竹叶药用有效部位提取、分离、精制工艺技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国际社会对安全有效、制剂均一、品质稳定、质量可控的药用植物提取物的需求呈急剧增长的态势,并开始关注竹叶黄酮。本课题结合近年来国内在中药现代化方面所做的大量探索性工作,依托导师在竹叶有效成分研究开发领域长期的工作积累,以天然来源的刚竹属(淡)竹叶为原料,将微波协助萃取(MAE)技术应用于竹叶有效成分的提取,通过超滤(UF)和纳滤(NF)的组合式膜分离技术分离药用活性部位,选择安全性好、对类黄酮选择性高的聚酰胺作为吸附材料进一步富集目标产物,得到了符合中药Ⅱ类新药原料药要求(总黄酮糖苷≥50%)的高精度的竹叶总黄酮制剂。同时,在小试基础上进行了放大试验,在工艺技术研究的同时整合现代质量控制手段,使研究成果具备产业应用的基础。研究内容和结果分述如下:
     1.将MAE技术应用于竹叶有效成分的提取,以总黄酮(Total Favonoids,TF)含量作为响应值,进行四因素三水平的正交试验。结果表明,微波功率在700~1400W的范围内,优化的工艺参数为:乙醇浓度为40%、固液比1/20、萃取时间40min。而在模拟体系的单因素试验中,对芦丁增溶作用明显的β-环糊精,在竹叶黄酮提取的正交试验中对方差的贡献不显著。与经典的索氏抽提法和有机溶剂热回流提取法相比,MAE可使竹叶总黄酮的萃取率提高150%~160%,同时,在缩短提取时间、减少有机溶剂用量等方面体现了独特的优越性。
     2.通过对纯芦丁(黄酮醇糖苷)体系的超滤行为的系统研究,探讨了在超滤过程中,料液的压力、温度、流速和pH值与渗透通量之间的关系,揭示了溶质的扩散效应和料液流动的剪效应对透过率的联立效应。对于一个可在膜表面形成可逆覆盖层的横流体系来说,在起始时间段由于覆盖层的形成,渗透通量会逐渐下降,此后体系将会达到某个比较稳定的状态,一般来说,稳态时膜通量的大小随温度和进料溢流速度的升高而增加,但会随着进料浓度的增加而下降。
    
    浙江大学硕士学位论文俞卓裕竹叶铸用有获钾位伪板取.令离、化化二艺枚术肠研究
     以竹叶粗提物(EOB一f04)为起始原料,采用二段超滤(UFI和UF川和一段
    纳滤(NF)的组合进一步分离活性部位。在运用比色法测定总黄酮含量的同时,
    采用HPLC法定向检测目标产物、定量四种主要的碳昔黄酮,对工艺过程的有效
    性进行实时监控。UFI、UFn和NF三段分级产物中总黄酮干基含量分别达到
    31.20%、40.20%和25.50%,相应的截留率为12.31%、36.61%和22.64%;总固
    形物的截留率分别为10.90%、25.13%和24.51%;四个碳普黄酮合计的截留率为
    10.49%、37.86%和30.44%。其中UFll截留物的干基总黄酮含量超过了40%,是
    一种中、高精度的竹叶总黄酮制剂,可直接用作膳食补充剂、保健功能因子、高
    档护肤因子、食品添加剂等,也可经进一步精制成为H类新药原料药。表明,该
    组合式膜分离过程起到了分离杂质、富集有效部位和浓缩料液的三重作用。
     3.以竹叶提取物(Ebl971)为原料,比较大孔树脂和聚酞胺两种吸附材料对
    竹叶黄酮的精制效果,得出二者对总黄酮的最大吸附容量均在14%一15%之间,
    最适吸附pH值在7.5左右,理想的乙醇洗脱浓度为50%。聚酞胺对竹叶黄酮的
    选择吸附性能优于大孔树脂,对有效部位的富集效果显著强于大孔树脂,如在聚
    酞胺柱的50%乙醇洗脱部位中,干基总黄酮含量达到了65.19%,回收率为30.95%;
    而大孔树脂柱相应部位中干基总黄酮含量仅为42.78%,回收率为27.95%。
     在中型柱的放大试验中,选用UFH截留液为起始物料,用聚酞胺作为吸附
    剂,水洗除去大部分酚类物质,用50%的乙醇一步洗脱,洗脱液经减压干燥后,
    比色法测得干基总黄酮含量为53.9%,HPLC法测得其中鱿草昔、异药草普、牡荆
    昔和异牡荆昔的含量合计为10.49%。聚酞胺精制前后,总黄酮含量仅提高了
    13.6%,而四种碳昔的干基含量从2.05%上升到10.49%,增加了5倍。
     综上所述,微波协助萃取能显著提高竹叶有效成分的得率及生产效率,粗提
    物经组合式膜分离技术除杂,结合聚酞胺吸附一解析技术精制,可获得符合中药
    H类新药原料药要求的、有效部位含量不低于50%的竹叶总黄酮制剂。表明微波
    协助萃取、膜分离和吸附~解析三种高新技术的有机组合,在竹叶药用活性部位
    的提取、分离和精制中收到了理想的效果,研究结果对植物类黄酮的生产具有普
    遍的指导意义。
Nowadays, more and more herb-plant extracts with high safety, availability, efficiency, uniformity and stability have received broad attention from all over the world. Among of those, the total flavonoids extracted from bamboo leaves emerged recently. Based on a lot of domestic researches in the field of Chinese traditional medicine modernization, and combined with a long-term groundwork conducted by my supervisor in the R&D of effective fractions in bamboo leaves, this paper was designed to do next series work: taking the leaves of Phyllostachys bamboo as raw material, using microwave assisted extraction (MAE), membrane separation(MS) and Asorption - Desorption (AD) technologies, a kind of refined preparation of bamboo-leaf-total- flavonoids (BLTF) was given out, which contained total flavone glycosides in above 50% in dry base and could be used as raw-drug directly. At the same time, modern technology means was combined with advanced analysis methods; experiment capacity was scaled-up step by step; and so that the test results can be cited in practical production. The main research contents and results are as follows.
    Applying the MAE in the extraction of bamboo leaf effective components, and taking the total flavonoids (TF) as a responsive index, a orthogonal test with four factors and three levels, table L9(34), was conducted. Results showed that in the microwave power range of 700 to 1400W, optimum technologic parameters were ethanol concentration 40%, solid-liquid ratio 1 to 20, and extracting time 40min. However, -cyclodextrin which displayed significant solubility-enhancing effect on rutin in a mimic system had not behaved same action in this orthogonal test. Compared with by a classical Soxhlet's extracting and a industrialized heat reflux, the extracting yield of BLTF using by MAE was elevated to 150% to 160%. Furthermore, MAE exhibited particular advantages to cut extracting time, reduce organic solvent dosage and so on.
    A systematic study on the ultrafiltration (UF) process of pure rutin solution was
    
    made to discover the relationship between permeation flux and pressure, temperature, bulk velocity or pH of treated solution. Results showed that membrane permeation flux depended on the combinative effect of solute diffusion and brush action of solution flow. As regards a cross-flow system that a reversible cover layer can be formed on the dial of membrane, due to the cover-layer, the permeation is decreasing gradually in the initial stage, and then keeping at a more stable level. Generally, the permeation flux of system on this stage will increase with the enhancement of temperature and fluid speed, and decrease with the elevation of solution concentration.
    The effective components in bamboo-leaf-crude-extract was further condensed using by a complex membrane separation technology, which includes two stage UF and one NF operation stages. At the same time of measuring TF by spectrometry, using HPLC to detect objective products and quantify four flavone C-glycosides, in order to assure the efficiency of technology process. TF contents in three graded fractions (UF1, UF2 and NF cut off parts) were individually 31.20%, 40.20% and 25.50% in dry base, and corresponding TF reserve ratios were 12.31%, 36.61% and 22.64%; the reserve ratios on solvent were 10.90%, 25.13% and 24.51%; and the reserve ratios on four flavone-C-glycosides were10.49%, 37.86% and 30.44%. Among of those, the part of UF2 cut-off contained TF in above 40%, which was a much refined total-flavonoid preparation and can be used as dietary supplement, functional factor, cosmetic and food additives, as well as further purification for drug material. Results showed that this combined membrane separation process exhibited multiple advantages: isolation impurity, enrichment effective components and concentration liquid volume.
    Comparing the purifying effect of absorption, and desorption between macroreticular resin and polyamide on BLTF, the adsorption capacity for both two sorbents was 14% to 15%, the optimum action parameters were pH 7.
引文
1.邬沧萍.’99世界养生大会报告.北京.1999,11
    2.乔晓春.’99世界养生大会报告.北京.1999,11
    3.李春华.中药提取物在中药现代化过程中的作用和展望.中药现代化,2001,3(2):3437
    4.元英进、刘明言、董岸杰主编.中药现代化生产关键技术.化学工业出版社,2002:第一版
    5.杜灿屏、陈拥军、梁文平.天然产物化学研究的挑战和机遇.化工进展,2002,14(5):405-407
    6.姚新生主编.天然药物化学.人民卫生出版社 2002:第三版
    7.肖崇厚主编.中药化学.上海科学技术出版社 1997,第一版
    8.吴久鸿、李国雄.抗癌及抗艾滋病天然药物在美国的研究现状.中草药,2002,33(11):1045-1049
    9.冯国宣.抗癌植物资源与天然产物研究.湖北民族学院学报(自然科学版),2001,19(3):26-32
    10.张佐玉、张喜.竹子在中医药和保健晶开发中的潜力.中药现代化,2000,2(3):54-56
    11.张英.竹叶保健功能因子的研究(博士学位论文).无锡轻工业大学,1995
    12.张英.天然功能性竹叶提取物——竹叶黄酮.中国食品添加剂,2002,(3):54-66
    13.张英.天然功能性添加剂—竹叶提取物.精细与专业化学品,2002,(7):20-22
    14. Chun Hu, Ying Zhang, and David D. Kitts. Evaluation of antioxidant and Prooxidant Activities of Bamboo Phyllostachys nigra Var. Henonis Leaf Extract in vitro, J Agric Food Chem. 2000,48,3170-3176
    15.郑建仙主编.功能性食品(第二卷).中国轻工业出版社,1999,第一版
    16.王玮、王琳.黄酮类化合物的研究进展.沈阳医学院学报,2002,4(2):115-119
    17.张鞍灵、高锦明、王姝清.黄酮类化合物的分布及开发利用.西北林学院学报,2000,15(1):69-74
    18.朱兆富、朱素梅、沈喜海.果树叶片黄酮抗氧化的分离及其作用研究.西部粮油科技,2002,(4):48-50
    19.海丽娜、陈业高、张曦等.天然抗高血压成分的研究进展.云南师范大学学报,2002,22(2):74-78
    20.陈海光、曾庆孝.荷叶功能性成分的提取及其对自由基清除作用的研究.食品与发酵工业,2001,27(10):34-38
    21.黄华艺、查锡良.黄酮类化合物抗肿瘤研究进展.中国新药与临床杂志,2002,21(7):428-432
    22. Simoes C M O, Amoros M, Girre L, et al. Antivirsl activity of ternatin and melitematin, 3-methoxyflavons from species of Rutaceae [J]. Nat Prod, 1990, 53(4): 989-992
    23.杜秀梅、殷文璇、赵彦修等.植物活性氧的产生及清除机制.生物工程学报 2001,17(2):121-125
    24.张鞍灵、刘国强、马琼等.黄酮类化合物生物活性与结构的关系.西北林学院
    
    学报,2001,16(2):75-79
    25.赵继红、梁宇、颜达予.黄酮类化合物抗氧化活性的结构因素.北方工业力学学报,2001,13(1):36—44
    26.刘莉华、宛晓春、李大祥.黄酮类化合物抗氧化活性构效关系的研究进展.安徽农业大学学报,2002,29(3):265-270
    27.杜灿屏、陈拥军、梁文平.天然产物化学研究的挑战和机遇.化工进展,2002,14(5):405-407
    28.陈季武、朱振勤、杭凯.八种天然黄酮类化合物的抗氧化构效关系.华东师范大学学报(自然科学版),2002(1):90-95
    29. Cao S G.. Sim KY. Goh SH. Bioflavonoids of Colaphyllum venulosum. J Nat Pord, 1997, 60(12): 1245
    30. Wang H.joseph J A. Structure-activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cell [J]. Free Radical Biology and Medicine, 1999,27 (5~6): 683-694
    31.张英、吴晓琴、俞卓裕.竹叶和银杏叶总黄酮含量及其抗自由基活性的比较研究.中国中药杂志,2002,27(4):254-257
    32.张英、吴晓琴、俞卓裕.竹叶黄酮和内酯的季节性变化规律研究.林产化学与工业,2002,22(2):65-69
    33.张英、吴晓琴、陈秀俊.竹叶黄酮糖苷的水解及其苷元的抗氧化性能的研究(Ⅰ)—黄酮糖苷水解工艺的响应面法优化.中国粮油学报,2001,16(3):34-37
    34.沈建福、张英、徐维娅.竹叶黄酮糖苷的水解及其苷元的抗氧化性能的研究(Ⅱ)—黄酮苷元抗油脂氧化性能的初步评价;中国粮油学报,2001,16(4):14-16
    35.李十中、王淀佐、李小岩.中药研究与开发现代化探讨.中草药,2001,32(5):385-387
    36. Po Ming Hon, Chi Ming Lee, et al, Phytochemistry, 1991, 30(1): 354-356
    37. Po Ming Hon, et al, Phytochemistry, 1993, 33 (3): 639-641
    38.郭勇主编.生物制药技术(高等学校专业教材).中国轻工业出版社,2000
    39.王晓玲、杨伯伦、张尊听等.新型分离技术在天然有机物提取纯化中的应用.化工进展,2002,21(2):131-135
    40.冯育林、谢平、孙叶兵等.中药提取工艺应用进展,中药材,2002,25(12):908-911
    41.肖雷、胡松青、李琳.中药有效成分提取分离技术研究进展.中药材,2002,25(11):826-828
    42.魏云、曹学丽.值得关注的分离科学技术—逆流色谱技术.世界科学技术—中药现代化,2001,3(5):17-22
    43.冯年平、吴春三、韩朝阳.微波萃取技术在中药提取中的应用.世界科学技术—中药现代化,2002,4(2):49-52
    44.王关林、石若夫.微波辐照诱导萃取香叶天竺葵挥发油.大连理工大学学报,2001,41(5):542-544
    45.邓宇、张卫强.番茄红素提取方法的研究.现代化工,2002,22(2):25-28
    46.孔臻、刘钟栋等.微波法从苹果渣中提取果胶的研究.郑州粮食学院学报,2000,21(2):11-15
    
    
    47.张卫强、邓宇.微波辐射技术在天然物活性成分萃取中的应用.化学工业与工程技术,2001,22(6):1-2
    48. M. J. IncorviaMattina, W. A. Iannucci Berger, C.L. Densonm. Micrawave-assisted Extraction of Taxanes from Taxus Biomass. J Agaric Food Chem. 1997, 45. 4691~4696
    49.王威、刘传斌、修志龙.高山红景天苷的提取新工艺.中草药,1999,30(11):1-4
    50.范志刚、李玉莲、杨莉斌等.微波技术对槐花中芸香甙浸出量影响的研究.解放军药学学报,2000,16(1):36-38
    51.李嵘、金美芳.微波法提取银杏黄酮苷的新工艺.食品科学,2000,21(2):39-41
    52.陈斌、南庆贤、吕玲等.微波萃取葛根总黄酮的工艺研究.农业工程学报,2001,17(6):123-126
    53. Hao J.Y, Han W, Huang S.D, Xue B.Y, Deng F. Micrawave-assisted extraction of artemisinin from artemisia annua L. Separation and Purification Technology. 2002, 28(3): 191~196
    54. Huie C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicine plant. Analytical and Bio-analytical Chemistry. 2002, 373(1-2): 23-30
    55. Ericsson M, Colmsjo A. Dynamic microwave-assisted extraction coupled on-line with solid-phase extraction: determination of polycyclic aromatic hydrocarbons in sediment and oil. Journal of Chromatography A. 2002, 964(1-2): 11~20
    56.刘程、江小梅主编.当代新型食品(Up-date Food-Processing).北京工业大学出版社,1998
    57. Marcel Mulder, Basic Principles of Membreance Technology (second edition), 1999
    58.郭立炜.21世纪的植物药深加工现代化技术—膜分离.南京中医药大学学报(自然科学版),2002,16(2):65-67
    59.王署东.中药浸提分离法的应用与实验研究.中医药信息,1999,(4):13-16
    60.全山从等.超滤法和水醇法制备补骨脂注射液的比较实验研究.中成药,1990,12(1):3
    61.简惠.超滤技术运用于中药口服液可行性研究.中药新药与临床药理,1994,5(1):49
    62.杨张谓等,超滤工艺用于人参精口服液生产的试验,中成药,1997,13(2):4
    63.郭立炜等.水醇法与膜分离法精制含山茱萸中药制剂的比较研究.中成药,1999,21(2):59
    64.朴奉花等.不同杂质处理法对于桔皮中桂皮酸含量的影响.中国中药杂志,1991,16(9):548
    65.冯汉鸽等.时珍国药研究.1993,4(1):32-33
    66.王世芩.超滤法一次性提取黄芩苷的工艺研究.中成药,1994,16(3):2
    67.刘振丽.中成药,1996,18(2):4-6
    68.刘建文.入世后发展保健产业的战略措施.保健时报,2002.3.7
    69.徐世芳、毛丽珍.大孔树脂及其在中药化学成分纯化中的应用.浙江省医学科学院学报,2001,(6):45-47
    70.李萍.大孔树脂在中草药有效成分研究中的应用.天津药学,2002,14(3):
    
    9—11
    71.王成章、郁青、谭卫红.银杏黄酮甙的树脂吸附研究.林业科技通讯,1996,(8):24-25
    72.杨爱萍、王清吉、锁守丽.茶多酚提取分离工艺研究.莱阳农学院学报,2002,19(2):106—107
    73.向大雄、李焕德、吴大勇等.不同纯化工艺对葛根总黄酮质量的影响.中国药房,2002,13(6):328-330
    74.潘见、陈强、谢慧明等.大孔树脂对葛根黄酮的吸附分离特性研究.农业工程学报,1999,15(1):236-240
    75.江霞、许燕滨、称才水等.竹叶黄酮精制的研究.粮油加工与食品机械,2001,(6):34-35
    76.郭立伟、彭国平、王天山等.大孔树脂吸附与超滤联用对六味地黄丸中丹皮酚和马钱素含量的影响.南京中医药大学学报,1999,15(2):86
    77.晏亦林、周莉玲、周玖瑶.四逆汤大孔树脂精制物的实验研究;中成药,2001,23(7):478
    78.蔡雄、刘中秋、王培训等.大孔树脂富集纯化人参总皂苷工艺.中成药,2001,23(9):631
    79.曹春林主编.中药药剂学.上海:上海科学技术出版社,1986,567
    80.王茹林、杨郁、双少敏等.β—环糊精衍生物对黄酮类药物的增溶作用.应用化学,2002,19(7):702-704
    81.刘锦业、刘远军、罗智等.2-羟丙基β—环糊精对女贞叶提取物的增溶作用.中成药,2001,23(12):918-919
    82. Pallaroni L, Von Holst C, Eskilsson CS; Bjorklund E. Micrawave-assisted extraction of zearalenone from wheat and corn; Analytical and Bio-ananlytical Chemistry, 2002, 374(1): 161~166
    83. Huie C.W.A review of modern sample-preparation techniques for the extraction and analysis of medicine .plant. Analytical and Bio-analytical Chemistry. 2002,373 (1-2):23-30
    84. Gulmini M, Prevot AB, Pramauro E, Zelano V. Surfactant micellar solutions as alternative solvent for microwave-assisted extraction of polycyclic aromatic hydrocarbons from a spiked river sediment. Polyciclic Aromatic Compounds. 2002, 22(1). 55~70
    85.范志刚,李玉莲,杨莉斌等.微被技术对槐花中芸香甙浸出量影响的研究.解放军药学学报,2000,16(1):36-38
    86.孔臻,刘钟栋等.微波法从苹果渣中提取果胶的研究.郑州粮食学院学报,2000,21(2):11-15
    87.王威,刘传斌,修志龙.高山红景天苷的提取新工艺.中草药,1999,30(11):1-4
    88.谭仁祥主编.植物成分分析.北京:科学出版社,2002,第一版
    89.郑明东、刘炼杰、余亮等编著.化工数据与试验优化设计;合肥:中国科学大学技术出版社,2001
    90.任露泉主编.试验优化技术.北京:机械工业出版社,1987,第一版
    91.宋航、石炎福、付超.错流微滤和超滤的一种新的数学模型.四川大学学报(工程科学版),2000,32(4):51-55
    
    
    92.王强、胡开堂.超滤过程中的质量传递模型.天津理工学院学报,2001,17(1):83-83
    93. Clyde Orr. Filtration Principles and Practices [M]. New York: Marcel Dekker, 1977.475
    94.朱常乐.膜科学技术[M].杭州:浙江大学出版社,1992.22
    95. Blake N J, Cumming I W, Streat M. Prediction of steady state crossflow filtration using a force balance model[J]. J Membrane Sci, 1992,68:205~216
    96. Kaltuniewics A. Prediction permeate flux in ultrafiltration on the basis of surface renewal concept[J]. J Membarne Sci, 1992,68:107~108
    97. Dharmappa H B, Revink J, Aim R B, et al. A comprehensive model for cross flow filtration incorporating polydispersity of the influent[J]. J Membrane Sci, 1992,65:173~185
    98.R Rautenbach,王乐夫译.膜工艺—组件和装置设计基础;北京:化学工业出版社,1998,第一版
    99.陈元生、邓本荣.超滤数学模型探讨与试验验证.水处理技术,1989,15(2):79-86
    100.夏雅君编.工程传质学.北京:机械工业出版社,1983
    101.刘振丽、欧兴长、杜启云.操作条件对中药四妙勇安汤超滤的影响.膜科学与技术,1999,19(4):54-56
    102.徐维娅,色谱技术和伏安法在竹叶提取物成分分析中的应用研究.浙江大学硕士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700