology of hippocampal formationtheta rhythms.Prog Neurobiol,1986,26:l–54.
    9. Sarnthein J, Petsche H, Rappelsberger, P,Shaw GL, von SteinA.Synchronization between prerfontal and posterior association cortexduring human working memory.Proc Natl Acad Sci USA,1998,95:7092–7096.
    10. Kahana MJ,Seelig D,Madsen JR.Theta returns.Curr Opin Neurobiol,2001,11:739–744.
    11. Raghavachari S,Kahana MJ,Rizzuto DS,Calan JB,Kirschen MP,Bourgeois B,Madsen JR,Lisman JE.Gating of human theta oscillations Bya working memory task. J Neurosci,2001,21:3175–3183.
    12. Winson J.Loss of hippocampal theta rhythm results in spatial memorydeficit in the rat.Science,1978,201:160–163.
    13. Fries P (2001)."A mechanism for cognitive dynamics: neuronalcommunication through neuronal coherence". TICS9:474–480.
    14. Schn Schnitzler A, Gross J (2005)."Normal and pathological oscillatorycommunication in the brain". Nat Rev Neurosci6(4):285–296.
    15. Berger H; Gray, CM (1929)."Uber das ElectroencephalogramdesMenschen". Arch Psychiat Nervenkr87:527–570.
    16. Dement W, Kleitman N (1957)."Cyclic variations in EEG during sleep andtheir relation to eye movements, body motility and dreaming".Electroencephalogr Clin Neurophysiol9(4):673–90.
    17. Llinas R. and Yarom Y.(1986)"Oscillatory properties of guinea-pig inferiorolivary neurons and their pharmacological modulation: an in vitro study". J.Physiol376:163-182
    18. Alonso, A. and Llinas, R.(1989)"Subthreshold Na+-dependent theta-likerhythmicity in entorhinal cortex layer II stellate cells". Nature,342:175-177., gamma band in cortical inhibitory interneurons
    19. Llinas R. Grace, A.A. and Yarom, Y.(1991)" In vitro neurons inmammalian cortical layer4exhibit intrinsic oscillatory activity in the10to50Hz frequency range". PNAS,88,897–901
    20. Pedroarena, C. and Llinas, R.(1997)"Dendritic calcium conductancesgenerate high frequency oscillation in thalamus–cortical neurons". PNAS,94:724–728
    21. Schmitz D.1; Gloveli T.; Behr J.; Dugladze T.and Heinemann U.(1998).“Subthreshold membrane potential oscillations in neurons of deep layers ofthe entorhinal cortex”. Neuroscience,85:.999–1004
    22. Agrawal N, Hamam BN, Magistretti J, Alonso A, Ragsdale DS.(1999).“Persistent sodium channel activity mediates subthresholdmembrane potential oscillations and low-threshold spikes in rat entorhinalcortex layer V neurons.” J. Gen. Physiol114:491–509
    23. Giocomo L. M., Zilli, E A. Fransén, E, and Hasselmo M.E.(2007).“Temporal Frequency of Subthreshold Oscillations Scales withEntorhinal Grid Cell Field Spacing” Science315:1719–1722
    24. Khosrovani, S., Van Der Giessen, R. S., De Zeeuw C. I., and De Jeu M. T. G.(2007).“In vivo mouse inferior olive neurons exhibit heterogeneoussubthreshold oscillations and spiking patterns” PNAS104:15911–15916
    25. Desmaison, D., Vincent J.D. and Lledo, P.M.(1999).“Control of actionpotential timing by intrinsic subthreshold oscillations in the olfactory bulboutput neurons”. J, Neuroscience19:10727–10737
    26. Manis, P.B., Molitor, S.C. and Wu, H.(1999)“Subthreshold oscillationsgenerated by TTX-sensitive sodium currents in dorsal cochlear nucleuspyramidal cells”. Exp. Brain Research153:443–451
    27. Hutcheon,B and Yarom, Y. Resonance, oscillation and the intrinsicfrequency preferences of neurons. Trends Neurosci,200023:216–222
    28. Izhikevich E.M., Desai, N.S, Walcott, E.C. Hoppensteadt.(2003)"Bursts asa unit of neural information: selective communication via resonance TINS"26:161–167.
    29. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001)."The brainweb:phase synchronization and large-scale integration". Nat Rev Neurosci2(4):229–239. doi:10.1038/35067550. PMID11283746.
    30. Izhikevich EM (2007). Dynamical systems in neuroscience. Cambridge,Massachusetts: The MIT Press
    31. Llinas R, Yarom Y (1986)."Oscillatory properties of guinea-pig inferiorolivary neurones and their pharmacological modulation: an in vitro study". JPhysiol376:163–182. PMID3795074
    32. Llinas RR, Grace AA, Yarom Y (1991)."In vitro neurons in mammaliancortical layer4exhibit intrinsic oscillatory activity in the10-to50-Hzfrequency range". Proc Natl Acad Sci USA88(3):897–901.doi:10.1073/pnas.88.3.897. PMC50921. PMID1992481.
    33. Pfurtscheller G, da Silva FHL (1999)."Event-related EEG/MEGsynchronization and desynchronization: basic principles". ClinNeurophysiol110:1842–1857. Tass PA (2007). Phase resetting in medicineand biology: stochastic modelling and data analysis. Berlin Heidelberg:Springer-Verlag. ISBN3540656979.
    35. M kinen V, Tiitinen H, May P (2005)."Auditory event-related responses aregenerated independently of ongoing brain activity". Neuro Image24:961–968.
    36. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009)."To see ornot to see: Prestimulus α phase predicts visual awareness". J Neurosci29(9):2725–32. doi:10.1523/JNEUROSCI.3963-08.2009. PMID19261866.
    37. Buhusi CV, Meck WH (2005)."What makes us tick? Functional and neuralmechanisms of interval timing". Nat Rev Neurosci6(10):755–65.doi:10.1038/nrn1764. PMID16163383.
    38. Ahissar E, Zacksenhouse M (2001)."Temporal and spatial coding in the ratvibrissal system". Prog Brain Res130:75–87.doi:10.1016/S0079-6123(01)30007-9. PMID11480290.
    39. Burns SP, Xing D, Shapley RM (2011)."Is gamma-band activity in the localfield potential of V1cortex a "clock" or filtered noise?". J Neurosci31(26):9658–9664. doi:10.1523/jneurosci.0660-11.2011.
    40. Pfurtscheller G, Aranibar A (1977)."Event-related corticaldesynchronization detected by power measurements of scalp EEG".Electroencephalogr Clin Neurophysiol42(6):817–826. PMID67933.
    41. Murthy VN, Fetz EE (1996)."Oscillatory activity in sensorimotor cortex ofawake monkeys: Synchronization of local field potentials and relation tobehavior". J Neurophysiol76(6):3949–3967. PMID8985892.
    42. Sanes JN, Donoghue JP (1993)."Oscillations in local-field potentials of theprimate motor cortex during voluntary movement". PNAS90(10):4470–4474.
    43. Conway, BA; Halliday, DM; Farmer, SF, et al.(1995)."Synchronizationbetween motor cortex and spinal motoneuronal pool during the performanceof a maintained motor task in man". J Physiol489(3):917–924.
    44. Salenius S, Portin K, Kajola M, et al (1997)."Cortical control of humanmotoneuron firing during isometric contraction". J Neurophysiol77(6):3401–3405. PMID9212286.
    45. Baker SN, Olivier E, Lemon RN (1997)."Coherent oscillations in monkeymotor cortex and hand muscle EMG show task-dependent modulation". JPhysiol501(1):225–241. doi:10.1111/j.1469–7793.1997.225bo.x.
    46. Rubino, D; Robbins, KA; Hatsopoulos, NG (2006)."Propagating wavesmediate information transfer in the motor cortex". Nat Neurosci9(12):1549–1557. doi:10.1038/nn1802. PMID17115042.
    47. Hutcheon B,Yarom.Y.Resonnaee,oseillation and the intrinsic frequencyPreferences of neurons.Trends Neurosci,2000,23:216–222.
    48. Pull E,Gimbarzevsky B,Miura RM.Quantification of membrane Propertiesof trigeminal root ganglion neurons in guinea Pigs.J Neurophysiol,1986,5:995–1016.
    49. Hu H,Vervaeke K,Storm JF.Two forms of electrical resonance at thetafrequencies,generated by M-current,h-current and Persistent Na+current inrat hippocampal Pyramidal cells.J Physiol,2002,545:783–805.
    50. Hutcheon B,Miura RM,Puil E.Subthreshold membrane resonance inneocortical neurons.J Neurophysiol,1996,76:683–97.
    51. Pike FG,Goddard RS,Suckling JM,Ganter P,Kasthuri N,Pualsen0.Distinct frequency Preferences of different types of rat hippocampalneurons in response to oscillatory input currents.J Physiol,2000,529:205–213.
    52. Gutfreund Y,yarom Y,Segev1.Subthreshold oscillations and resonantfrequency in guinea-pig cortical neurons:Physiology and modelling.JPhysiol,1995,483:621–40.
    53. Dossi RC,Nunez A,Steriade M.Electrophysiology of a slow(0.5-4Hz)intrinsic oscillation of cat thalamocortical neurones in vivo.J Physiol,1992,447:215–234.
    54. Destexhe A,Bal,T,McCormick DA,Sejnowski TJ.Ionic mechanismsunderlying synchronized oscillations and propagating waves in a model offerret thalamic slices.J Neurophysiol,1996,76:2049–070.
    55. Haas JS,White JA.Frequency selectivity of layer Ⅱstellate cells in themedial entorhinal cortex. J Neurophysiol,2002,88:2422–2429.
    56. Markram H,Wang Y,Tsodyks M.Differential signaling via the same axonof neocortical pyramidal neurons.Porc Natl Acad Sci USA,1998,95:5323–5328.
    57. Izhikevich EM,Desai NS,Walcott EC,Hoppensteadt FC.Burst as a unit ofneural information:selective communication via resonance. TrendsNeurosci,2003,26:161–167.
    58. Carpenter, M B; Nakano, K; Kim, R (1976)."Nigrothalamic projections inthe monkey demonstrated by autoradiographic technics". J Comp Neurol165(4):401–15.
    59. Nauta, H J; Cole, M (1978)."Efferent projections of the subthalamicnucleus: an autoradiographic study in monkey and cat.". J Comp Neurol180(1):1–16.
    60. Lavoie, B., Smith, Y., Parent, A.(1989)."Dopaminergic innervation of thebasal ganglia in the squirrel monkey as revealed by tyrosine hydroxylaseimmunohistochemistry". The Journal of Comparative Neurology289(1):36–52.
    61. Cragg S.J.; Baufreton J.; Xue Y.; Bolam J.P.;&Bevan M.D.(2004)."Synaptic release of dopamine in the subthalamic nucleus". EuropeanJournal of Neuroscience20(7):1788–1802.
    62. Hajos, M.&Greenfield, S.A.(1994)."Synaptic connections between parscompacta and pars reticulata neurones: electrophysiological evidence forfunctional modules within the substantia nigra". Brain Research660(2):216–224.
    63. Schultz, W.(1992)."Activity of dopamine neurons in the behaving primate".Seminar in Neuroscience4(2):129–138.
    64. Hodge, G K; Butcher, L L (1980)."Pars compacta of the substantia nigramodulates motor activity but is not involved importantly in regulating foodand water intake.". Naunyn Schmiedebergs Arch Pharmacol313(1):51–67.
    65. Pioli, E Y; Meissner, W; Sohr, R; Gross, C E; Bezard, E; Bioulac, B H(2008)."Differential behavioral effects of partial bilateral lesions of ventraltegmental area or substantia nigra pars compacta in rats.". Neuroscience153(4):1213–24.
    66. Ljungberg, T; Apicella, P; Schultz, W (January1,1992)."Responses ofmonkey dopamine neurons during learning of behavioral reactions.". JNeurophysio67(1):145–63.
    67. Da Cunha, Claudio; Silva, Marcio H C; Wietzikoski, Samantha; Wietzikoski,Evellyn C; Ferro, Marcelo M; Kouzmine, Ivana; Canteras, Newton S (2006)."Place learning strategy of substantia nigra pars compacta-lesioned rats.".Behav Neurosci120(6):1279–84.
    68. Da Cunha, Claudio; Wietzikoski, Samantha; Wietzikoski, Evellyn C;Miyoshi, Edmar; Ferro, Marcelo M; Anselmo-Franci, Janete A; Canteras,Newton S (2003)."Evidence for the substantia nigra pars compacta as anessential component of a memory system independent of the hippocampalmemory system.". Neurobiol Learn Mem79(3):236–42.
    69. Matell, M S; Meck, W H (2000)."Neuropsychological mechanisms ofinterval timing behavior.". Bioessays22(1):94–103.
    70. Lima, Marcelo M S; Andersen, Monica L; Reksidler, Angela B; Vital, MariaA B F; Tufik, Sergio (2007). Brosnan, Sarah. ed."The Role of theSubstantia Nigra Pars Compacta in Regulating Sleep Patterns in Rats".PLoS ONE2(6): e513.
    71. Dzirasa, Kafui; Ribeiro, Sidarta; Costa, Rui; Santos, Lucas M; Lin,ShIh-Chieh; Grosmark, Andres; Sotnikova, Tatyana D; Gainetdinov, Raul R;Caron, Marc G; Nicolelis, Miguel A L (2006)."Dopaminergic control ofsleep-wake states". J Neurosci26(41):10577–89.
    72. Jankovic J (April2008)."Parkinson's disease: clinical features anddiagnosis". J. Neurol. Neurosurg. Psychiatr.79(4):368–76.
    73. Adler, CH (2005)."Nonmotor complications in Parkinson's disease".Movement Disorders20: S23–9.
    74. Dawson, T; Dawson, V (2003)."Molecular Pathways of Neurodegenerationin Parkinson's Disease". Science302(5646):819–22.
    75. Liang CL, Sinton CM, Sonsalla PK, German DC (1996)."Midbraindopaminergic neurons in the mouse that contain calbindin-D28k exhibitreduced vulnerability to MPTP-induced neurodegeneration".Neurodegeneration5(4):313–8.
    76. Interview. Yoland Smith, PhD
    77. van Rossum, J (1967). Brill H, Cole J, Deniker P, Hippius H, Bradley P B.ed. Neuropsychopharmacology, Proceedings Fifth Collegium InternationaleNeuropsychopharmacologicum:321–9.
    78. N. S. Kolomeets and N. A. Uranova (1997)."Synaptic contacts inschizophrenia: Studies using immunocytochemical identification ofdopaminergic neurons". Neuroscience and Behavioral Physiology:217–21.
    79. Kumamoto, N; Matsuzaki, S; Inoue, K; Hattori, T; Shimizu, S; Hashimoto,R; Yamatodani, A; Katayama, T et al.(2006)."Hyperactivation of midbraindopaminergic system in schizophrenia could be attributed to thedown-regulation of dysbindin". Biochem Biophys Res Commun345(2):904–9.
    80. Shibata, Eri; Sasaki, Makoto; Tohyama, Koujiro; Otsuka, Kotaro; Endoh,Jin; Terayama, Yasuo; Sakai, Akio (2008)."Use of neuromelanin-sensitiveMRI to distinguish schizophrenic and depressive patients and healthyindividuals based on signal alterations in the substantia nigra and locusceruleus". Biol Psychiatry64(5):401–6.
    81.黄开星,金国章.中枢多巴胺神经元放电活动的特点.生理学进展1989(2):110-113
    82. GRACE,A.A. AND ONN, S.-P. Morphological and electrophysiologicalproperties of immunocytochemically identifie drat dopamine neuronsrecorded in vitro. J. Neurosci.9:3463–3481,1989.
    83. HARRIS, N. C., WEBB, C., AND GREENFIELD, S. A. A possiblepacemaker mechanism in pars compact neurons of the guinea pigsubstantia nigra revealed by various ion channel blockingagents.Neuroscience31:355–362,1989.
    84. KANG,Y. AND KITAI, S. T. Calcium spike underlying rhythmic firing indopaminergic neurons of the rat substantia nigra. Neurosci. Res.18:195–207,1993a.
    85. KANG,Y. AND KITAI, S. T. A whole cell patch-clamp study of thepacemaker potential in dopaminergic neurons of rat substantia nigracompacta. Neurosci. Res.18:209–221,1993b.
    86. C.J.wilson and J.C.callaway.Coupled Oscillator Model of the DopaminergicNeuron of the Substantia Nigra.J Neurophysiol83:3084-3100,2000.
    87. GRACE,A.A. AND BUNNEY, B. S. The control of firing pattern in nigraldopamine neurons: burst firing. J. Neurosci.4:2877–2890,1984b.
    88. PING,H. AND SHEPARD, P. Apamin–sensitive Ca2+-activated K+channelsregulate pacemaker activity in nigral dopamine neurons. Neuroreport73:809–814,1996.
    89. SHEPARD,P.D. AND BUNNEY, B. S. Repetitive firing properties ofputative dopamine-containing neurons in vitro: regulation by anapamin-sensitive Ca2+-activated K+conductance. Exp Brain Res.86:141–150,1991.
    90. Jung, R; Kornmüller AE (1938)."Eine Methodik der ableitung lokalisierterPotential schwankungen aus subcorticalen Hirngebieten". Arch PsychiatNervenkr109:1–30.
    91. Green, JD; Arduini A (1954)."Hippocampal activity in arousal". JNeurophysiol17(6):533–57. PMID13212425.
    92. Stumpf, C (1965)."Drug action on the electrical activity of thehippocampus". Int Rev Neurobiol8:77–138.
    93. Green, JD; Arduini, AA (1964)."The hippocampus". Physiol Rev44(6):561–608. PMID13212425.
    94. Hasselmo, ME; Eichenbaum H (2005)."Hippocampal mechanisms for thecontext-dependent retrieval of episodes". Neural Networks18(9):1172–90.
    95. Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B(2003)."Sleep-dependent theta oscillations in the human hippocampus andneocortex". J Neurosci23(34):10897–903.
    96. Vertes, RP (2005)."Hippocampal theta rhythm: a tag for short-termmemory". Hippocampus15(7):923–35.
    97. Buzsáki, G (2002)."Theta oscillations in the hippocampus". Neuron33(3):325–40.
    98. Vanderwolf, CH (1969)."Hippocampal electrical activity and voluntarymovement in the rat". EEG Clin Neurophysiol26(4):407–418.
    99. Bland, BH; Oddie SD (2001)."Theta band oscillation and synchrony in thehippocampal formation and associated structures: the case for its role insensorimotor integration". Behav Brain Res127(1–2):119–36.
    100.Buzsáki, G (2005)."Theta rhythm of navigation: link between pathintegration and landmark navigation, episodic and semantic memory".Hippocampus15(7):827–40.
    101.Hyman, JM; Wyble BP, Goyal V, Rossi CA, Hasselmo ME (December17,2003)."Stimulation in hippocampal region CA1in behaving rats yields LTPwhen delivered to the peak of theta and LTD when delivered to the trough".J Neurosci23(37):11725–31.
    102.Hille,Bertil.Ion channels of excitable membrane. Third. Sunderland, Mass:Sinaur Associate,2001.ISBN0-87893-321-2.
    103.Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence. C. Katz,Anthony-Samuel LaMantia, James O. McNamara, S. Mark Williams,editors. Chapter4: Channels and Transporters. Neuroscience.2nd. SinauerAssociates Inc..2001. ISBN0-87893-741-2.
    104.Hille B, Catterall, WA. Chapter6: Electrical Excitability and IonChannels//George J Siegel, Bernard W Agranoff, R. W Albers, Stephen KFisher and Michael D Uhler. Basic neurochemistry: molecular, cellular, andmedical aspects. Philadelphia: Lippincott-Raven.1999. ISBN0-397-51820-X.
    105.Camerino DC, Tricarico D, Desaphy JF. Ion channel pharmacology.Neurotherapeutics. April2007,4(2):184–98.
    106.Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev DrugDiscov. February2009,8(2):153–71.
    107.Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A. Therapeuticapproaches to ion channel diseases. Adv. Genet..2008,64:81–145.doi:10.1016/S0065-2660(08)00804-3. PMID19161833.
    108.Lampl Ⅰ,Yarom.Y.Subthreshold oscillations and resonant behavior:twoManifestations of the same mechanism.Neuroscience,1997,78:325–341.
    109.Wu N,Hsiao CF,Chandler SH.Membrane resonance and subthresholdmembrane oscillations in mesencephalic V neurons:participants in burstgeneration.J Neurosci,2001,21:3729–3739.
    110.Pape HC, Driesang RB.Ionic mechanisms of intrinsic oscillations inNeurons of the basolateral amygdaloid complex.J Neurophysiol,1998,79:217–226.
    111.Richards C, Shiroyama T, Kitai S (1997) Electrophysiological andimmunocytochemical characterization of GABA and dopamine neurons inthe substantia nigra of the rat. Neuroscience80(2):545–557
    112.Vandecasteele M (2005) Electrical synapses between dopaminergic neuronsof the substantia nigra pars compacta. J Neurosci25(2):291–298.
    113.Vandecasteele M, Deniau JM, Venance L (2011) Spike frequency adaptationis developmentally regulated in substantia nigra pars compactadopaminergic neurons. Neuroscience192:1–10.
    114.von Stein A, Sarnthein J Different frequencies for different scales ofcortical integration: from local gamma to long range alpha/thetasynchronization. Int J Psychophysiol200038(3):301–313
    115.Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorder relevancefor cognitive dysfunctions and pathophysiolog Neuron52(1):155–168.doi:10.1016/j.neuron.2006.09.020
    116.D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V,Fontana A,Naldi G (2001) Theta-frequency bursting and resonance in cerebellargranule cells: experimental evidence and modeling of a slow K-dependentmechanism. J Neurosci21(3):759
    117.Wang WT, Wan YH, Zhu JL, Lei GS, Wang YY, Zhang P, Hu SJ (2006)Theta-frequency membrane resonance and its ionic mechanisms in ratsubicular pyramidal neurons. Neuroscience140(1):45–55。
    118.Yang RH, Hou XH, Xu XN, Zhang L, Shi JN, Wang F, Hu SJ, Chen JY(2011) Sleep deprivation impairs spatial learning and modifies thehippocampal theta rhythm in rats. Neuroscience173:116–123.
    119.Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance attheta frequencies,generated by M-current,h-current and persistent Nacurrent in rat hippocampal pyramidal cells.J Physiol545(3):783–805.
    120.Sciancalepore M, Constanti A.Inward-rectifying membrane currentsActivated by hyperpolarization in immature rat olfactory cortex neurons invitro.Brain Res,1998,14:133–142.
    121.Harris NC, Constanti A.Mechanism of block by ZD7288of thehyperpolarization-activated inward rectifying current in guinea Pigsubstantia nigra neurons in vitro.J Neurophysiol,1995,74:236–2378.
    122.Ingram SL, Williams JT (1996) Modulation of thehyperpolarization-Activated current (Ih) by cyclic nucleotides in guinea-pigprimary afferent neurons. J Physiol492(Pt1):97
    123.Cathala L,Paupardin\Tritsch D(1997) Neurotensin inhibition of theHyperpolarization-activated cation current (Ih) in the rat substantia nigrapars compacta implicates the protein kinase C pathway. J Physiol503(1):87–97
    124.Liu X-K, Wang G, Chen S-D (2010) Modulation of the activity ofdopaminergic neurons by SK channels: a potential target for the treatmentof Parkinson’s disease? Neurosci Bull26(3):265–271.
    125.Maylie J, Bond CT, Herson PS, Lee WS, Adelman JP (2004) Smallconductance Ca2+-activated K+channels and calmodulin.J Physiol554(2):255–261
    126.Yu X, Duan KL, Shang CF, Yu HG, Zhou Z (2004) Calcium influx throughhyperpolarization-activated cation channels (Ih channels)contributes toactivity-evoked neuronal secretion. Proc Natl Acad Sci USA101(4):1051
    127.Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA,TibbsGR (1998) Identification of a gene encoding a hyperpolarization-activatedpacemaker channel of brain. Cell93(5):717–729
    128.Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family ofhyperpolarization-activated mammalian cation channels.Nature393(6685):587–591
    129.Lovejoy L, Shepard P, Canavier C (2001) Apamin-induced irregular Firingin vitro and irregular single-spike firing observed in vivo in dopamineneurons is chaotic. Neuroscience104(3):829–840
    130.Tacconi S, Carletti R, Bunnemann B, Plumpton C, Merlo Pich E,TerstappenG (2001) Distribution of the messenger RNA for the small conductancecalcium-activated potassium channel SK3in the adult rat brain andcorrelation with immunoreactivity.Neuroscience102(1):209–215
    131.Liegeois J, Mercier F, Graulich A, Graulich-Lorge F, Scuvee-Moreau J,Seutin V (2003) Modulation of small conductance calcium activatedpotassium(SK) channels:a new challenge in medicinal chemistry. Curr MedChem10(8):625–647
    132.Pedarzani P, Stocker M (2008) Molecular and cellular basis of small andintermediate-conductance, calcium-activated potassium channel function inthe brain. Cell Mol Life Sci65(20):3196–3217
    133.Rimini R, Rimland JM, Terstappen GC (2000) Quantitative expressionanalysis of the small conductance calcium-activated potassium channels,SK1, SK2and SK3, in human brain. Mol brain res85(1–2):218–220
    134.Bean A, Roth RH (1991) Extracellular dopamine and neurotensin in ratprefrontal cortex in vivo: effects of median forebrain bundle stimulationfrequency, stimulation pattern, and dopamine autoreceptors. J Neurosci11(9):2694
    135.Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferentmodulation of dopamine neuron firing differentially regulates tonic andphasic dopamine transmission. Nat Neurosci6(9):968–973
    136.Ji H, Shepard P (2006) SK Ca2-activated K channel ligands alter the firingpattern of dopamine-containing neurons in vivo. Neuroscience140(2):623–633
    137.Ji H, Hougaard C, Herrik KF, Str BKD, Christophersen P, ShepardPD(2009)Tuning the excitability of midbrain dopamine neurons bymodulating the Ca2sensitivity of SK channels. Eur J Neurosci29:1883–1895
    138.Hutchison WD (2004) Neuronal oscillations in the basal ganglia andmovement disorders: evidence from whole animal and humanrecordings.JNeurosci24(42):9240–9243.
    139.Wilson C, Callaway J (2000) Coupled oscillator model of the dopaminergicneuron of the substantia nigra. J Neurophysiol83(5):3084
    140.Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels toSK potassium channels prevents intrinsic bursting in dopaminergicmidbrain neurons. J Neurosci22(9):3404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700