计算光学流动显示技术理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家自然科学基金项目“高温高焓化学非平衡流动研究”和国防预研项目“复杂气动流场的光学层析技术研究”的支撑下,在中国空气动力研究与发展中心与南京理工大学激光技术物理研究所联合指导下完成的。计算光学流动显示技术(Computational Flow Imaging-CFI)就是把数值计算(CFD)获得的流场中的物理场,经过与实验相同的计算光学(全息干涉、纹影、阴影、平面激光诱导荧光)的过程转换为所需的各个方向与试验流动显示图像相对应的计算流动图像。本文对CFI的理论和应用进行了研究,主要包括以下四个方面:
     1.在总结国外CFI工作的基础上,创新地建立了一套严格的、基本完善的、并具有较强针对性的计算光学流动显示技术(CFI)的理论体系。包括完整的光学系统数学模型(阴影、纹影、莫尔条纹、干涉系统和平面激光诱导荧光技术)和CFI的三维离散信号的重采样理论。
     2.在分析比较了各类三维图形处理算法的基础上,创新地提出了CFI的并行自适应光线投射法,该算法使CFI能够用于任何复杂网格和大规模的数值计算结果的处理。并行自适应光线投射法继承了光线投射法适合于任何形式网格的优点;光线与计算网格的交点自适应地反映了原来网格点物理量的分布,能够与数值计算的精度保持一致;图像平面的自适应算法使我们不必从每一个像素发出射线,既提高了光线投射法的计算效率,同时又保证重采样后激波这样的高频信息不会损失;将并行处理技术引入计算光学流动图像生成过程,解决了大规模数值模拟结果的处理对计算速度和内存容量的需求。
     3.首创地提出了彩色编码计算干涉法,解决了长期以来不能解决的复杂流场无限条纹干涉图判读问题,以及强折射流场中过激波的有限干涉条纹的连续性判定问题。对于含激波的干涉图的处理一直是个难题,试验干涉图在密度梯度很大的地方即使放大图像也不满足采样条件,使通过干涉条纹的连接很难判断,无论是用条纹位移法还是相位主值解调法都很难进行处理,通过彩色计算干涉技术可以帮助判断试验干涉图中过激波条纹的连续性。
     4.进一步提出了CFI用于数据融合数值计算数据解决数据不完全的光学层析术(OCT)病态问题的一种新的思想方法。
Computational flow imaging (CFI) uses theoretical predictions of the interaction and transmission of optical waves through theoretical flowfield to generate digital pictures that simulate real observations. It was used to construct flow visualization corresponding to shadowgraph, schlieren, interferometric and Planar Laser Induced Fluorescence (PLIF) images. By providing a better insight into the flow physics and CFD code behavior, CFI is proving to be extremely useful to experimentally validate CFD codes. In essence it is the art and science of generating digital images of theoretical fluid dynamic phenomena in formats that mimic optical observations of real flowfield.
    This dissertation is about theories and applications research of CFI, includes four main parts:
    First, the theoretical modeling of Computational Flow Imaging corresponding to shadowgraph, schlieren, interferometric and Planar Laser Induced Fluorescence (PLIF) is developed.
    Second, a parallel adaptive ray-casting algorithm for graphic rendering of CFI is developed. In the computational model of CFI, the line-of-sight integration is difficult to obtain for 3D complicated flow field, because curvilinear grids, multizone curvilinear grids, and other irregular grids that are commonly used in computational fluid dynamics (CFD) present interesting challenges, such as the complex shapes of cell regions defined by grid points; the wide variation in the sizes of cells in different regions of the grid; and the intersecting or overlapping nature of multi-grids. The parallel adaptive ray-casting algorithm is extremely efficient to solve these problems.
    Third, a very useful colored CFI-Interferometry is developed. As the result of the presence of Shockwaves, or because of the spots of light, scattering, diffraction and other phenomena hiding the information searched in the experiment, discontinuities of the fringes are found in the interferogram of high-velocity gas flows. Colored CFI-Interferometry is a powerful tool to overcome these problems.
    Last, a new idea of using CFI to fuse numerical simulating results into Optical Computerized Tomography(OCT) reconstruction is proposed to make up the lack of information in the case of incomplete data.
引文
1. Allen, M. G., McManus, K. R. and Sonnenfroh, D. M. (1995) , 'PLIF imaging in spray flame combusters at elevated pressure', AIAA Paper 95-0172 .3,12
    2. Alpher, R.A.,and White, D.R., (1959a).Optical refractivity of high temperature gases. 1. Effects resultingfrom dissociation of diatomic gases. Phys. Fluids 2,153-161.
    3. Alpher, R.A., and White,D.R.(1959b).Optical refractivity of high temperature gases. Ⅱ. Effects resulting from ionization of monatomic gases. Phys. Fluids 2, 162-169.
    4. Anderson, Jr., J. D. (1989) , Hypersonic and High Temperature Gas Dynamics, McGraw-Hill. 4,4
    5. Anderson, Jr., J. D. (1990) , Modern Compressible Flow: With Historical Perspective, 2nd edn, McGraw-Hill. 50, 50
    6. Barnes, N.F. (1953) . Optical techniques for fluid flow. J. SMPTE pp. 136-160.
    7. Battles, B. E. (1994) , Quantitative Fluorescence Measurements of Nitric Oxide and the Hydroxyl Radical in High Pressure Methane Flames, PhD thesis, Stanford University. 95
    8. Beamish,J.K., Gibson,D.M.,Sumner,R.H.,Zivi, S.M., and Humberstone, G.H.C 1969) . Wind-tunnel diagnostics by holographic interferorntry. AIAA J.7, 2041-2043.
    9. Beams, J. W. (1954) . Shadow and schlieren methods, In "Physical Measurements in
    
    Gas Dynamics and Combustion" (R.W.Ladenburg,ed.). pp. 26-46, Princeton Univ. Press, Princeton, New Jersey.
    10. Bennett, F.D,, Carter, W.C., and Bergdclt, V. E. (1952) . Interferometric analysis of air flow about projectiles in free flight. J. Appi, Phys. 23, 453-469.
    11. Bershader, D (1971) . Some aspects of the refractive behaviour of gases, lh "Modern Optical Methods in Gas Dynamic Research" (D.S.Dosanjh, ed.), pp. 65-83. Plenum, New York.
    12. Bertin, J. J. (1994) , Hypersonic Aerothermodynamics, AIAA, Washington DC. 7, 7, 8
    13. Boyce, R. R. (1995) , Computational Fluid Dynamics Code Validation using a Free Piston Shock Tunnel, PhD thesis, Australian National University. 9, 83
    14. Bradley, R. G. (1988) , CFD validation philosophy, in 'Validation of Computational Fluid Dynamics', AGARD-CP-437. 7Bennett, F.D. (1951) . Optimum source size for the Mach Zehnder interferometer. J. Appl. Phys. 22, 184-190.
    15. Brown, D., Peters, B. R., Cole, T., Wilson, J. P., and Havener, A. G. "CFI-Shadowgraph / Schlieren Photography for Aerodynamic Applications." AIAA Paper 94-2616, 18TH Aerospace Ground Testing Conference, Colorado Springs. CO, June 20-23, 1994.
    16. Buxmann, J. (1970) . Messungen von Luftstromungen mitdem Mach-Zehnder-Interferometer. Forsch. Ingemeurw. No. 4, 111-119
    17. Buzzard,R.D. (1968) .Description of three-dimensional schlieren system. In "Proc.Sth Int. Congress on High Speed Photography"(N.R.Nilsson and L. Hogberg, eds)pp. 335-340. Almquist & Wiksell, Stockholm.
    18. Chevalerias.R., Latron, Y., and Veret, C. (1957) . Methods of interferometry applied to the visualization of flows in wind tunnels. J. Opt. Soc. Amer. 47, 703-706.
    19. Coleman, H. W. and Steele, W. mentation and Uncertainty Analysis for John Wiley and Sons, New York, 1989. G. Expert-Engineers. . 17. "Assessment of Wind Tunnel Data Uncertainty." AGARD-AR-304, Results of Working Group 15, Keith Kushman, Chairman, Arnold AFB, TN,1994.
    20. Craig, J. E., Parker, R. L. and Havener, A. G. "Optical Noise Effects Using CFI-Aerodynamic Interferometry." AIAA Paper 94-2657, 18TH Aerospace Ground Testing Conference, Colorado Springs, CO, June 20-23, 1994.
    21. Danehy, P. M., Palma, P. C., Boyce, R. R. and Houwing, A. F. P. (1997) ,
    
    Comparison of theoretical and experimental laser-induced fluorescence images in hypersonic shock-layer flows, in '21th International Symposium on Shock Waves', Great Keppel Island, Australia. 123, 123, 125
    22. Demtr''oder, W. (1996) , Laser Spectroscopy, 2nd edn, Springer-Verlag. 10, 26
    23. Eckbreth, A. C. (1996) , Laser Diagnostics for Combustion Temperature and Species, 2nd edn, Gordon and Breach Publishers. 3, 10, 16, 18, 28, 33, 39, 42
    24. Gaydon, A. G. and Hurle, I. R. (1963) , The Shock Tube in High Temperature Chemical Physics, Chapman and Hall, London. 2, 2
    25. Gilmore, J. O., Sharma, S. and Fletcher, D. (1996) , Single-pulse spontaneous Raman-scattering measurements in an expanding nitrogen/oxygen admixture, in '20th International Symposium on ShockWaves', World Scienti_c, pp. 1605-1610. 81
    26. Gonzales. R. C. and Wintz, P. Digital Image Processing. Addison-Wesley Publishing Company, Reading, MA, 1987 (2ND Edition).
    27. Hahn, J. W., Park, C. W. and Park, S. N. (1997) , 'Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser', Applied Optics 36(27) , 6722-6728. 11,46
    28. Havener, A. G. "A Users Guide for Pulse Laser Holography for Wind Tunnel Applications." ARL TR-75-0213, (AD/A 017710) , June 1975.
    29. Havener, A. G. and Obergefell, L. A. "Computational Interferometric Description of Nested Flow Fields." Optical Engineering, Vol. 24, No. 3, May-June 1985, pp. 441-445.
    30. Havener, A. G. "Detection of Boundary Layer Transition Using Holographic Interferometry.'' AIAA Journal, Vol. 15, Apr. 1977, pp. 592-593.
    31. Hiller, B. and Hanson, R. K. (1988) , 'Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence', Applied Optics 27(1) , 33-48. 12
    32. Holder, D. W., and North, R, J. (1952) . A Schlieren Apparatus giving an Image in Colour. Nature 169,466.
    33. Holder, D. W. and North, R. J. "Optical Methods for Examining the Flow in High Speed Wind Tunnels." Part I, Schlieren Methods, AGARDograph 23, Nov. 1956.
    34. Holder, D. W., and North, R. J. (1963) . "Schlieren Methods," Notes on Applied Science No. 31.
    
    
    35. Houwing, A. F. P., Kamel, M. R., Morris, C. I., Wehe, S. D., Boyce, R., Thurber, M. C. and Hanson, R. K. (1996) , 'PLIF imaging and thermomery of NO/N2 shock layer flows in an expansion tube', AIAA Paper 96-0537 . 12
    36. Inoue, O., Takahashi, N., and Takayama, K."Shock Wave Focusing in a Log-Spiral Duct." AIAA Journal, Vol. 31, June 1993, pp. 1150-1152.
    37. Kesler, P. J.. and Hill. W. O. fl3B6) . Schlieren analysis goes to color. Astronaut. Aeronaut,-1, 38-40.
    38. Kewley, D. J. (1975) , Vibrational and Chemical Relaxation Rates of Diatomic Gases, PhD thesis, Australian National University. 77, 77
    39. Korkegi, R. H. (1985) , 'Impact of computational fluid dynamics on development test facilities', Journal of Aircraft 22(3) , 182-187. 8
    40. Krehl, P. and Engemann, S. (1995) , 'August Toepler | the first who visualized shock waves', Shock Waves 5, 1-18. 10
    41. Kychako_, G., Howe, R. D. and Hanson, R. K. (1984) , 'Quantitative flow visualization technique for measurements in combustion gases', Applied Optics 23, 704-712. 12
    42. Laurendeau, N. M. (1988) , 'Temperature measurements by light-scattering methods', Progress in Energy Combustion Science 14, 147-170. 42
    43. Lee, M. P. (1991) , Temperature Measurements in Gases using Planar Laser-Induced Fluorescence Imaging of NO and O2, PhD thesis, Stanford University. 12, 37, 38, 41
    44. Lemoine, F. and Leporcq, B. (1995) , 'An efficient optical pressure measurement in compressible flows: Laser-induced iodine fluorescence', Experiments in Fluids 19, 150-158. 12
    45. Levenson, M. D. and Kano, S. S. (1987) , Introduction to Nonlinear Laser Spectroscopy, Academic Press, London. 54
    46. Lopez, C. "Numerical Simulation of a Schlieren System from the Fourier Optics Perspective." AIAA Paper 94-2618, 18TH Aerospace Ground Testing Conference, Colorado Springs, CO, June 20-23. 1994.
    47. Mach, E. and Wosyka, J. (1875) , ' "Uber einge mechanische Wirkungen des elecktrischen Funkens', Sitzungsber Akad Wiss Wien (II. Abth.) 72,44-52. 10
    48. Maus, J. R., Gri_th, B. J., Szema, K. Y. and Best, J. T. (1984) , 'Hypersonic Mach number and real gas effects on shuttle orbiter aerodynamics', Journal of Spacecraft and Rockets 21(2) , 136-141. 1
    
    
    49. McDaniel, J. C., Hiller, B. and Hanson, R. K. (1983) , 'Simultaneous multi-point velocity measurements using laser-induced iodine fluorescence', Optics Letters 8(1) , 51-53. 12
    50. McIntyre, T. J. (1995) , Intensified CCD camera system, Technical report, Department of Physics, Faculties, Australian National University. 56
    51. McKenzie, R. L. and Fletcher, D. G. "Method for Measuring Temperatures and Density in Hypersonic Wind Tunnel Air, Flows Using Laser Induced O2 Fluorescence." Applied Optics, Vol. 29, Nov. 1990, p. 4873.
    52. McMillin, B. K. (1993) , Instantaneous Two-Line PLIF Temperature Imaging of Nitric Oxide in Supersonic Mixing and Combustion Flowfields, PhD thesis, Stanford University. 118, 125
    53. McMillin, B. K., Seitzman, J. M. and Hanson, R. K. (1994) , 'Comparison of NO and OH planar LIF temperature measurements in SCRAMJET model flowfields', AIAA Journal 32, 1945-1952. 45
    54. Mehta, U. B. (1990) , 'Computational requirements for hypersonic flight performance estimates', Journal of Spacecraft and Rockets 27(2) , 103-112. 8
    55. Merzkirch, W.. "Density Sensitive Flow Visualization." Methods of Experimental Physics, Academic Press, New York, Vol. 18. Paret A, 1981, pp. 345-403.
    56. Neumann, R. D. (1989) , Experimental methods for hypersonics: Capabilities and limitations, in '2nd Joint Europe/US Short Course in Hypersonics', Colarado Springs. 10
    57. Olejniczak, J. (1997) , Computational and Experimental Study of Nonequilibrium Chemistry in Hypersonic Flows, PhD thesis, University of Minnesota. 82
    58. Palmer, J. L., McMillin, B. K. and Hanson, R. K. (1992) , 'Planar laser-induced fluorescence imaging of velocity and temperature in shock tunnel free jet flow', AIAA Paper 92-0672 . 12, 60
    59. Palmer, J. L., McMillin, B. K. and Hanson, R. K. (1993) , 'Planar laser-induced fluorescence in free jet flows with vibrational nonequilibrium', AIAA Paper 93-0046 . 12
    60. Paul, P. H. and Hanson, R. K. (1990) , 'Applications of laser-induced fluorescence imaging diagnostics to reacting flows', AIAA Paper 90-1844 . 12
    61. Piepmeier, E. H. (1972) , 'Theory of laser saturated atomic resonance fluorescence', Spectrochimica Acta 27B,431-443. 16, 16
    
    
    62. Prasad, M. K., et al. "Holographic Interferograms From Laser Fusion Code Simulations." Physics of Fluids, Vol. B-4, No. 6, June 1992, pp. 1569-1575.
    63. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) , Numerical Recipies in FORTRAN: The Art of Scientific Computing, 2nd edn, Cambridge University Press, New York. 38
    64. Quagliaroli, T. M., Laufer, G., Hollo, S. D., Krauss, R., Whithurst III, R. and McDaniel, Jr., J. (1994) , 'Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel', Journal of Propulsion and Power 10. 377-381. 3
    65. Rock, S. G., Havener, A. G. and Spinetti, R. L. "CFI-Interferometry of Hypervelocity Projectiles and Wakes." AIAA Paper 94-2617, IBTH Aerospace Ground Testing Conference, Colorado Springs, CO, June 20-23,1994.
    66. Rock, S. G., Candler, G. V. and Hornung,H.G. "Analysis of Thermo-Chemical Nonequilibrium Models for Carbon Dioxide Flows. " AIAA Journal,Vol. 31, Dec. 1993, pp. 2255-2262 (original AIAA Paper 92-2852, AIAA 27TH Thermophysics Conference, Nashville, TN , July 1992) .
    67. Ruffin, S. M., Venkatapathy, E., Lee, S. H.,Keener, E. R. and Spaid, F. "Single Expansion Ramp Nozzle Simulations." AIAA Paper 92-0387, Jan.1992.
    68. Ruyten, W. M. (1996) , 'Comparison of calculated and measured temperature fields in the AEDC impulse facility', AIAA Paper 96-2236 . 12
    69. Ruyten, W@ Heltsley, F. L, Smith. M. S. and Williams, W. D. "Computational Flow Imaging for Planar Laser Induced Fluorescence Applications (CFI-PLIF). "AIAA Paper 94-2621,18TH Aerospace Ground Testing Conference, Colorado Springs, CO, June 20-23,1994.
    70. Seigman, A. E. (1986) , Lasers, University Science Books, Mill Valley, California.25, 31,33
    71. Shapiro, A. H. The Dynamics And Thermo-dynamics of Compressible Fluid Flow. Vol. 2, The Ronald Press Company, New York, 1953.
    72. Shang, J., and Hankey, W. L. "Numerical Solution for Supersonic Turbulent Flow over a Compression Ramp." AIAA Journal, Vol. 13, No. 10,Oct. 1975, pp. 1368-1374.
    73. Shang, J. Hankey, W.L.,and Smith, R. E. "Flow Oscillations of Spike-Tipped Bodies," AIAA Paper 80-0062, Jan. 14-16, 1980.
    74. Sirota, J. M. and Christiansen, W. H. "Flow Diagnostics by Resonant Holographic
    
    Interferometry." AIAA Paper 90-1550, 21 ST Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, June 18-20,1990.
    75. Skinner, K. A. and Stalker, R. J. (1994) , "Time-of-flight mass spectrometer for impulse facilities', AIAA Journal 32, 2325-2328. 77
    76. Snowdon, P., Skippon, S. M. and Ewart, P. (1991) , Improved precision of singleshot temperature measurements by broadband CARS by use of a modeless laser', Applied Optics 30(9) , 1008-1010. 11
    77. Stephenson, J. C. (1974) , 'Vibrational relaxation of NOX2_(v = 1) in the temperature range 100-300 K', Journal of Chemical Physics 60, 4289-4294. 38
    78. Strike, W. T., O'Hare, J. E. and Templeton, W.L. "Development of Holographic Interferometric Applications in the VKF Supersonic and Hypersonic Wind Tunnels," AEDC-TR-75-1 (AD-A007689) , Apr. 1975.
    79. Tamura, Y. and Fujii, K. "Visualization for Computational Fluid Dynamics and the Comparison and Experiments." AIAA Paper 90-3031, Aug. 1990.
    80. Thorne, A. P. (1988) , Spectrophysics, 2nd edn, Chapman and Hall. 23, 23, 24, 26,27
    81. Toepler, A. (1864) . Beobachtungen nach einer neuen optischen Methode. Max Cohen u. Sohn, Bonn.
    82. Toepler, A. (1875) , Beobachtungen nach einer neuen optischen Methode-Ein Beitrag zur Experimentalphysik, Max Cohen & Sohn, Bonn. 10
    83. Uberoi, M. S., andKovasinay, L. S. O. (1955) . Analysis of turbulent density fluctuations by the shadow method. 1. Appt. Phys. 26, 19-24.
    84. Van Dyke, M. D. An Album of Fluid Motion. Parabolic Press, Stanford University, CA, 1982.
    85. Vest, C. M. Holographic Interferometry. John Wiley and Sons, New York, 1979.
    86. Visbal, M. R., and Shang, J. "Comparative Study between Two Navier-Stokes Algorithms for Transonic Airfoils." AIAA Journal, Vol. 24, No. 4, Apr. 1986, pp. 599-606.
    87. Watkins, W. "Comparison of a Three-Dimensional, Full Navier-Stokes Computer Model with High Mach Number Combuster Test Data." AIAA Paper 90-5217, Oct. 1990.
    88. Widhopf, O. F., and Ledermann, S. (1971) . Specie concentration measurements utilizing Raman scattering of a laser beam. AIAA J. 9, 309-316.
    89. Wood, G. P. "Optical Methods for Examining the Flow in High Speed Wind
    
    Tunnels." Part II, Interferometer Methods, AGARDograph 23, Nov. 1956.
    90. Yates, L. A. "Images Constructed From Computed Flowfields." AIAA Journal, Vol. 31, No. 10, Oct.1993: Original AIAA Paper 92-4030, July 1992.
    91. Houtman, E.M., Bannink, W.J., Timmerman, B.H, "Experimental and Computational Study of a Blunt Cylinder-Flare Model in High Supersonic Flow "Report LR-796. Faculty of Aero-space Engineering, Delft, The Netherlands, October, 1995, 38 pp., ISBN 90-5623-029-8.
    92. Boyce, Morton, Houwing, "Computational Fluid Dynamics Validation Using Multiple Interferometric Views of a Hypersonic Flowfield," Journal of Spacecraft and Rockets, Vol.33, No 3, pp319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700