连续波DF/HF化学激光器增益发生器结构与运转模式数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续波氟化氘/氟化氢化学激光器作为连续波输出功率最高的激光器,当前应用中最迫切的发展需求是紧凑化、机动性。增益发生器作为激光器中最关键的部件之一,在气流的输运、混合及反应方面起着重要作用,是激光器系统小型化、实用化发展道路上的重要研究内容。
     本文采用三维数值模拟与一维数值模拟方法,针对增益发生器相关结构及运转方式对增强主、副气流混合,缩减燃料气体用量等问题的影响进行数值模拟研究。通过结合表面反应理论与总包反应模型,将氟原子壁面复合反应模型耦合入流场三维模拟程序中,完善三维计算程序,从而使主喷管及后续光腔段的计算与实际情况更相符。
     对具有良好气流混合效果的TRIP型增益发生器流场进行三维数值模拟研究,发现扰流气技术主要通过扰流氦气拉伸扭曲反应气流界面来增强气流混合,而扰流射流产生的漩涡结构在下游很快即耗散掉,对增强气流混合效果有限。同时对激光器中扰流气由氦气更换为氦气、氘气混合气体应用的流场结构进行三维数值模拟研究,发现流场变化较小,扰流气技术有效增强主、副气流混合的优势依然存在,扰流气中含有的氘气成分使反应有所提前,谱线小信号增益系数峰值略向上游移动。扰流气与副气流来自同一气源可简化激光器燃料气体供给设备。
     由于扰流气在增强主、副气流混合的同时给增益介质带来扰动,并造成激活区长度缩短,考虑在增益发生器中引入斜坡式结构,建立新型喷管模型。对氮气流场的三维模拟显示气流经主喷管后可产生漩涡结构,气流混合效果显著增强。以斜坡式喷管结构为基础构建HF激光器模型,并进行一维数值模拟,探明了过量系数、副稀释比等参数对激光器运转的重要影响。
     结合基于高超音速低温喷管结构的单喉道氟化氘激光器无稀释剂运转的实验研究,采用一维模拟程序对其流场进行数值计算,与实验结果符合较好,计算结果同时显示出光腔内出现气流分离的趋势,表明副稀释剂的用量选择需慎重对待。在主稀释剂方面,结合国际上提出的两步混合氟原子发生器方法,建立了具有不同稀释剂注入位置的气膜冷却式喷管模型,其流场数值模拟结果表明氦气膜可同时保护主气流中氟原子及喷管壁面,采用具有合适间距的单排气膜孔是较为实际可行的。
     将两步混合氟原子发生器方法应用于气膜冷却式喷管结构中,对氦气膜不同来源下光腔流场进行三维数值模拟研究。结果表明氦气膜对主、副气流混合反应有一定隔离作用,在主稀释剂减少情况下,通过调节其它燃料气流配比可以改善光腔内激射环境。最后根据氟原子复合与解离反应的临界温度等关系对氦气膜流量许可范围进行了近似计算。
     本文以增强主、副气流混合,减少燃料气体用量等为目的,提出了激光器增益发生器新型结构及运转方式。这些工作对激光器紧凑化、稳定运转等方面的发展有重要意义,同时为进一步开展实验研究奠定了坚实基础。
The continuous wave (CW) deuterium fluoride/hydrogen fluoride chemical laser’s most urgent demands for development are compactification and mobility after obtaining the highest output power among lasers. As one of the key components in chemical laser, gain generator has great influences on gas transporting, mixing and reacting, which is the most important investigation object for lasers’miniaturization and practicability.
     In this paper, 3-D simulation method and 1-D simulation method was used to investigate the influences of gain generator’s structure and operation mode on mixing enhancement, fuel’s saving, etc. Wall recombination model of the fluorine atoms was coupled into the three dimensional program by integrating the surface reaction theory and overall reaction model for bettering the simulation program. And the simulation for the flowfield would be more compatible with reality then.
     The flowfield of TRIP gain generator was numerically simulated for its excellent mixing effect. The results show that mixing enhancement mostly depends on stretching and wraping the interface between fuel streams, while the helium trip jets’momentum flux are so small that the vortex structure will dissipate quickly which cannot enhance the gas mixing effectively. This technique has a latest use by changing helium jets to the mixture of helium and deuterium. The numerical simulation results show that advantage of mixing ehancement still remains and the deuterium gas in trip jets makes the peak value of the spectrums’small signal gain move upstream a little. The gas pipeline of laser can be simplified when trip jets and secondary stream coming from the same source.
     Along with the mixing enhancement, trip jets also introduce unfavourable perturbation into the gain medium and shorten the gain region. Thus ramp stuctrue was applied into the gain generator. The simulation results of nitrogen flowfield show that the vortices are generated to enhance the mixing obviously. A HF laser model was established on the basis of ramp nozzle structure. The one dimensional simulation results about the flowfield prove up the important influences of excessive coefficient of primary oxidizer and secondary diluent ratio on laser’s operation.
     According to laser’s experiments without diluent, the flowfield was numerically simulated using the 1-D program and the results have a similar distribution with the experimental data. The simulation results also reveal that streams in cavity tend to separate, so the secondary diluent’s usage should be treated carefully. As for the primary diluent, considering the method of producing the oxidising gas based on two-region mixing, a gas film nozzle model was established with the helium film injecting at the converging section of the nozzle. The simulation results show that the helium film provides well protection for both the fluorine atoms in primary stream and nozzle wall, and single row film holes with proper interval are more practical to use.
     The two-region mixing method was applied to the gas film nozzle, and the flowfields with different helium film sources were numerically simulated. The results show that the reaction between streams is delayed a little bit by the helium film. When reducing the primary diluent, the medium can be in a better condition by adjusting mass flux ratio of the other gas fuel. According to restrictions of fluorine atoms’recombination and dissociation critical temperatures, the helium film’s permissive flow rate was calculated.
     In this paper, gain generators with new structure and operation mode were investigated to enhance gas flow mixing, reduce gas fuel usage, etc. These works have great meanings for the compactification and operation stability of the laser. And the relevant results will be helpful for further experimental research.
引文
[1]庄琦,桑凤亭,周大正.短波长化学激光器[M].北京:国防工业出版社,1997.
    [2] K.L.科姆帕著,罗静远译.化学激光[M].北京:科学出版社,1981.
    [3] Albertine J.R. Recent High Energy Lasers System Tests Using the MIRACL/SLBD [C]. Proceedings of SPIE. Intense Laser Beams and Applications. 1993: 229~239.
    [4] Graves B.R, Duncan W.A, Patterson S.P, et al. Optical System Design, Modeling, and Analysis of Seleted Line HF and DF Lasers [C]. Proc of SPIE, 1994: 68~69.
    [5] Horkovich J.A. Recent Advances in the ALPHA High Power Chemical Laser Program [R]. AIAA 97-2409.
    [6]刘文广.环柱型高能连续波HF化学激光器研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2004.
    [7] G.D.Goodno, H.Komine, S.J.Mcnaught, et al. Coherent combination of high-power, zig-zag slab lasers [J]. Opt. Lett., 2006, 31(9): 1247~1249.
    [8] Hugel H. New solid-state lasers and their application potentials [J]. Optics and Lasers in Engineering, 2000, 34: 213.
    [9] Furuta K, Chi Shiui, Fujikawa. 1 kW high-beam-quality Nd:YAG rod laser with cascaded-coupling of bifocusing compensation resonators [C]. CLEO, 2002: 177~178.
    [10]梅遂生.向100kW进军的固体激光器——浅析国外高能固体激光技术发展现状与趋势[J].激光与光电子学进展,2005,42(10):2~8.
    [11]陈林,贺少勃,刘建国等.新一代百千瓦高平均功率板条激光器研究进展[J].激光与光电子学进展,2009(01):37~42.
    [12] R.W.F.格罗斯, J.F.博特.化学激光手册[M].北京:科学出版社,1987.
    [13] Josef Shwartz, Gerald T. Wilson, Joel Avidor. Tactical High Energy Laser [C]. SPIE Proceedings on Laser and Beam Control Technologies, 2002.
    [14] James A. Horkovich. Directed Energy Weapons: Promise&Reality [C]. 37th AIAA Plasmadynamics and Lasers Conference, 2006.
    [15] http://www.irconnect.com/noc/press/pages/news_release.html.
    [16]约翰?盖伊斯.战场上的定向能武器——展望2025年[J].航空档案,12~23.
    [17]桑凤亭,金玉奇,多丽萍.化学激光及其应用[M].北京,化学工业出版社,2006.
    [18]张岳龙,房本杰,陈方等.无稀释气立式氧碘化学激光器的设计与实验[J].强激光与粒子束,2006.18(5):733~735.
    [19] Vetrovec J. Chemical Oxygen-iodine Laser (COIL)/ Cryosorption Vacuum Pump System [P]. US Patent: 6,154,478. 2000.
    [20]夏良志,王金渠,桑凤亭等.COIL低温真空吸附床结构的改进[J].强激光与粒子束,2006.18(11):1765~1768.
    [21]唐力铁.燃烧驱动DF/HF化学激光器压力恢复若干问题研究[D].长沙.工学博士学位论文,国防科学技术大学研究生院,2005.
    [22]闫宝珠.基区引射式连续波DF/HF化学激光器研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2009.
    [23]徐万武.高性能、大压缩比化学激光器压力恢复系统研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2003.
    [24]闫宝珠,袁圣付,陆启生.连续波DF化学激光器无稀释剂实验及其分析[J].中国激光,2008,35(6):823~826.
    [25]薛社生,李守先,束小建.氮稀释气体氧碘化学激光3维喷管流动模拟[J].强激光与粒子束,2007.19(3):386~390.
    [26] D.L.Carroll, D.M.King, L.Fockler, et al. Performance of a High Power Chemical Oxygen-Iodine Laser Using Nitrogen Diluent [C]. Proceedings of the International Conference on Lasers’98.
    [27]房本杰,桑凤亭,陈方等.以氮气为载气COIL的设计与实验[J].强激光与粒子束,2003.15(12):1148~1150.
    [28]王乃彦.新兴的强激光[M].北京:原子能出版社,1992.
    [29]内部资料.
    [30]袁圣付,连续波DF/HF化学激光器新型增益发生器的理论设计[D],长沙,工学博士学位论文,国防科学技术大学研究生院,2002.
    [31] I.A.Fedorov, S.V.Konkin, V.K.Rebone, et al. Effect of the method of secondary-fuel supply on the characteristics of a cw chemical HF laser with a three-jet nozzle array [J]. Quantum Electronics, 2001. 31(6): 520~524.
    [32] I.A.Fedorov, M.A.Rotinyan, A.M.Krivitskii. Gas dynamics of the active medium of a supersonic cw HF chemical laser [J]. Quantum Electronics, 2000. 30(12): 1060~1064.
    [33]桑凤亭,顾成洲,庄琦等.燃烧驱动连续波氟化氢(氘)化学激光器——三位列阵小孔喷管研究[J].强激光与粒子束,1991.3(3):323~330.
    [34] Duncan W.A, Rogers B.J, Holloman M.E, et al. Hydrogen Fluoride Overtone Chemcial Laser Technology [J]. AIAA Journal, 1991. 29(12): 2181~2184.
    [35] Fran?ois VOIGNIER, Frédéric MERAT, Henri BRUNET. Mixing diagnostic in a cw DF chemical laser operating at high cavity pressure [C]. SPIE Vol1397 Eighth International Symposium on Gas Flow and Chemical Lasers, 1990: 297~301.
    [36] Richard J.Driscoll. Mixing Enhancement in Chemical Lasers, Part II: Theory [J].AIAA Journal, 1987, 25(7): 965~971.
    [37] Richard J.Driscoll. Mixing Enhancement in Chemical Lasers, Part I: Experiments [J]. AIAA Journal, 1986, 24(7): 1120~1126.
    [38] Leroy E. Wilson, D.L.Hook. Deuterium fluoride cw chemical lasers [C]. SPIE Vol.76, Ultra High Power Lasers, 1976: 51~58.
    [39] Dale L.Hook, Thomas J.Engler. High Energy DF Chemical Laser Gain Generator and Related Method for Its Fabrication [P]. US Patent: 6,813,304. 2004.
    [40] Dale L.Hook, Josef Shwartz, Jeffery L.Sollee, et al. Mobile Tactical High Energy Laser Weapon System and Method for Generating a High Energy Laser Beam [P]. US Patent: 6,785,315. 2004.
    [41] D.Sugimoto, K.Tei, T.Fujioka. A new high pressure nozzle band based on trip-jet mixing system [C]. SPIE. Vol5777, XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, 2005: 104~110.
    [42] Richard J.Driscoll. Effect of Reactant-Surface Stretching on Chemical Laser Performance [J]. AIAA Journal, 1984, 22(1): 65~74.
    [43] August A.Cenker Jr. Laser Doppler Velocimeter Measurements on Supersonic Mixing Nozzles that Employ Gas-Trips [J]. AIAA Journal, 1982, 20(3): 383~389.
    [44] Richard J.Driscoll, George W.Tregay. Flowfield Experiments on a DF Chemical Laser [J]. AIAA Journal, 1983, 21(2): 241~246.
    [45] M.Imbert, D.Zeitoun, R.Brun. High pressure and diffusion coefficient effects on chemical laser flow [C]. SPIE Vol1031 GCL-7th International Symposium on Gas Flow and Chemical Lasers, 1988: 414~418.
    [46] John M.Seiner, S.M.Dash, D.C.Kenzakowski, et al. Historical Survey on Enhanced Mixing in Scramjet Engines [C]. 9th International Space Planes and Hypersonic Systems and Technologies Conference, 1999.
    [47]梁剑寒.超燃发动机氢/空气混合增强与燃烧流场的并行数值模拟[D].长沙,工学博士学位论文,国防科学技术大学研究生院,1998.
    [48]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2007.
    [49] J.Swithenbank, N.A.Chigier. Vortex mixing for supersonic combustion [C]. 12th Symposium (International) on Combustion, Poitiers, France. The Combustion Inst., Pittsburgh, PA, 1969: 1153~1162.
    [50] R.Clayton Rogers, Diego P.Capriotti, R.Wayne Guy. Experimental Supersonic Combustion Research at NASA LANGLEY [C]. AIAA Paper 98-2506.
    [51] S.K.Cox, R.P.Fuller, J.A.Schetz, et al. Vortical interactions generated by an injector array to enhance mixing in supersonic flow [C]. 32nd Aerospace SciencesMeeting&Exhibit, 1994.
    [52]苏义,李大鹏,刘卫东.超燃冲压发动机混合增强技术[J].推进技术, 2006(11):41~46.
    [53]顾安忠,鲁雪生,林文胜等.工业气体集输新技术[M].北京:化学工业出版社,2007.
    [54] Yao Cuiyue, Sun Chaojun, Guo Jianzeng, et al. Evaluation of Performance of DF Chemical Laser with Nitrogen Diluent [J]. High Power Laser and Particle Beams, 1994, 4(4): 588~592.
    [55] D.L.Carroll, D.M.King, L.Fockler, et al. High-Performance Chemical Oxygen-Iodine Laser Using Nitrogen Diluent for Commercial Applications [J]. IEEE Journal of Quantum Electronics, 2000, 36(1): 40~51.
    [56] V.K.Rebone, I.A.Fedorov, Yu.P.Maksimov, et al. Characteristics of a cw chemical HF laser operating by using a new oxidising-gas production technique [J]. Quantum Electronics, 2004, 34(9): 795~800.
    [57] V.K.Rebone, I.A.Fedorov, Yu.P.Maksimov, et al. Optimisation of characteristics of a chemical HF laser operating by using a new method for oxidising-gas production [J]. Quantum Electronics, 2006, 36(12): 1155~1160.
    [58] Walter R.Warren, Jr, Norman Cohen. NF3 Combustor for Cylindrical Laser [P]. US Patent: 4,650,416. 1987.
    [59]葛绍岩,刘登瀛等著.气膜冷却[M].北京:科学出版社,1985.
    [60]束小建.碘离解和猝灭对氧碘化学激光气动特性影响的计算[J].强激光与粒子束,2003,15(2):105~109.
    [61]余真,李守先,陈栋泉.喷管、光腔及压力恢复系统一体化设计[J].强激光与粒子束,2007,19(4):533~537.
    [62]刘文广,陆启生,刘泽金.束变换环孔激光谐振腔的环束场传输差分计算[J].强激光与粒子束,2004,16(7):835~839.
    [63]杜少军,陆启生,舒柏宏等.激光辐照下非稳腔镜变形对激光模式的影响[J].强激光与粒子束,2007,19(1):53~57.
    [64]施建华.燃烧驱动CW DF/HF化学激光器HYLTE喷管流场的研究[D].长沙,国防科学技术大学研究生院,2004.
    [65]易仕和,赵玉新,田立丰等.NPLS技术在超声速湍流流动显示中的应用[C].第一届近代实验空气动力学会议论文集,2007:190~193.
    [66]赵玉新,易仕和,田立丰等.基于纳米粒子的平面激光散射技术[C].第十三届全国激波与激波管会议论文集,2008:323~330.
    [67]赵玉新.超声速混合层时空结构的实验研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2008.
    [68]雷静.射流混合型高超声速低温喷管流动过程及设计优化研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2009.
    [69] T.H.Shih, W.W.Liou, et al. A new k -εeddy-viscosity model for high Renolds number turbulent flows model development and validation [J]. Computer Fluids, 1995, 24(3): 227~238.
    [70] http://webbook.nist.gov/chemistry/.
    [71] R.E.Waldo. Advanced CW hydrogen fluoride chemical laser performance [C]. AIAA 24th Plasmadynamics&Lasers Conference, 1993.
    [72] R.D.McGregor, D.E.Haflinger, et al. Modeling of HF Chemical Laser Flowfields Using the Direct Simulation Monte Carlo Method [C]. AIAA 23rd Plasmadynamics&Lasers Conference, 1993.
    [73] Timothy J.Madden. Chemical Oxygen-Iodine Laser Device Simulation Using the 3D, Unsteady Navier-Stokes Equations [C]. IEEE, HPCMP Users Group Conference, 2007.
    [74] Timothy J.Madden. Application of 3-D, Unsteady Navier-Stokes Simulation to Chemical Oxygen-Iodine Laser Technology Development [C]. IEEE, DoD HPCMP Users Group Conference, 2008.
    [75] Masamori Endo, Taizo Masuda, Taro Uchiyama. Supersonic Chemical Oxygen-Iodine Laser with X-Shaped Streamwise Vortex Generator [J]. IEEE Journal of Quantum Electronics, 2006, 42(1): 71~77.
    [76] Andrey V.Savin, A.A.Ignatiev, A.V.Fedotov. Numerical simulation of gas dynamic flows in pressure recovery systems of supersonic chemical lasers [C]. XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, 2000.
    [77]冯浩,庄琦.超音速扩散型连续波HF化学激光的二维理论模型[J].化学物理学报,1988,1(3):177~187.
    [78]胡宗民,孙英英,吴宝根等.COIL亚声速段横向喷流混合流场数值分析[J].强激光与粒子束,2005,17(4):481~484.
    [79]杜燕贻,束小建,李守先.氧碘化学激光器中相位扰动的模拟研究[J].强激光与粒子束,2006,18(6):903~907.
    [80]张黎,叶正寅,王刚.氧碘化学激光器组分超音速混合反应数值模拟[J].光电工程,2007,34(6):20~24.
    [81]袁先旭,陈坚强,邓小刚.化学氧碘激光(COIL)三维混合反应流场数值模拟研究[J].空气动力学报,2006,24(4):444~449.
    [82]华卫红,姜宗福,赵伊君.连续波DF化学激光器的数值模拟研究[J].中国激光,1997,24(3):221~228.
    [83]华卫红.高功率连续波DF/HF化学激光器数值模拟研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,1997.
    [84]袁圣付,华卫红,姜宗福. CW-DF/HF化学激光器新型喷管气流掺混得三维模拟[J].中国激光,2002,29(增刊):188~192.
    [85]刘文广,陆启生,刘泽金.基区无吹氦环柱型高超音速低温喷管流场分析[J].力学学报,2006,38(2):162~169.
    [86]李兰,华卫红,袁圣付等.连续波DF/HF化学激光器收缩段氦气膜注入式新型喷管的理论研究[J].中国激光,2009,36(2):362~366.
    [87]张兆顺,崔桂香编著.流体力学[M].北京:清华大学出版社,2006.
    [88] A.H.夏皮罗著,陈立子等译.可压缩流的动力学与热力学(上册)[M].北京:科学出版社,1966.
    [89]潘锦珊主编.气体动力学基础[M].西安:西北工业大学出版社,1995.
    [90] E.E.Zukoski. Turbulent boundary-layer separation in front of a forward-facing step [J]. AIAA Journal, 1967, 5(10): 1746~1753.
    [91]许越.化学反应动力学[M].北京:化学工业出版社,2005.
    [92]应纯同.气体输运理论及应用[M].北京:清华大学出版社,1990.
    [93] G.赫兹堡.分子光谱与分子结构(第一卷.双原子分子光谱)[M].北京:科学出版社,1983.
    [94]许晓军.气动光学的工程研究[D].长沙,工学博士学位论文,国防科学技术大学研究生院,2000.
    [95] J.E.Ferrell, R.M.Kendall, H.Tong. Recombination Effects in Chemical Laser Nozzles [C]. AIAA 6th Fluid and Plasma Dynamics Conference, 1973.
    [96]陈诵英等.催化反应动力学[M].北京:化学工业出版,2007.
    [97]赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1984.
    [98] E.J.Jumper, C.J.Ultee, E.A.Dorko. A Model for Fluorine Atom Recombination on a Nickel Surface [J]. Journal of Physical Chemistry, 1980, 84: 41~50.
    [99] E.J.Jumper, R.G.Wilkins, B.L.Preppernau. Wall-Catalytic Fluorine Recombination in an HF Laser Nozzle [J]. AIAA Journal, 1988, 26: 57~64.
    [100]刘文广,陆启生,袁保伦等.收缩段型面对超音速喷管氟原子气相复合的影响[J].力学学报,2006,38(3):392~397.
    [101] M.R.Gruber, A.S.Nejad, J.C.Dutton. Circular and Elliptical Transverse Injection into a Supersonic Crossflow-The role of Large Scale Structure [C]. AIAA Paper 95-2150.
    [102]梁剑寒.超燃发动机激波增强混合的数值研究[J].空气动力学学报,1999,17(3):346~350.
    [103]金哲岩,王强,额日其太.后掠角度对超声速混合的影响[J].航空动力学报,2005,19(1):33~37.
    [104]童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术大学出版社,1994.
    [105] K.B.M.Q.Zaman. Spreading Characteristics and Thrust of Jets From Asymmetric Nozzles [R]. AIAA-96-0200, NASA Technical Memorandum 107132.
    [106] John M.Seiner, Mikhail M.Gilinsky. Undulated Nozzle for Enhanced Exit Area Mixing [P]. US Patent: 6,082,635. 2000.
    [107] Gadicherla V.R.Rao. Mixing Aids for Supersonic Flows [P]. US Patent: 4,899,772. 1990.
    [108] Donald J. Spencer, Harold Mirels, Donald A. Durran. Performance of cw HF Chemical Laser with N2 or He Diluent [J]. J. Appl. Phys, 1972, 43(3): 1151~1157.
    [109] Zongfu Jiang, Weihong Hua, Jinbao Chen, Yijun Zhao. The effect on the cw hydrogen/deuterium fluoride chemical laser with different diluents [C]. SPIE, Vol2889: 141~146.
    [110] L.H.Sentman, A.J.Eyre, B.P.Wootton, et al. Comparison of CW HF Laser Performance for Several Nozzles [C]. AIAA 30th Plasmadynamics and Lasers Conference, Norfolk, 1999.
    [111] S.S.Papell. Effect on Gaseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes [R]. NASA Technical Note TN D-299, 1960.
    [112] S.Stephen Papell. Vortex-Generating Cooling-Flow-Passage Design for Increased Film-Cooling Effectiveness and Surface Coverage [R]. NASA Technical Paper-2388, 1984.
    [113] Keith A.Woodbury. Analysis of Film Cooling in Rocket Nozzles [R]. NASA Contactor Report-194674, 1993.
    [114] S.Baheri, S.P.Alavi Tabrizi, B.A.Jubran. Film cooling effectiveness from trenched shaped and compound holes [J]. Heat Mass Transfer, 2008, 44: 989~998.
    [115] E.Lutum, J.von Wolfersdorf, K.Semmler, et al. Film cooling on a convex surface: influence of external pressure gradient an Mach number on film cooing performance [J]. Heat and Mass Transfer, 2001, 38: 7~16.
    [116] C.S.Yang, C.L.Lin, C.Gau. Film cooling performance and heat transfer over an inclined film-cooled surface at different convergent angles with respect to highly turbulent mainstream [J]. Applied Thermal Engineering, 2009, 29: 167~177.
    [117] Hyung Hee CHO, Dong Ho RHEE, Byung Gi KIM. Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole with Compound Angle Injection [J]. JSME International Journal, Series B, 2001, 44(1): 99~110.
    [118]王建,孙冰,魏玉坤等.超声速气膜冷却数值模拟[J].航空动力学报,2008,23(5):865~870.
    [119]章大海,陈秋炀,曾敏等.不同横槽结构对气膜冷却效率影响的数值研究[J].航空动力学报,2008,23(4):611~616.
    [120]郭婷婷,刘建红,宋东辉等.不同形状气膜孔对气膜冷却效果的影响[J].动力工程,2006,26(3):333~336.
    [121]王扬平,姜培学.圆孔与侧扩孔气膜冷却的大涡模拟[J].工程热物理学报,2007,28(6):1016~1018.
    [122]刘存良,朱惠人,白江涛.收缩-扩张形气膜孔提高气膜冷却效率的机理研究[J].航空动力学报,2008,23(4):598~604.
    [123]蒋永健,何立明,苏建勇等.利用小孔射流改善气膜冷却效率的数值研究[J].航空动力学报,2008,23(8):1375~1380.
    [124]李广超,朱惠人,白江涛等.气膜孔布局对前缘气膜冷却效率影响的实验[J].推进技术,2008,29(2):153~157.
    [125]杨晓军,陶智,丁水汀等.旋转对气膜冷却覆盖区域的影响[J].北京航空航天大学学报,2007,33(12):1383~1386.
    [126] http://www.grc.nasa.gov/www/CEAWeb.
    [127]傅献彩,沈文霞,姚天扬编.物理化学[M]第四版.北京:高等教育出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700