新城疫病毒单感染及猪流感病毒与猪链球菌共感染差异蛋白组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是应用基于双向电泳的蛋白质组学技术及MALDI TOF/TOF质谱检测技术,分析不同禽源的新城疫病毒(NA-1及F48E9株)体外感染原代鸡胚成纤维细胞(CEF)全蛋白变化情况。实验分为三组比较:比较新城疫病毒NA-1感染细胞前后全细胞蛋白;比较新城疫病毒F48E9感染细胞前后全细胞蛋白;比较不同NA-1及F48E9新城疫病毒感染细胞后全细胞蛋白。通过比较鉴定差异表达的蛋白,分析差异蛋白的功能。进而选取其中两种蛋白进行功能分析,采用构建真核表达质粒转染细胞的方法,研究蛋白过表达对细胞增殖的影响。首先用NA-1株病毒体外感染原代鸡胚成纤维细胞12h、24h、36h观察细胞病变及间接免疫荧光试验确定病毒感染细胞最佳时期,通过以上两种方法,确定病毒感染全细胞蛋白提取时间为病毒感染细胞后24h,在这个时期,大部分(90%)细胞已经被病毒感染,但并没有死亡,是病毒感染研究的最佳时间。在确定时间点后,扩大培养细胞,然后将病毒NA-1及F48E9感染鸡胚成纤维细胞24h,感染结束后加入全细胞蛋白提取液提取感染及未感染的鸡胚成纤维全细胞蛋白,离心去除细胞碎片后,上清液即为粗提蛋白样品。在双向电泳分离蛋白质前,先用BCA法测定蛋白浓度,并用SDS-PAGE检测蛋白是否降解,然后用双向电泳分离蛋白、银染染色、图像扫描与分析比较,最后选取2倍以上的差异表达蛋白点进行胶内酶解及质谱分析。最后应用荧光定量qPCR技术验证双向电泳的结果。质谱共鉴定40个蛋白点,代表27个差异表达蛋白,这些蛋白包括:驱动蛋白样蛋白KIF18、小泛素相关修饰前体、类似APC、膜联蛋白A6、角蛋白、α-S1酪蛋白、磷脂结合蛋白1、肌动蛋白、波形蛋白、钙调素(RGN)、血红素结合蛋白1、钙网蛋白、磷酸丙糖异构酶(TPI)、核苷二磷酸激酶等。应用GO及David对这些蛋白进行功能预测分析,分析后,选取其中两个感染后上调表达的蛋白磷酸丙糖异构酶(TPI)及钙调素(RGN)进行构建pEGFP-N1-TPI和pEGFP-N1-RGN的真核表达载体,本实验选择瞬时转染方法检测蛋白过表达对细胞增殖情况的影响,结果显示当细胞内这两种蛋白过表达的时候抑制细胞增殖。
     在另外一个课题的研究中,对猪流感病毒与2型猪链球菌混合感染(共感染)、猪流感病毒单独感染、2型猪链球菌单独感染及未感染的新生猪气管上皮细胞(New born pig treacheal epithelial cells, Nptr细胞)应用蛋白质组学及转录组学方法进行研究。近年来一些研究人员通过预感染流感病毒而后感染革兰氏阳性菌及革兰氏阴性菌,研究细菌对细胞的黏附情况,结果显示流感病毒的预先感染可以有助于革兰氏阳性菌对细胞的黏附增加,而革兰氏阳性菌对细胞的黏附没有变化。同时本课题组已经证明了,预先将猪流感病毒感染猪气管上皮细胞12小时,而后加入2型猪链球菌感染2h,混合感染组2型猪链球菌细菌黏附数要远远高于2型链球菌单独感染的细菌黏附数(100倍以上)。同时又证明了,2型猪链球菌的荚膜多糖(CPS)可以与猪流感病毒的血凝素(HA)结合,这说明2型猪链球菌可以以两种形式感染猪气管上皮细胞:一种是与猪流感病毒的HA结合,随着猪流感病毒同时感染细胞;另一种是与猪流感病毒感染细胞后在细胞表面表达的HA结合感染细胞。所以,本课题是基于以上的研究,希望用蛋白质组和转录组学方法全面研究猪流感病毒-2型猪链球菌混合感染对宿主细胞的影响,进而深入了解猪流感病毒-2型猪链球菌协同感染机制。
     实验方法为:首先用1MOI猪流感病毒预感染猪气管上皮细胞12h,而后加入10MOI的2型猪链球菌,继续感染12h,感染结束后,提取细胞RNA进行转录组研究;提取全细胞蛋白进行蛋白质组研究,将混合感染的细胞与正常的猪气管上皮(Nptr)细胞、2型猪链球菌单独感染的细胞及猪流感病毒单独感染的细胞进行比较。通过转录组的比较,结果显示2型猪链球菌单独感染组、猪流感病毒单独感染组、猪流感病毒与2型猪链球菌混合感染组与未感染组比较分别有393、2797、3254个差异表达探针,对应104、594、681个差异表达基因,功能主要包括代谢、信号调节因子、干扰素调节基因、干扰素刺激基因、糖蛋白、受体、外界刺激反应、免疫系统过程、细胞因子炎症因子及其受体、脂蛋白、凋亡及细胞周期调节、细胞骨架、转录因子及其调节、细胞表面受体相关信号转导、细胞黏附等。通路包括:细胞因子-细胞因子受体关系、Toll样受体信号途径、PPAR信号途径、补体和凝血级联、MAPK信号途径、炎症信号途径、Jak-STAT信号途径、RIG-l样受体信号途径、细胞黏附因子、内吞作用、TGF-beta信号途径、ECM-受体相互作用、NOD样受体信号途径、紧密连接等。为了验证转录组(Microarray)实验结果的可靠性,本实验选取了9个基因设计引物,用荧光定量PCR方法检测。其中选取的VCAM1、PLAU、IFNB1、IL1a、TNF、IL6、IL8、COX2基因在混合感染结果中相对于病毒或细菌单独感染显著变化。荧光定量PCR上述基因变化结果与转录组检测结果趋势一致。对比分析猪流感病毒单独感染、2型猪链球菌单独感染、及二者混合感染的基因变化情况,结果表明混合感染后一些基因协同作用增强,是协同感染通路增强的原因。通过蛋白组的比较鉴定了包括抗病毒蛋白及细胞因子等在内的27种差异表达蛋白,包括:干扰素诱导蛋白3(IFIT3)、双链断裂修复的蛋白质MRE11A异构体2、ATP依赖的RNA解旋酶DDX39A、甲硫氨酸氨基肽酶1、酰基辅酶A硫酯酶6、延伸因子1-α、丙酮酸脱氢酶E1成分β亚基、蛋白酶激活剂复合物亚基2、蛋白酶激活剂复合物亚基1、胰蛋白酶前体、热休克蛋白β-1、FGFR1基因、热休克蛋白β-1、视黄醇结合蛋白(RBP)、泛素ISG15结合酶E2L6、超氧化物歧化酶1、干扰素诱导蛋白17、巨噬细胞移动抑制因子及干扰素诱导蛋白1(IFIT1)等,这些蛋白可能与猪流感病毒及2型猪链球菌混合感染机制有关。
Newcastle disease is a serotype Ⅰ avian paramyxovirus (ie Newcastle diseasevirus) causes chicken and turkey acute highly contagious disease, Newcastle diseaseis harmful to the poultry industry is still the most important infectious diseases. On aglobal scale, highly pathogenic Newcastle disease virus constantly threatening thepoultry industry, for Newcastle disease infected host mechanism is very important.Swine influenza virus infections show its fatality rate is not high, but the incidence isvery high. Once the sudden onset of a single individual can and quickly spread to theentire group. Clinical studies have shown that the swine flu virus infection, usuallyaccompanied by a secondary infection of the respiratory tract pathogens thatsecondary bacterial infections. Streptococcus suis type2, is a Gram-positive bacteria,but also secondary infection frequently isolated bacteria that can cause human or pigmeningitis, arthritis, septicemia and pneumonia. And when a large number of pigsinfected with type2Streptococcus epithelial cells, which can damage cells showedstrong ability and invasion of epithelial cell adhesion ability. So for swine and swineinfluenza virus type2streptococcus infection research is very necessary.
     The research project is divided into two parts: single NDV infected chickenembryo fibroblasts proteomics research and swine influenza virus co-infection withStreptococcus suis proteomics and transcriptomics studies.
     Two-dimensional electrophoresis and mass spectrometry techniques, analysis ofdifferent avian Newcastle disease virus (NA-1and F48E9strain) in vitro infection ofprimary chicken embryo fibroblasts (CEF) and Protein situation. Newcastle diseasevirus were compared NA-1infected cells entire protein, Newcastle diseasevirus-infected cells F48E9total proteins and uninfected cells whole cell proteins. Bycomparing the identification of differentially expressed proteins, analyze differencesin protein function. Mass40protein spots were identified, representing27differentially expressed proteins, which include: kinesin-like protein KIF18, smallubiquitin-related modifier precursor, similar to APC, annexin A6, keratin, α-S1casein, phospholipid binding protein1, actin, vimentin, calmodulin (RGN), heme-bindingprotein1, calreticulin, triosephosphate isomerase (TPI), nucleoside diphosphatekinase. Application GO and David for these protein function prediction analysis,analysis, select one of the two proteins upregulated after infection triosephosphateisomerase (TPI) and calmodulin (RGN) to build pEGFP-N1-TPI and pEGFP-N1-RGN eukaryotic expression vectors, transient transfection in this experiment todetect overexpression of cell proliferation, the results shows that when cellsoverexpressing these two proteins, when inhibited cell proliferation.
     The topic of swine influenza virus and porcine type2streptococcus(co-infection), swine influenza virus infection alone, streptococcus swine type2infection alone and uninfected pig tracheal epithelial cells (Nptr cells) Application ofproteomics and transcription genomics research methods. In recent years someresearchers then through the pre-infection with influenza virus infection of Grampositive bacteria and Gram-negative bacteria, studies on cell adhesion of bacteria, theresults shown previously infected with influenza virus may help Gram-positivebacteria increased cell adhesion, and Gram-positive bacteria cell adhesion has notchanged. Meanwhile, the research group has demonstrated, advance to the swine fluvirus of swine tracheal epithelial cells for12hours, then added two streptococcusswine2h, mixed group of pigs infected with type2streptococcus bacterial adhesion ismuch higher than the number of type2streptococcal infection alone2h number ofbacterial adhesion. At the same time proved streptococcus swine type2capsularpolysaccharide (CPS) can be used with swine influenza virus hemagglutinin (HA)binding, indicating streptococcus swine type2can be in two forms of swine trachealepithelial cells: a species is swine influenza virus HA binding, as swine influenzavirus-infected cells while; other is the swine influenza virus infected cells expressedon the cell surface of infected cells with HA. Therefore, this topic is based on theabove study, hoping to use proteomics and transcriptomics approach a comprehensivestudy of the swine flu virus-swine streptococcus type2effects on host cells, and thusunderstand the swine flu virus-swine streptococcus type2coordination mechanismsof infection.
     Through transcriptome comparison showed streptococcus swine type2infectionalone group, swine influenza virus infection alone group, swine influenza virus andporcine type2streptococcus group compared with the uninfected group were 393,2797,3254differentially expression probes corresponding to104,594,681differentially expressed genes, functions including metabolism, signal conditioningfactor, interferon-regulated genes, interferon stimulated genes, glycoproteins,receptors, external stimuli, the process of the immune system, cytokines inflammatorycytokines and their receptors, lipoproteins, apoptosis and cell cycle regulation,cytoskeleton, and regulation of transcription factors, cell surface receptor signaltransduction, cell adhesion, etc. Path includes: cytokine-cytokine receptorrelationships, Toll-like receptor signaling pathway, PPAR signaling pathway,complement and coagulation cascade, MAPK signaling pathway, inflammatorysignaling pathway, Jak-STAT signaling pathway, RIG-I-like receptor signalingpathway, cell adhesion factor, endocytosis, TGF-beta signaling pathway,ECM-receptor interaction, NOD-like receptor signaling pathway, tight connections.To verify the transcriptome (Microarray) the reliability of experimental results, thisstudy selected nine gene primers were designed using fluorescence quantitative PCRmethod. Which selected VCAM1, PLAU, IFNB1, IL1a, TNF, IL6, IL8, COX2generesults in a mixed infection with respect to viral or bacterial infection alone changesignificantly. Quantitative PCR results of the above-mentioned changes in thetranscriptome gene test results trend. Comparative analysis of swine influenza virusinfection alone, swine streptococcus infection alone type2, and two mixed infectionsgenetic changes, the results showed that some of the genes mixed infection enhancedsynergy is enhanced synergistic infection pathway causes. Identified by comparison ofproteins, including the group of antiviral cytokines, including protein and27differentially expressed proteins, mainly involved in transcriptional regulation, mRNAprocessing, translation control, lipid metabolism, protein synthesis, DNA damageresponse, stress reaction of cytokine-mediated signal transduction pathway,anti-apoptotic, anti-viral defense, inflammatory response. These differences in proteinand swine influenza virus-swine streptococcus mixed type2infection and play animportant role.
引文
[1] Jungblut PR, Muller EC, Mattow J, et al. Proteomics reveals open LETTERS INBIOTECHNOLOGY Vol.18No.3May,2007reading frames in Mycobacteriumtuberculosis H37Rv not predicted by genomics[J]. Infect Immun,2001.69:5905
    [2] Yoder JD, Chen TS, Gagnier CR, et al. Pox proteomics: mass spectrometryanalysis and identification of vaccinia virion proteins [J]. Virol J,2006.3:10
    [3] Zhang X, Huang C, Tang X, et al. Identification of structural proteins from shrimpwhite spot syndrome virus (WSSV) by2DE-MS [J]. Proteins,2004.55:229
    [4] Ren X, Xue C, Kong Q, et al. Proteomic analysis of purified Newcastle diseasevirus particles, Proteome Sci.2012May9;10(1):32.
    [5] Qingming Kong1, Chunyi Xue1, Xiangpeng Ren4, et al. Proteomic analysis ofpurified coronavirus infectious bronchitis virus particles [J]. Proteome Science,2010.8:29
    [6] Megan L. Shaw mail, Kathryn L, et al. Cellular Proteins in Influenza VirusParticles, PLoS Pathog.2008Jun6;4(6):
    [7]王志武.禽流感病毒H5N1病毒颗粒中鸡胚宿主蛋白的质谱分析[J].ChineseJournal of Analytical Chemistry,2012.3(40)
    [8] Morrissey B, Downard KM. A proteomics approach to survey the antigenicity ofthe influenza virus by mass spectrometry [J]. Proteomics,2006.6:2034
    [9]朱联辉,郑涛,赵达生.病毒蛋白质组学及其应用[J].生物技术通讯,2007.5(18)3
    [10]孟佩俊,刘丽华,张丽萍,等.双向凝胶电泳分析感染禽脑脊髓炎病毒鸡脑组织蛋白表达图谱[J].中国预防兽医学报,2008,30(2):100-103
    [11]吴双,开妍,王晓泉,等.新城疫病毒感染细胞的双向凝胶电泳方法建立及其初步分析[J].中国家禽,2010,32(10):25-29
    [12] Zheng X, H ong L, Sh iL, et al. Proteom ics analysis of host cells infected w ithinfectious bursal disease virus [J]. M o l Cell Proteom ics,2008,7(3):612-625
    [13]吴永平.传染性法氏囊病毒感染鸡靶器官的比较蛋白质组研究[D].杭州:浙江大学,2009
    [14] ThanthrigeDon N, AbdulC areem M F, Shack L A, et al. Analyses of the spleenproteome of chickens infected with Marek 's disease virus [J]. Virology,2009,390(2):356-367
    [15] L u Z J, Q in A J, Q ian K, et al. Proteomics analysis of the ho st response in thebursa of Fabricius of chickens infected w ith Marek 's disease virus [J]. Virus Res,2010,153(2):250-257
    [16] Liu C, Zhang A, Guo J, et al. Identification of human host proteins contributingto H5N1influenza virus propagation by membrane proteomics. J Proteome Res.2012Nov2;11(11):5396-405.
    [17]王郁杨,开妍,段志强,等.新城疫病毒人工感染鹅脾脏差异表达蛋白质组初步分析[J].畜牧兽医学报,2012,43(7):1088-1095
    [18] Tong A P, Gou L T, Lau Q C, et al. Proteomic profiling identifies aberrantepigenetic modifications induced by hepatitis B virus X protein [J]. Proteome Res,2009,8:1037—1046
    [19] Toda T, Sugimoto M, Omori A, et al. Proteomic analysis of Epstein-Barrvirus-transformed human B-lymphoblastiod cell lines before and afterimmortalization [J]. Electrophoresis,2000,21:1814—1822
    [20] Coiras M, Camafeita E, Urena T, et al. Modifications in the human T cellproteome induced by intracellular HIV-1Tat protein expression [J]. Proteomics,2006,6: S63-S73
    [21]周圣涛.病毒蛋白质组学:病毒学研究前沿.中国科学:生命科学,2010(40)9:767-777
    [22] Chen X, Yu Y B, Xue Y, et al. Amino acid-coded tagging approaches inquantitative proteomics[J]. Expert Rev Proteomics,2007,4:25-37
    [23] Mannova P, Wang H, Deng B, et al. Modification of host lipid raft proteomeupon hepatitis C virus replication [J]. Mol Cell Proteomics,2006,5:2319—2325
    [24] Zhang L, Zhang X E, Lin F S, et al. Quantitative proteomics analysis revealsBAG3as a potential target to suppress severe acute respiratory syndromecoronavirus replication [J]. J Virol,2010,84:6050—6059
    [25] Andrea L, Kroeker, Peyman Ezzati, et al. Response of Primary Human AirwayEpithelial Cells to Influenza Infection: A Quantitative Proteomic Study [J].Proteome Res.2012,11,4132-4146
    [26] Jiang X S, Tang L Y, Dai J, et al. Quantitative analysis of severe acute respiratorysyndrome (SARS)-associated coronavirus-infected cells using proteomicapproach [J]. Mol Cell Proteomics,2005,4:902-913
    [27] Li Z, Chen J, Wu J L, et al. Shotgun identification of the structural proteome ofshrimp white spot syndrome virus and Itraq differentiation of envelope andnucleocapsid subproteomes [J]. Mol Cell Proteomics,2007,6:1609—1620
    [28] Diamond D L, Jacobs J M, Paeper B, et al. Proteomic profiling of human liverbiopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction [J].Hepatol,2007,46:649-657
    [29] Youngner J S. Monolayer tissue culture. I. Preparation and stalldardization ofsuspensions of trypsin dispersed monkey k idney cells [J]. Proc Soc Exp Biol,1954,85:202-207.
    [30]张华,周宏宇,蔡亚平,等.鸡新城疫病毒致鸡胚成纤维细胞病变特性研究[J].云南畜牧兽医,2008,(3):21
    [31]章静波,徐存拴,陈实平,等.弗雷谢尼R I.动物细胞培养技术指南第4版
    [M].北京:科学出版社,2004:192-195
    [32]殷震,刘景华.动物病毒学第2版[M].北京:科学出版社,1997:204-246
    [33] Xu W, Longo FJ, Wintermantel MR, et al. Calreticulin modulates capacitativeCa2+influx by controlling the extent of inositol1,4,5-trisphosphate-inducedCa2+store depletion. J Biol Chem.2000Nov24;275(47):36676-82.
    [34] Gao B, Adhikari R, Howatth M, et al.Assembly and antigen-presenting functionof MHC classI moleculesin cellslackingthe ER chaperone Ce l-refieulin [J].Immunity,2002.16(1):99-109
    [35] Hsieh CJ, Kim TW, Hung CF, et al. Enhancement of vaccinia vaccine potency bylinkage of tumor antigen gene to gene encoding calreticulin [J]. Vaccine,2004,22(29-30):3993-4001
    [36]汤晓燕.钙网蛋白的生物学功能及其与自身免疫疾病的关系.国外医学免疫学分册,2005.7(28)4
    [37]邱云志.钙调素及其对细胞增殖的影响研究现状.华北国防医药,2006.6(18)3
    [38]洪超.钙网蛋白的免疫生物学活性研究进展.生物物理学报,2012.8(28)8:621-630
    [39]吴红艳.钙网蛋白与肿瘤免疫.生命科学,2011.10(23)10
    [40] Yeung K, Seitz T, Li S, et al. Suppression of Raf-1kinase activity and MAPkinase signalling by RKIP [J].Nature,1999,401(6749):173-177
    [41] Yeung KC, Rose DW, Dhillon A, et al. Raf kinase inhibitor protein interacts withNF-κB-inducing kinase and TAK1and inhibits NF-κB activation [J]. Mol CellBiol,2001,21(21):7207-7217
    [42] Eves EM, Shapiro P, Naik K, et al. Raf Kinase Inhibitory Protein RegulatesAurora B Kinase and the Spindle Checkpoint [J].Mol Cell,2006,23(4):561-574
    [43] Hagan S, AlMulla F, Mallon E, et al. Reduction of Raf-1kinase in-hibitor proteinexpression correlates with bread cancer metastasis[J].Clin Cancer Res,2005,11(20):7392-7397
    [44]杜建秀. Raf激酶抑制蛋白(RKIP)的研究进展.基础科学
    [45]胡新宙. Raf激酶抑制蛋白(RKIP)的生物学功能研究.生命科学,2007,2(19)1
    [46] Lichtenfels R, Kellner R, Atkins D, et al. Identification of metabolic enzymes inrenal cell carcinoma utilizing PROTEOMEX analyses [J]. Biochim Biophys Acta,2003,1646(1-2):21-31
    [47] Chen G, Gharib T G, Huang C C, et al. Proteomic analysis of lungadenocarcinoma: identification of a highly expressed set of proteins in tumors [J].Clin Cancer Res,2002,8(7):2298-2305
    [48] Montgomerie J Z, Gracy R W, Holshuh H J, et al. The28K protein in urinarybladder, squamous metaplasia and urine is triosephosphate isomerase [J]. ClinBiochem,1997,30(8):613-618
    [49] Wang R F, Wang X, Atwood A C, et al. Cloning genes encoding M H C classII-restricted antigens: mutated CDC27as a tumor antigen [J]. Science,1999,284(5418):1351-1354
    [50]李萃.人肺鳞癌组织的血清蛋白质组学的比较分析.中国生物化学与分子生物学报,2005.6,21(3):357-368
    [51] Gonzales M et al. Structure and function of a vimentin associated matrixadhesion in endothelial cells [J]. Mol Biol Cell,2001,12:85-100
    [52] Burgstaller G et al. Keeping the vimentin network under control: cell-matrixadhesion-associated plectin1f affects cell shape and polarity of fibroblasts [J].Mol Bio Cell,2010,21:3362-3375
    [53] Kim H et al. Filamin A is required for vimentin-mediated cell adhesion andspreading [J]. Am J Physiol Cell Physiol,2010,298:221-236
    [54] McInroy L et al. Down-regulation of vimentin expression inhibits carcinoma cellmigration and adhesion [J]. Biochem Biophys Res Commun,2007,360:109-114
    [55] Moisan E et al. Cell surface expression of intermediate filament proteinsvimentin and lamin B1in human neutrophil spontaneous apoptosis [J]. J LeukocBiol,2006,79:489-498
    [56]郭文琼.波形蛋白在细胞中的潜在功能.生命的化学,2012,(32)4
    [57]王伟伟.波形蛋白介导猪繁殖与呼吸综合征病毒感染Marc-145细胞作用的初步研究.病毒学报,2011.9,(27)5
    [58] Nakagawa T, Sawada N, Yamaguchi M. Overexpression of Regucalcinsuppresses cell proliferation of cloned normal rat kidney proximal tubularepithelial NRK52E cells [J]. Int J Mol Med,2005,16(4):637-643
    [59] Tsurusaki Y, Yamaguchi M. Role of Regucalcin in liver nuclear function: bindingof Regucalcin to nuclear protein or DNA and modulation of tumor-related geneexpression [J]. Int J Mol Med,2004,14(2):277-281
    [60] Fukaya Y, Yamaguchi M. Overexpression of Regucalcin suppresses apoptotic celldeath in the cloned rat hepatoma H4-II-E cells induced by a naturally occurringisothiocyanate sulforaphane [J].Int J Mol Med,2005,15(5):853-857
    [61] Izumi T, Tsurusaki Y, Yamaguchi M. Suppressive effect of endogenousRegucalcin on nitric oxide synthase activi-ty in cloned rat hepatoma H4-II-E cellsoverexpressing Regucalcin [J]. J Cell Biochem,2003,89(4):800-807
    [62]徐洪. Regucalcin在肝、肾细胞中的作用. J Diagn Concepts Pract,2006,(5)2
    [63] Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis:an imbalance of positive and negtive regulation [J]. Cell,1991,64:327
    [64] Junko OK, Takashi K, Yoshio H, et al. Identity of a differentiation inhibitingfactor for mouse myloid leukemia cells w ith nm23/nucleoside diphosphatekinase [J]. Biochem Biophys. Res Commun,1992,182(3):987
    [65] Robert R, Herschel ZW, Alexander NS, et al. Expression level of the nm23genein clonal populations of metastat ic murine and human neoplasms [J]. Cancer Res,1992,52:5808
    [66] Nakayama H, Yasui W, Yokozaki H, et al. Reduced expression of nm23isassociated w ith metastasis of human gastric carcinomas [J]. Jpn J Cancer Res,1993,84:184
    [67]张声,叶圣华,林华. nm23与p21在胃癌中表达的意义.癌症,1996,1:26
    [68] Yasui W, Hata J, Yokozaki H, et al. Expression of epidermal growth factorreceptor in human gastric and colonic carcinoma [J]. Cancer Res,1988,48:137
    [69] Kodera Y, Isobe Ki, Yamakuchi M, et al. Expression of nm23-H1RNA levels inhuman gastric cancer tissues [J]. Cancer,1993,73(2):259
    [70] Akio Yamaguchi, Takeshi Urano, Takanori Goi, et al. Expression of humannm23-H1and nm23-H2proteins in hepatocellular carcinoma [J]. Cancer,1994,73(9):2280
    [71] Nakayama T, Ohtsuru A, Nakao K, et al. Expression in human hepatocellularcarcinoma of nucleoside diphosphate kinase, are homologue of nm23geneproduct [J]. J Natl Cancer Inst,1992,84(17):1349
    [72] Yamashita H, Kobayashi S, Iwase H, et al. Analysis of oncogenes and tumorsuppressor genes in human brest cancer [J]. Jpn J Cancer Res,1993,84:871
    [73]李天洙.癌细胞转移抑制基因nm23及其表达产物二磷酸核苷激酶的研究进展.延边大学医学学报,1997,(20)2
    [74] Godsel LM, Hobbs RP, Green KJ. Intermediate filament assembly: Dynamics todisease [J]. Trends Cell Biol,2008;18(1):28-37
    [75] Gu LH, Coulombe PA. Keratin function in skin epithelia: A broadening palettewith surprising shades [J]. Curr Opin Cell Biol,2007,19(1):13-23
    [76] Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins[J]. Exp Cell Res,2007,313(10):2021-32
    [77] Zatloukal K, French SW, Stumptner C, et al. From Mallory to Mallory-Denkbodies: What, how and why?[J]. Exp Cell Res,2007,313(10):2033-49
    [78] Rolli CG, Seufferlein T, Kemkemer R, et al. Impact of tumor cell cytoskeletonorganization on invasiveness and migration: A microchannel-based approach [J].PLoS One,2010,5(1): e8726.
    [79] Gao HW, Yu CP, Jin JS, et al. Expression of Keratin7in the boundary epithelialcells of colorectal neoplasm [J]. J Med Sci,2008,28(6):239-44
    [80] Santos M, Paramio JM, Bravo A, et al.The expression of keratin k10in the basallayer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis[J]. J Biol Chem,2002,277(21):19122-30
    [81]曾晶.角蛋白与肿瘤[J].中国细胞生物学学报,2012,34(5):485-492
    [82] Grewal T, Enrich C. Annexins—modulators of EGF receptor signalling andtrafficking [J]. Cell Signal,2009,21:847-858
    [83] von Zastrow M, Sorkin A. Signaling on the endocytic pathway [J]. Curr OpinCell Biol,2007,19:436-445
    [84] Enrich C, Rentero C, de Muga S V, et al. Annexin A6-Linking Ca2+signalingwith cholesterol transport [J]. Biochim.Biophys.Acta,2011,1813:935-947.
    [85] Grewal T, Koese M, Rentero C, et al. Annexin A6-regulator of the EGFR/Rassignaling pathway and cholesterol homeostasis [J]. Int. J. Biochem. Cell Biol,2010,42:580-584
    [86] Grewal T, Evans R, Rentero C, et al. Annexin A6stimulates the membranerecruitment of p120GAP to modulate Ras and Raf-1activity [J]. Oncogene,2005,24:5809-5820
    [87]黄逸群.膜联蛋白的功能与调控研究进展[J].生物技术进展,2012,(2)3:157-164
    [88] Kuiken T, Taubenberger JK. Pathology of human influenza revisited [J]. Vaccine,2008,26: D59–D66.
    [89] Johnson NP, Mueller J. Updating the accounts: global mortality of the1918–1920“Spanish” influenza pandemic [J]. Bull. Hist. Med,2002,76:105–115
    [90] Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterialpneumonia as a cause of death in pandemic influenza: implications for pandemicinfluenza preparedness [J]. Infect,2008, Dis.198:962–970
    [91] Klugman KP, Astley CM, Lipsitch M. Time from illness onset to death,1918influenza and pneumococcal pneumonia. Emerg [J]. Infect,2009, Dis.15:346–347
    [92] Gill JR, et al. Pulmonary pathologic findings of fatal2009pandemic influenzaA/H1N1viral infections [J]. Arch. Pathol. Lab. Med,2010,134:235–243
    [93] DeLeo FR, Musser JM. Axis of coinfection evil [J]. Infect,2010,Dis.201:488–490
    [94] Hartshorn KL. New look at an old problem: bacterial superinfection afterinfluenza [J]. Am. J. Pathol,2010,176:536-539
    [95] Hussell T, Williams A. Menage a trois of bacterial and viral pulmonary pathogensdelivers coup de grace to the lung [J]. Clin. Exp. Immunol,2004,137:8–11
    [96] Palacios G. Streptococcus pneumoniae coinfection is correlated with the severityof H1N1pandemic influenza [J]. PLoS One,2009,4: e8540
    [97] McCullers JA. Planning for an influenza pandemic: thinking beyond the virus [J].Infect,2008, Dis.198:945–947
    [98] McCullers JA. Insights into the interaction between influenza virus andpneumococcus [J]. Clin. Microbiol. Rev,2006,19:571–582
    [99] Madhi SA, Schoub B, Klugman KP. Interaction between influenza virus andStreptococcus pneumoniae in severe pneumonia [J]. Expert Rev. Respir. Med,2008,2:663–672
    [100] Klugman KP, Chien YW, Madhi SA. Pneumococcal pneumonia and influenza: adeadly combination [J]. Vaccine,2009,27(Suppl.3): C9–C14
    [101] Takase H. Facilitated expansion of pneumococcal colonization from the nose tothe lower respiratory tract in mice preinfected with influenza virus [J].Microbiol. Immunol,1999,43:905–907
    [102] McCullers JA. Influenza enhances susceptibility to natural acquisition of anddisease due to Streptococcus pneumoniae in ferrets [J]. Infect,2010, Dis.202:1287–1295
    [103] Eskra, L. Mathison, A., Splitter. Microarray analysis of mRNA levels fromRAW264.7macrophages infected with Brucella abortus [J]. Infect Immun,2003,71,1125-1133
    [104] Ran, L” Anding, Z., et al. Response of swine spleen to Streptococcus suisinfection revealed by transcription analysis [J]. BMC genomics ell,2010
    [105] Auger, E., Deslan des, et al. Host pathogen interactions of Actinobacilluspleuropneumoniae with porcine lung and tracheal epithelial cells [J]. InfectImmun,2009,77:1426-1441
    [106] Chen, C.J., Chen, et al. Upregulation of RANTES gene expression in neurogliaby Japanese encephalitis virus infection [J]. J Virol,2004,78:12107-12119
    [107] Gladue, D.P., Zhu, J.. Patterns of gene expression in swine macrophagesinfected with classical swine fever virus detected by microarray [J]. Virus Res,2010,151,10-18
    [108] Li, Y., Zhou, et al. Transcription analysis on response of swine lung to H1N1swine influenza virus. BMC genomics,2011,12, e398
    [109] Liu M, Tan C, Fang L,et al. Microarray analyses of THP-1cells infected withStreptococcus suis serotype2. Vet Microbiol.2011May12;150(1-2):126-31.
    [110] Schwerk C, Adam R, Borkowski J, et al. In vitro transcriptome analysis ofporcine choroid plexus epithelial cells in response to Streptococcus suis: releaseof pro-inflammatory cytokines and chemokines. Microbes Infect.2011Oct;13(11):953-62.
    [111] Li R, Zhang A, Chen B, et al. Response of swine spleen to Streptococcus suisinfection revealed by transcription analysis. BMC Genomics.2010Oct11;11:556
    [112] Li R, Zhang A, Chen B, et al. Transcription analysis on response of swine lungto H1N1swine influenza virus. BMC Genomics.2011Aug8;12:398.
    [113] Takaoka A, Taniguchi T. New aspects of IFN-alpha beta signalling in immunity,oncogenesis and bone metabolism [J]. Cancer Sci,2003,94(5):405-411
    [114] Darnell J E, Jr Kerr I M,Stark G R. Jak-STAT pathways and transcriptionalactivation in response to IFNs and other extracellular signaling proteins [J].Science,1994,264(5164):1415-1421
    [115] Darnell J E Jr. STATs and gene regulation [J]. Science,1997,277(5332):1630-1635
    [116] Stark G R, Kerr I M, Williams B R, et al. How cells respond to interferons [J].Annu Rev Biochem,1998,67:227-264
    [117] Rebouillat D, Hovanessian A G.. The human2′,5′-oligoadenylate synthetasefamily: interferon-induced proteins with unique enzymatic properties [J]. JInterferon Cytokine Res,1999,19(4):295-308
    [118] Player M R, Torrence P F. The2-5A system: modulation of viral and cellularprocesses through acceleration of RNA degradation [J]. Phar macol Ther,1998,78(2):55-113
    [119] Kash JC, Walters KA, Davis AS, et al.Lethal Synergism of2009PandemicH1N1Influenza Virus and Streptococcus pneumoniae Coinfection Is Associatedwith Loss of Murine Lung Repair Responses. MBio.2011Sep20;2(5).
    [120]董伟.环氧化酶2与缺氧关系的研究进展.医学综述,2009.2,(15)4
    [121] Gilroy DW, Colville Nash PR, W illis D, et al. Inducible cyclooxygenase mayhave anti inflammatory properties [J]. NatMed,1999,5(6):698-701
    [122]张娟,汪志军,胡亚楠,等.环氧化酶药物开发的新靶点[J].药学进展,2002,26(5):257-260
    [123] Sch euren N, Jacob sM, E rtlG, et al. Cyclooxygenase2in myocardiumstimulation by ang iotensin in cultured cardiac fibroblasts and role at acutemyocardial infarction [J]. J Mo l C ell C ardiol,2002,34(1):29-37
    [124] Dogan MD, A taog lu H, Akarsu E S. Effects of selective cyclooxygenaseenzyme inhibitors on lipopolysacch arid e induced dual thermo regulatorychanges in rats[J]. B rain Res Bu l,57(2):179185
    [125] McCarthy CJ, Crofford LJ, Greenson J, et al. Cyclooxygenase-2expression ingastric antral mucosa before and after eradication of Helicobacter pyloriinfection [J]. Am J Gastroenterol,1999,94:1218-1223
    [121] Romano M, Ricci V, Memoli A, et al. Helicobacter pylori up-regulatescyclooxygenase-2mRNA expression and prostaglandin E2synthesis in MKN28gastric mucosal cells in vitro [J]. J Biol Chem,1998,273:28560-28563
    [123] Takahashi S, Fujita T, Yamamoto A. Role of cyclooxygenase-2in Helicobacterpylori-induced gastritis in Mongolian gerbils [J]. Am J Physiol GastrointestLiver Physiol,2000,279: G791-G798
    [124] Kim H, Lim JW, Seo JY, Kim KH. Oxidant-sensitive transcription factor andcyclooxygenase-2by Helicobacter pylori stimulation in human gastric cancercells [J]. J Environ Pathol Toxicol Oncol,2002,21:121-129
    [125] Feng L, Xia Y, Garcia GE, et al. Involvement of reactive oxygen intermediatesin cyclooxygenase-2expression induced by interleukin-1, tumor necrosisfactor-alpha, and lipopolysaccharide [J]. J Clin Invest,1995,95:1669-1675
    [126] Tsuji K, Aoki T, Tejima E, et al. Tissue Plasm inogen ActivatorPromotesMatrixMetalloproteinase-9Up regulation After Focal CerebralIschem ia [J]. Stroke,2005,36(9):1954-1959.
    [127] Siao CJ, Tsirka SE. Tissue plasm inogen activator mediates m icroglialactivation via its finger domain through annexin II [J]. J Neurosci,2002,22(9):3352-3358
    [128] Lo EH, B roderick JP, MoskowitzMA. tPA and proteolysis in the neurovascularunit [J]. Stroke,2004,35(2):354-356
    [129] Son H, Seuk KJ, Mogg KJ, et al. Recip rocal actions of NCAM and tPA via aRas-dependent MAPK activation in rat hippocampal neurons [J]. B iochem Biophys Res Commun,2002,298(2):262-268
    [130] Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor [J]. J Clin Invest,2001,108(6:779-784
    [131] Zhuo M, Holtzman DM, Li Y, et al. Role of Tissue Plasm inogen ActivatorReceptor LRP in Hippocampal Long-Term Potentiation [J]. The Journal ofNeuroscience,2000,20(2):542-549
    [132] Lijnen HR, Collen D. Strategies for the imp rovement of thrombolytic agents [J].Thromb Haemost,1991,66(1):88-110
    [133] Indyk JA, Chen ZL, Tsirka SE, et al. Lam inin chain expression suggests thatlam inin-10is a major isoform in the mouse hippo2campus and is degradedby the tissue plasm inogen activator/plasm in protease cascade duringexcitotoxic injury [J]. Neuroscience,2003,116(2):359-371
    [134] Gautier S, Petrault O, Gele P, et al. Involvement of thrombolysis inrecombinant tissue p lasm inogen activator-induced cerebral hemorrhages andeffect on infarct volume and postischem ic endothelial function [J]. Stroke,2003,34(12):2975-2979
    [135] Junge CE, Sugawara T, Mannaioni G, et al. The contribution of p rotease-activated recep tor1to neuronal damage caused by transient focal cerebralischem ia [J]. Proc Natl Acad Sci,2003,100(22):13019-13024
    [136] Tanaka N, Taniguchi T. The interferon regulatory factors and oncogenesis [J].Semin Cancer Biol,2000,10(2):73-81
    [137]石贺欣,陈巍,王琛. ISG15类泛素化修饰:宿主细胞固有的抗病毒的新机制[J].中国细胞生物学学报,2010,32(3):343349
    [138] Hiscott J, Pitha P, Genin P, et al. Triggering the interferon response: the role ofIRF-3transcription factor [J]. J Interferon Cytokine Res,1999,19(1):1-13.
    [139] Young Joo Jeon, Hee Min Yoo, Chin Ha Chung, et al. ISG15and immunediseases,Biophysica Acta,1802(2010):485–496
    [141]方芳.巨噬细胞移动抑制因子在机体炎症反应中的作用及其机制.国外医学内科学分册,2004.5,(31)5
    [140] Calandra T, Bucala R. Macrophage migration inhibitory factor: acounter-regulator of glucocorticoid action and critical mediator of septic shock.J Inflamm.1995-1996;47(1-2):39-51.
    [142] Kloetzel PM, Ossendorp F.Proteasome and peptidase function inMHCClassImediated antigen presentation. Immunol,2004,16:76-81.
    [143] Rock K L, York I A, Saric T, et al. Prot Proteasome and peptidase function inMHC-class-I-mediated antigen presentation ein degradation and the generationof MHC class Ipresented peptides. Adv Immunol,2002,80:1-70.
    [144] ChuPing M, Vu J H, Proske R J, et al. Identification, purification, andcharacterization of a highmolecular weight, ATPdependent activator(PA700) of the20S proteasome. Bio Chem,1994,269:3539-3547.
    [145] Ma C P, Slaughter C A, Demartino G N. Identification, purification, andcharacterization of a protein activator (PA28) of the20S proteasome. BioChem,1992,267:10515-10523.
    [146] Song X L, Joni D M, Jan von K, et al. A model for the quarternary structure ofthe proteasome activator PA28. Biol Chem,1996,271,26410-26417.
    [147]谭业平,卢强,孙晓义.鲤蛋白酶体激活因子PA28~α亚单位基因组DNA的克隆及序列分析,水产学报,2007.31(4)7
    [148] Arrigo AP. The cellular "networking" of mammalian Hsp27and its functionsin the control of protein folding, redox state and apoptosis [J]. Adv Exp MedBiol,2007,594:1426
    [149] Kostenko S, Moens U. Heat shock protein27phosphorylation: kinases,phosphatases, functions and pathology [J]. Cell Mol Life Sci,2009,66(20):32893307
    [150] Welsh MJ, Gaestel M. Small heat-shock protein family: function in health anddisease [J]. Ann N Y Acad Sci,1998,851:2835
    [151] Kostenko S, Johannessen M, Moens U. PKA-induced F-actin rearrangementrequires phosphorylation of Hsp27by the MAPKAP kinase MK5[J]. CellSignal,2009,21(5):712718
    [152] Matsushima-Nishiwaki R, Takai S, Adachi S, et al. Phosphorylated heat shockprotein27represses growth of hepatocellular carcinoma via inhibition ofextracellular signal-regulated kinase [J]. J Biol Chem,2008,283(27):1885218860
    [153] Wu R, Kausar H, Johnson P, et al. Hsp27regulates Akt activation andpolymorphonuclear leukocyte apoptosis by scaffolding MK2to Akt signalcomplex [J]. J Biol Chem,2007,282(30):2159821608
    [154] Shaw ML, Stone KL, Colangelo CM, et al. Cellular proteins in influenza virusparticles [J]. PLoS Pathog,2008,4(6): e1000085
    [155] Liu N, Song WJ, Wang P, et al. Proteomics analysis of differential expressionof cellular proteins in response to avian H9N2virus infection in human cells [J].Proteomics,2008,8(9):18511858
    [156] Rane, M. J., Pan, Y., et al. Heat shock protein27controls apoptosis byregulating Akt activation [J]. J. Biol. Chem,2003,278,2782827835
    [157] Rocchi, P., Beraldi, et al. Increased Hsp27after androgen ablation facilitatesandrogen-independent progression in prostate cancer via signal transducers andactivators of transcription3-mediated suppression of apoptosis [J]. Cancer Res,2005,65,1108311093
    [158] Venkatakrishnan, C. D., Tewari, et al. Heat shock protects cardiac cells fromdoxorubicin-induced toxicity by activating p38MAPK and phosphorylation ofsmall heat shock protein27[J]. Am. J. Physiol,2006,291, H2680H2691
    [159] Oya-Ito, T., Liu, et al.Effect of methylglyoxal modification and phosphorylationon the chaperone and anti-apoptotic properties of heat shock protein27[J].Cell.Biochem,2006,99,279-291
    [160] Son, G. H., Geum, et al. A protective role of27-kDa heat shock protein inglucocorticoid-evoked apoptotic cell death of hippocampal progenitor cells [J].Biochem. Biophys. Res. Commun,2005,338,17511758
    [161] Sheth, K., De, et al. Heat shock protein27inhibits apoptosis in humanneutrophils [J]. Surg. Res,2001,99,129-133
    [162] Mehlen, P., Kretz-Remy, et al. Human hsp27, Drosophila hsp27and human αB-crystallin expression-mediated increase in glutathione is essential for theprotective activity of these proteins against TNF α-induced cell death [J].EMBO J,1996,15,2695-2706
    [163] Freshney, N. W., Rawlinson. Interleukin-1activates a novel protein kinasecascade that results in the phosphorylation of Hsp27[J]. Cell,1994,78,1039-1049
    [164] Shakoori, A. R., Oberdorf, et al. Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells [J]. J.Cell. Biochem,1992,48,277-287.
    [165] Kindas-Mugge, I., Trautinger, et al.Increased expression of the M r27,000heatshock protein (hsp27) in in vitro differentiated normal human keratinocytes [J].Cell Growth Differ,1994,5,777-781
    [166] Spector, N. L., Hardy, L., et al.28-kDa mammalian heat shock protein, a novelsubstrate of a growth regulatory protease involved in di□erentiation of humanleukemia cells [J]. J. Biol. Chem,1995,270,1003-1006
    [167] Michaud, S., Marin. Cell-speci fi c expression and heat-shock induction of Hspsduring spermatogenesis in Drosophila melanogaster [J]. Cell Sci,1997,110(Part17),1989-1997
    [168] Jantschitsch, C., Kindas-Mugge, et al. Expression of the small heat shockprotein HSP27in developing human skin [J]. Br. J. Dermatol,1998,139,247-253
    [169] Okamoto, C. T. HSP27and signaling to the actin cytoskeleton focus on“HSP27expression regulates CCK-induced changes of the actin cytoskeletonin CHO-CCK-A cells”[J]. Am. J. Physiol,1999,277, C1029-C1031
    [170] Huot, J., Houle, et al. SAPK2/p38-dependent F-actin reorganization regulatesearly membrane blebbing during stress-induced apoptosis [J]. Cell Biol,1998,143,1361-1373
    [171] Piotrowicz, R. S., Hickey, et al. Heat shock protein27kDa expression andphosphorylation regulates endothelial cell migration [J]. FASEB J,1998,12,14811490
    [172] Rousseau, S., Houle, F., et al. p38MAP kinase activation by vascularendothelial growth factor mediates actin reorganization and cell migration inhuman endothelial cells [J]. Oncogene,1997,15,2169–2177
    [173] Rajaiya, J., Xiao, J., Rajala, R. V., et al. Human adenovirus type19infection ofcorneal cells induces p38MAPK-dependent interleukin-8expression [J]. Virol.J,2008,5,17
    [174] Singh, D., McCann, K. L., Imani, F. MAPK and heat shock protein27activation are associated with respiratory syncytial virus induction of humanbronchial epithelial monolayer disruption [J]. Am. J. Physiol,2007,293, L436L445
    [175] Voth, D. E., Heinzen, R. A. Sustained activation of Akt and Erk1/2is requiredfor Coxiella burnetii antiapoptotic activity [J]. Infect. Immun,2009,77,205213
    [176] Williams, P. Bacillus subtilis: A shocking message from a probiotic [J]. CellHost Microbe1,2007,248249
    [179] Rajaiya J, Yousuf MA, Singh G, et al. Heat Shock Protein27MediatedSignaling in Viral Infection, Biochemistry.2012Jul17;51(28):5695-702.
    [180]段志强,王郁杨,开妍,禽主要病毒性感染的比较蛋白质组学研究进展.中国家禽
    [181]党源.2型猪链球菌胞壁蛋白免疫蛋白组学研究.吉林大学
    [182]李志杰.高致病性猪蓝耳病病毒感染差异膜蛋白筛选及功能分析.吉林大学
    [183]孙金福.猪瘟病毒感染蛋白质组学研究.吉林大学
    [184]汪洋.副猪嗜血杆菌感染猪肺泡巨噬细胞的转录组学研究与环介导恒温扩增法的建立.
    [185]黄灿辉.H1N1猪流感病毒与2型猪链球菌混合感染仔猪肺组织的基因表达谱分析.华中农业大学
    [186] Xiao-Min Wang, Tian-Xia Wu, Yun-Sil Lee, et al. Rofecoxib regulates theexpression of genes related to the matrix metalloproteinase pathway in humans:Implication for the adverse effects of cyclooxygenase-2inhibitors. ClinicalPharmacology&Therapeutics79,303-315(April2006)
    [187] Andrea Ablasser, Veit Hornung. Where, in antiviral defense, does IFIT1fit?Nature Immunology.12,(2011)588–590
    [188] Young Joo Jeon, Hee Min Yoo, Chin Ha Chung.ISG15and immune diseases.Biochimica Biophysica Acta (BBA)-Molecular Basis of Disease.2010(5),1802,485–496
    [189] Kenya Honda, Tadatsugu Taniguchi.IRFs: master regulators of signalling byToll-like receptors and cytosolic pattern-recognition receptors.Nature ReviewsImmunology (2006)9,6:644-658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700