用户名: 密码: 验证码:
超磁致压电混合精密驱动机构及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致压电混合精密驱动器是一种以超磁致伸缩致动器为位移驱动单元,以压电叠堆结合柔性铰链为钳位单元,利用尺蠖运动机理来实现步进精密驱动的机构。本文从基础理论、结构设计、实验测试及相关控制技术几方面进行了系统的研究。
     在分析超磁致伸缩材料工作特性和驱动原理的基础上,综合考虑了与驱动相关的各种影响因素,提出了超磁致伸缩致动器的设计方法。
     提出了超磁致压电混合驱动器的运动机构、钳位机构及平行导轨的整体结构设计方法。在分析步进控制的基础上,研究了钳位机构和运动机构逻辑电平控制关系,并以此为依据,设计了时序控制发生器电路。
     设计了一种输出范围为0~2.048A,步进电流值为0.5mA数控恒流电源。采用闭环电流调整方式提高输出电流的精度和稳定性。
     首次将自抗扰控制器技术引入到超磁致伸缩致动器控制中。基于算法中多个参数需要整定的问题,提出了一种全新的基于参数变换的参数整定方法。只需借鉴参考对象的自抗扰参数,利用参数对应关系公式,即可快速获取一类对象的自抗扰控制器参数。
     构建了位移控制闭环系统,采用计算机对系统的各个环节进行监控,实时根据位置偏差进行下一步调控。
     实验结果表明,所设计的超磁致压电混合精密驱动器能实现大步距、高精度的驱动要求;在自抗扰控制的调节下,增强了系统的抗干扰性和鲁棒性,控制效果好。
Along with the increasing cognition of people to microcosmos, people raise much higher standers to the processing and control precision in machinery industry. The mechanical and electrical products are developed in the direction of miniaturization and micromation. Having high precision and resolution, the actuator technology has become the bases and key in the leading edge of modern manufacture, such as procession and high-procession processing, micro-machining, micron/nano-meter technology and so on, of which the level of technology can reflect the levels of economy integration and technology. Therefore, a variety of precision actuators have come into existence and become the focus of study by national and international scholars. Basing on giant magnetostrictive material, various kinds of microdisplacement actuator have the advantages of big displacement, strength, high resolution, quick response, high reliability, small drift, low driving voltage, no fatigue phenomenon and being easy to control. It has been paid high attention by people in national defense, military industry, the industry of aerial navigation and aerospace industry, electric industry, automatic control, marine science, machinery, weaving, automobile industry, petroleum, medical service, optics and other fields. In order to further increase the displacement output of precision actuator, various inchworm stepping actuators appear successively.
     Giant magnetostrictive stepping precision actuator overcomes the disadvantage of small working travel of direct drive and displacement amplification types. It does not only meet the request of large travel, but also micro-displacement output of small travel. After analyzing the characteristics of giant magnetostrictive materials and giant magnetostrictive displacement actuator, this thesis proposes a research plan of new giant magnetostrictive piezoelectric precision actuator , which takes giant magnetostrictive actuator as displacement driving mechanism and piezoelectric stack as clamping mechanism by combining with flexure hinge, pointing to the research status and existing problems of inchworm actuator, and conducts the research on and analysis of mechanical design, driving power, control system and other aspects of different mechanisms.
     1. Basic theoretical research of giant magnetostrictive material
     Giant magnetostrictive material is in the varying magnetic field. It can conduct elongating and shortening movements in axial direction. By utilizing this characteristic of material, we can develop actuators for various purposes. As the driving element of giant magnetostrictive precision actuator, the performances of giant magnetostrictive material directly decide the output of actuator. Therefore, further research on and analysis of giant magnetostrictive material shall be conducted. Under study , the output of giant magnetostrictive material relates to the applied magnetic field strength, compressive stress, working temperature and other factors, meanwhile the output precision is restricted by electromechanical coupling degree of actuator, hysteresis, eddy current loss, and△E effect of materials. For the convenience of control, a bias magnetic field shall be applied to make it operate in linear area as a result of phenomenon of multi-frequency. This thesis researches on and analyzes the design theory of magnetic circuit for giant magnetostrictive actuator, forms the equation of magnetic circuit and provides design principles and methods of actuator and theoretical basis for structure design and performance analysis for displacement driving mechanism of giant magnetostrictive precision actuator.
     2. Structure design and analysis of giant magnetostrictive precision actuator.
     This thesis deeply researches on the design for driving mechanism, clamping mechanism, regulating unit and driving control system of giant magnetostrictive precision actuator and working principles and performances of various parts, and conducts tests. Apply home made GMM rod (φ8×35mm) and two piezoelectric stack (8×8×40mm) to compose inchworm micro-displacement mechanism; compose giant magnetostrictive micro-displacement actuator, of which the magnetic circuit of driving mechanism (driving coil and bias coil), working structure and temperature control system has been analyzed. It takes the way of power optimization for the coil and the water cooling with double water chamber to decrease the effect of the displacement accuracy due to the rise or change of operating temperature of the coil.; Piezoelectric clamping mechanism is another important component ensuring the output precision of actuator. The clamping strength, selection, assembly precision and symmetry of flexure hinge, the stiffness of connecting parts on clamping and driving mechanisms will have influences on the entire performance of actuator. This thesis conducts systematic analysis the designs of these mechanisms, researches on the stepping process and control time sequence of inchworm giant magnetostrictive precision actuator, designs generation system of time sequence controller, establishes the dynamic models of driving and clamping mechanisms and conducts analysis of theory. Through testing the sample of actuator, while prestress is 10MPa and the driving current change from 0 to 2A,the static displacement of the actuator has well linearity; The maximum fluctuation of the output displacement is 0.02μm in the water cooling state. The developed precision displacement mechanism can achieve bidirectional controllable movement. The maximum displacement of single step proceeding is 20.12μm, resolution of single step displacement can be 0.032μm, the maximum force of clamp is 110N, the maximum driving force is 101N, and maximum velocity is 60μm/s. Control the displacement of single step by regulating the driving current to meet the requirement of precision positioning.
     3. Design of and research on driving power and system
     Based on the research of process of step motion and the time sequence of control for the inchworm giant magnetostrictive precision actuator. A generators of time sequence controller is designed for controlling the motion process of this actuator after the computer set parameters. In order to improve the precision of power supply and the stability of output, reduce the output ripple of power supply, this thesis researches on and designs a digital constant current power supply according to the magnetic strength of giant magnetostriction materials-the driving characteristic of striction quantity on the basis of analysis of driving characteristics of giant magnetostriction precision displacement actuator and the requirement to driving power supply. This digital constant current power supply has the feature of wide range, high precision, low ripple, quick frequency response and continuous adjustable regulation. And it can close loop to control output voltage in case of continuous changes of load. The output circuit is composed of serial 12-bit DACs Max531, low-noise high-speed precision operational amplifiers OP27 and driving circuit. It provides current from 0 to 2.048A with 0.5mA step value. Two fully differential input channels 16-bit, sigma-delta ADCs AD7705 collects output current in feedback loop. Current ripple is controlled under 0.25mA through using homemade high-performance linear power. The result shows that the driving power with characteristic of high stability and fast response meets the needs of driving of Giant Magnetostrictive Accurate–motion.
     4. Design of control system and research on control strategy
     Giant magnetostrictive actuator is the significant component achieving traveling motion to mixing precision actuator. Its control performance have a direct impact on the displacement accuracy of his actuator. Therefore, this paper studies the control strategies and control methods of the actuator system; firstly proposes using auto-disturbance rejection control method for control strategies; has studied the establishment of auto-disturbance rejection controller in further theoretical research; establishes the mathematical model of a giant magnetostrictive actuator system; and constructs auto-disturbance rejection controller of the actuator.Aiming at setting multiple parameters of control algorithm,this paper proposes a new setting method based on the parameters change, whith setting the system parameters of the auto-disturbance rejection controller. The method simplifies the tedious process of setting the parameters of a class of control objects quickly and efficiently. Simulation results show that, auto-disturbance rejection controller used in actuator control system model , measured values have a good degree of coincidence with the givens; the system has a very small overshoot magnitude; control effect is better than traditional PID control. Interference simulation proved that the auto-disturbance-rejection system has excellent anti-jamming effect. When the time parameter of the controlled object changes within a certain range, the system still obtains good control effects. It shows the auto-disturbance rejection control have strong robustness.
     5. Research on performance test of driving system
     After establishing the closed loop auto-disturbance rejection control system of the hybrid actuator, the system uses computer to calculate by auto-disturbance rejection algorithm and real-time regulates and controls the driver according to the position deviation of the displacement. The control systems in wired and wireless are builded respectively. The results of these two kind of system are approximately equal, and the maximum of absolute error in location is 0.04μm. It achieves the objectives of precision control.
     Inchworm giant magnetostrictive precision actuator has the advantages of long travel, large driving force and high resolution. This mechanism can be applied to the system needing precision positioning. It is fixed on the coarse adjustment unit, through which the long travel can be achieved to accomplish precision positioning. It has a bright application future to high-processing machine tool, work bench for precision positioning, and aerial navigation and aerospace industries.
引文
[1]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004,137-150.
    [2]马淑梅,陈彬.超精密加工中的微位移技术[J].同济大学学报,2000,28(6):684-687.
    [3] Eckhard Quandt,Alfred Ludwig. Magnetostrictive actuation in Microsystems[J]. Sensors and Actuators,2000,81:275-280.
    [4]李圣怡,黄长征,王贵林.微位移机构研究[J].航空精密制造技术,2000,36(4):5-8.
    [5]何小元,康新,衡伟,黄庆安.微电子与微电子机械系统(MEMS)中的现代光学测试技术[J].机械强度,2001,23(4):447-451.
    [6] Judy J W. Micro-electromechanical systems (MEMS): fabrication, design, and applications[J]. Smart Materials and Structures, 2001, 10: 1115-1135.
    [7] Eckhard Quandt, Alfred Ludwig. Magnetostrictive actuation in Microsystems[J]. Sensors and Actuators,2000,81:275-280.
    [8]朱子健,陈仁文,徐晓弈,王鑫伟.智能材料在微机械中的应用及发展[J].航空精密制造技术,2003,39(6):4-7.
    [9]丁胜华.超磁致伸缩致动器参数设计及其特性研究[D].青岛,山东科技大学,2006.
    [10]余佩琼,刚宪约.稀土超磁致伸缩微致动器设计与实验[J].浙江工业大学学报,2005.8,33(4):407-410.
    [11] Takeshi Hatsuzawa,Masanori Hayase,Toshiaki Oguchi. A linear actuator based on cilia vibration[J]. Sensors and Actuators,2003,105:183-189.
    [12]董海军,苑伟政,王西彬,张春江.微机械用材料及其特性[J].航空精密制造技术,1996,32(3):1-4.
    [13] Hans Warlimont. Amorphous metals driving materials and process innovations[J]. Materials Science and Engineering 2001,304-306:61-67.
    [14] Jan Peirs,Dominiek Reynaerts,Hendrik Van Brussel.Design of a shape memory actuated endoscopic tip[J].Sensors and Actuators,1998,70:135-140.
    [15]王龙妹. 21世纪战略性功能材料-超磁致伸缩合金[J].新材料产业,Jan,2002(1),n98:23-26.
    [16]王传礼,方平,丁凡. GMM在机械电子工程中的应用研究现状[J].电子机械工程,2002,18(4):1-3.
    [17] Lihong Xu, Chenbao Jiang, Chungen Zhou, Huibin Xu. Magnetostriction and corrosion resistance of Tb0.3Dy0.7(Fe1?xSix)1.95 alloys[J]. Alloys and Compounds,2008,455:203-206.
    [18] Yuan Huiqun,Li Dong,Sun Huagang. Hysteretic Property of Rare Earth Giant Magnetostrictive Actuator[J]. Rare Earths,2007.6,25:236-239.
    [19] Gilbert Reyne. Electromagnetic actuation for MOEMS, examples, advantages and drawbacks of MAGMAS[J]. Magnetism and Magnetic material , 2002 ,242-245:1119-1125.
    [20]高为国,刘金武.超磁致伸缩材料及其在微机器人中的应用[J].湖南工程学院学报,2003.6, 13(2):37-39.
    [21] R.J.E. Smith, A.G.I. Jenner, A.J. Wilkinson, R.D. Greenough. Magnetostrictive actuation performance under digital variable structure control[J]. Alloys and Compounds,1997,258:101-106.
    [22]孙光飞,强文江.磁功能材料[M].北京:化学工业出版社,2007.
    [23]贾振元,郭东明.超磁致伸缩材料微位移执行器原理与应用[M].北京:科学出版社,2008.
    [24] Richard D. James. New materials from theory: trends in the development of active materials[J]. Solids and Structures,2000,37:239-250.
    [25]王博文,闫荣格.稀土超磁致伸缩材料、应用与器件[J].河北工业大学学报,2004,33(2):16-21.
    [26]殷建华.铽镝铁超磁致伸缩材料的市场前景[J].世界有色金属,2006,9:64-65.
    [27] N.H. Duc. Development of giant low-field magnetostriction in a-TerfecoHan-based sigle layer, multilayer and sandwich films[J]. Magnetism and Magnetic Materials,2002,242-245:1411-1417.
    [28]卢全国,陈定方,魏国前,丁建军. GMM的发展现状及其在精密致动器件中的应用[J],湖北工业大学学报,2006,21(3):92-94.
    [29] N.SRIUKH UMBOWO RNCHAI, S.GURUSWAMY. Crystallographic Textures in Rolled and Annealed Fe-Ga and Fe-AI Alloys[J]. Metallurgical and Materials Transactions, 2004.9,5:2963-2970.
    [30]李素珍.稀土超磁致伸缩材料与器件发展现状[J].科技动态,2005,4:28-29.
    [31]方紫剑,王传礼.超磁致伸缩材料的应用现状[J].煤矿机械,2006,27(5):725-727.
    [32]李应雄.超磁致伸缩爬行电机的设计与仿真[D].天津,河北工业大学,2004.
    [33] M. Pasquale. Mechanical sensor and actuators[J]. Sensors and Actuators,2003,106:142-148.
    [34]刘楚辉.超磁致伸缩材料的工程应用研究现状[J].机械制造,2005.8,43(492):25-27
    [35] F.Claeyssen,N.Lhermet,R.Le Letty,P.Bouchilloux. Actuators, transducers and motors based on giant magnetostrictive materials[J]. Alloys and Compounds,1997,258:61-73.
    [36]刘文静,周利生,夏铁坚,俞宏沛.稀土超声换能器特性研究[J].声学与电子工程,2005.4:28-31.
    [37]杨贵新.超磁致伸缩换能器驱动系统的设计[D].天津,河北工业大学,2006.
    [38] Z.G. Wei, C.Y. Tang, W.B. Lee. Design and fabrication of a low frequency giant magnetostrictive transducer[J].Materials Processing Technology,1997.69:68-74.
    [39] H. Wakiwaka,K. Aoki, T. Yoshikawa, H. Kamata, M. Igarashi, H. Yamada. Maximum output of a low frequency sound source using giant magnetostrictive material[J]. Alloys and Compounds,1997,258:87-92.
    [40]郭东明,杨兴,贾振元,武丹.超磁致伸缩执行器在机电工程中的应用研究现状[J].中国机械工程,2001.6,12(6):724-727.
    [41]李扩社,徐静,杨红川,袁永强等.稀土超磁致伸缩材料发展概况[J],稀土,2004.9,25(4):51-56.
    [42]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].机电工程,2004,21(4):55-59.
    [43]石延平,张永忠,刘成文.以稀土合金材料为驱动器的高速开关阀的研究与设计[J].南京理工大学学报,2004.8,28(4):385-389.
    [44]徐爱群,项占琴.新型高速强力电磁阀设计[J].机电工程,2005,22(6):19-21.
    [45]王传礼,丁凡,张凯军.超磁致伸缩执行器及其在微小流体泵中的应用[J].液压与气动,2002.11:26-28.
    [46] Gyuhae Park, Matthew T. Bement, Daniel A. Hartman, Ronald E. Smith, Charles R. Farrar. The use of active materials for machining processes: A review[J]. Machine Tools & Manufacture,2007,47:2189-2206.
    [47]夏春林,丁凡,陈大军,戴旭涵.超磁致伸缩材料在流体控制元件中的应用研究展望[J].液压气动与密封,1997.2:2-4.
    [48]王传礼,丁凡.基于新型功能材料的高频响电液伺服阀[J].矿冶工程,2002.12,22(4):79-81.
    [49]梅德庆,陈子辰.微制造平台的精密隔振系统研究[J].光学精密工程,2001.12,9(6):506-510.
    [50] Y.L. Xu, A.X. Guo. Microvibration control of coupled high tech equipment-building systems in vertical direction[J]. Solids and Structures,2006,43:6521-6534.
    [51] Seok-Jun Moon, Chae-Wook Lim, Byung-Hyun Kim, Youngjin Park. Structural vibration control using linear magnetostrictive actuators[J]. Sound and Vibration,2007,302:875-891.
    [52] Hartmut Janocha. Application potential of magnetic field driven new actuators[J]. Sensors and Actuators,2001,91:126-132.
    [53] D.C. Jiles, C.C.H. Lo. The role of new materials in the development of magneticsensors and actuators[J]. Sensors and Actuators,2003,106:3-7.
    [54]李国平,魏燕定,陈子辰.精密设备系统主动隔振的基础理论与技术[J].兵工学报2004.7,25(4):462-466.
    [55]李国平,魏燕定,杨东利,陈子辰.用于微振动控制的超磁致伸缩驱动器的研究[J].微电子学,2002.6,32(3):182-184.
    [56]翟鹏,张承瑞,刘世英,王海涛.一种镗削用高频响精密伺服刀杆的动态设计[J].制造技术与机床,2006.8:103-106.
    [57] JIANG XUNYONG,XU HUIBIN,GAO XUEPING,SONG DEYING. Influence of magnetic field on the phase transformation of TbDyFe/NiTi composite film[J]. Materials Science Letters,2003,22:729-731.
    [58] Zhenyuan Jia, Wei Liu, Yongshun Zhang, Fuji Wang, Dongming Guo. A nonlinear magnetomechanical coupling model of giant magnetostrictive thin films at low magnetic fields[J]. Sensors and Actuators,2006,128:158-164.
    [59]张永顺,李海亮,王惠颖,刘巍,贾振元.超磁致伸缩薄膜驱动仿生游动微型机器人[J].机器人,2006.3,28(2):170-176.
    [60] T. Shima, K. Takanashi, H. Fujimori. Exchange-coupled magnetostrictive behavior in Tb–Fe/Fe multilayer films[J]. Magnetism and Magnetic Materials,2002,239:573-575.
    [61] Hirohisa Uchida, Yoshihito Matsumura, Haruhisa Uchida, Hideo Kaneko. Progress in thin films of giant magnetostrictive alloys[J]. Magnetism and Magnetic materials,2002,239:540-545.
    [62]贾振元,武丹,杨兴,郭东明,郭丽莎.薄膜型超磁致伸缩微执行器的研究现状[J].压电与声光,2000.6,22(3):157-159.
    [63] WANG Wei , MI Yiming , QIAN Shiqiang , ZHOU Xiying. Magnetic and magnetostrictive properties of amorphous TbFe/FeAl multilayer thin film[J]. Rare Earths,2008.8,26(4):571-574.
    [64]杜挺,张洪平,邝马华.稀土-铁系超磁致伸缩材料的应用研究[J].金属功能材料,1997:173-176.
    [65]唐苏亚.稀土超磁致伸缩电机及其应用[J].微电机,2004.37(2):40-42.
    [66]张爱华,周建军.旋转式超磁致伸缩马达最新研究进展[J].杭州电子工业学院学报,2004.12,24(6):78-81.
    [67]张永顺,刘巍,郭锐,贾振元.无缆微型游动机器人驱动磁场系统的研究[J].机器人,2005.1,27(1):63-67.
    [68]黄敏,周建军.新型超磁致伸缩马达的结构研究[J].机电工程,2006,23(3):12-15.
    [69] Zhitong Cao, Jiongjiong Cai. Design of a giant magnetostrictive motor driven by elliptical motion[J]. Sensors and Actuators,2005,118:332-337.
    [70]宋文杰.超磁致伸缩二维精密工作台研究[J].机电工程,2007.3,24(3):58-60.
    [71] H.R. Carvalho, A.C. Bruno, A.M. Braga, L.C.G. Valente, A.L.C. Triques, M.C. Caspary. Remote magnetostrictive position sensors interrogated by fiber Bragg gratings[J]. Sensors and Actuators,2007,135:141-145.
    [72] H.J.Liu, Z.C. Yang, Y.L. Xu. Hybrid Platform for High Tech Equipment Against Traffic-induced Vibration[J]. Advances in Building Technology,2002,2:977-984.
    [73]丁凡,戴旭涵,夏春林. GMM蠕动微位移机械的研究[J].仪器仪表学报,1999.8,20(4):419-421.
    [74]丁凡,王传礼,许贤良,张凯军.基于GMM的气动伺服阀和蠕动机械的实验研究[J].煤炭学报,2002.8,27(4):440-443.
    [75]李恒菊,李银祥,邓志刚,姚向东,张立军.磁致伸缩微位移工作台的新型定位方法[J].磁性材料及器件,2005.2:29-31.
    [76]李翠红,孟永钢,田煜,温诗铸.基于超磁致伸缩和压电陶瓷的XY超精密定位工作台[J].纳米技术与精密工程,2005.12,3(4):257-261.
    [77]韩京清.自抗扰控制器及其应用[J].控制与决策,1998.1,13(1):19-23.
    [78]李松涛,孟凡斌,刘何燕,陈贵峰,沈俊,李养贤.超磁致伸缩材料及其应用研究[J].前沿进展,2004,33(10):748-752.
    [79]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅰ)[J].稀有金属材料与工程,2000.12,29(6):366-369.
    [80] JUNGHO RYU , SHASHANK PRIYA , KENJI UCHINO , HYOUN-EE KIM. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials[J]. Electroceramics,2002,8:107-119.
    [81] D.P. Ghosh, S.Gopalakrishnan. A superconvergent finite element for composite beamswith embedded magnetostrictive patches[J]. Composite Structures , 2007 ,79:315-330.
    [82]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅱ)[J].稀有金属材料与工程,2001.2,30(1):1-4.
    [83]李成英,袁惠群,周卓.我国稀土超磁致伸缩材料研究与应用开发概况[J].辽宁工学院学报,1999,19(6):14-20.
    [84]张文毓.稀土磁致伸缩材料的应用[J].金属功能材料,2004.8,11(4):42-46.
    [85] Toshiyuki Ueno, Jinhao Qiu, Junji Tani. Device of magnetostrictive and piezoelectric materials for magnetic force control[J]. Magnetism and Materials , 2003 ,258-259:490-492.
    [86] Gang Liu,Ce-Wen Nan,Ning Cai,Yuanhua Lin.Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method[J]. Solids and Structures,2004,41:4423-4434.
    [87]吕福在,项占琴,程耀东.稀土超磁致伸缩材料微位移机构综合实验研究[J].工程设计,2000.2,41-44.
    [88]贾宇辉,谭久彬,张杰.超磁致伸缩微位移驱动器的研究[J].精细加工技术,2000,2:70-74.
    [89] Maocai Zhang,Xuexu Gao,Shou Zeng Zhou,Zhenhua Shi. High performance giant magnetostrictive alloy with <110> crystal orientation[J]. Alloys and Compounds,2004,381:226-228.
    [90]贾宇辉,谭久彬.基于超磁致伸缩材料的微位移驱动器特性研究[J].中国机械工程,1999.11,10(11):1223-1227.
    [91] Koshi Kondo. Dynamic behaviour of Terfenol-D[J]. Alloys and Compounds,1997,258:56-60.
    [92] Antonio Desimone, Richard D. James. A constrained theory of magnetoelasticity[J]. Mechanic and Physics of Solids,2002,50:283-320.
    [93]余佩琼,梅德庆,陈子辰.基于稀土超磁致伸缩材料的微致动器设计[J].农业机械学报,2003.5,34(3):105-108.
    [94]袁惠群,李成英,周卓.稀土超磁致伸缩材料应力与电磁耦合特性的实验研究[J].力学与实践,2000,22:27-30.
    [95] Eiji Matsumoto, Tomomi Hase, Takaaki Suzuki. Three-dimensional constitutive equations of ferromagnetic materials with magnetoelastic coupling Determination of elastic coefficients under magnetic field[J]. Materials Processing Technology,2007,181:165-171.
    [96]黄迷梅,张子义.稀土超磁致伸缩致动器的电-机转换关系[J].稀土,2000.8,21(4):68-70.
    [97]杨李色,李成英,袁惠群,周卓.稀土超磁致伸缩材料电磁参数的实验研究[J].辽宁工学院学报,1999.2,19(1):14-18.
    [98]朱厚卿.稀土超磁致伸缩材料的应用[J].应用声学,1998,17(5):3-10.
    [99]滕晓.特定条件下超磁致伸缩材料动态特性测试系统的研制[D].天津,河北工业大学,2006.
    [100] U.LALETSIN, N.PADUBNAY, G.SRINIVASAN, C.P.DEVREUGD. Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides[J]. Applied Physics,2004.4,78:33-36.
    [101]夏春林,丁凡.超磁致伸缩电—机械转换器设计及其滞回特性分析[J].工程设计,1998.4:43-46.
    [102]张磊,束立红,何琳,刘永光,付永领.磁致伸缩作动器的设计与性能分析[J].海军工程大学学报,2006.8,18(4):75-79.
    [103]夏春林,丁凡,路甬祥.超磁致伸缩电—机械转换器模型分析[J].中国机械工程,2000.11,11(11):1288-1292.
    [104]徐杰,陈张健,邬义杰.超磁致伸缩驱动器热变形补偿及温控方法研究[J].设计与研究,2005.6:8-11.
    [105]林青,张国贤,何青玮,虞兰.超磁致伸缩材料驱动器的数学模型[J].机电一体化,2001.6:26-29.
    [106]夏春林,丁凡,路甬祥.超磁致伸缩材料驱动器实验研究[J].电工技术学报,1999.8,14(4):14-16.
    [107]杨斌堂,陶华,Bonis M,Prelle C,Lamarque F. Terfenol-D磁致伸缩微小驱动器磁路设计[J].机械科学与技术,2005.3,24(3):293-295.
    [108]徐峰,张虎,蒋成保,徐惠彬.超磁致伸缩材料作动器的研制及特性分析[J].航空学报,2002.11,23(6):552-555.
    [109]刘德忠,费仁元,李剑锋,高学金,甘鸿仁.磁致伸缩微动驱动器的研制[J].北京工业大学学报,2002.12,28(4):405-408.
    [110]邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立[J].工程设计学报,2004.8,11(4):187-191.
    [111]贾振元,杨兴,郭东明,侯璐景.超磁致伸缩材料微位移执行器的设计理论及方法[J].机械工程学报,2001.11,37(11):46-59.
    [112]邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究[J].浙江大学学报,2004.6,38(6):747-750.
    [113]卢全国,陈定方,钟毓宁,陈敏.超磁致伸缩致动器热变形影响及温控研究[J].中国机械工程,2007.1,18(1):16-19.
    [114]刘楚辉.超磁致伸缩驱动器的热致输出及其抑制方法[J].研究·开发,2006.8,44(504):40-42.
    [115]于宗保.超磁致伸缩材料转换器喷嘴挡板伺服阀的热变形补偿研究[J].2006.6,31(3):396-400.
    [116]李国平,魏燕定,陈子辰.超磁致伸缩驱动器的输出特性研究[J].农业机械学报,2004.5,35(3):113-116.
    [117]刘建芳.压电步进精密驱动器理论及实验研究[D].长春,吉林大学,2005.
    [118] JUNGHO RYU,SHASHANK PRIYA,KENJI UCHINO,HYOUN-EE KIM. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials[J]. Electroceramics,2002,8:107-119.
    [119] Shao S, Murotsu Y. Some approaches to the optimal adaptive geometries of intelligent truss structures. Proceedings of The First Joint Japan/US Conference on Adaptive Structures, Nagoya, Japan, November 1991. p.743-71.
    [120] Uchino K. Recent development of piezoelectric actuators for adaptive structures. Proceedings of The Third International Conference on Adaptive Structures and Technologies, San Diego, California, USA, November 1992. p.245-57.
    [121] Regelbrugge ME, Huribut BJ. Developing of a self-sensing multilayer piezoceramic actuator for structural damping applications. Proceedings of The Fourth International Conference on Adaptive Structures and Technologies, Cologne, Federal Republic of Germany, November 1993.p.29-42.
    [122]曹淑瑛.超磁致伸缩致动器的磁滞非线性动态模型与控制技术[D].天津,河北工业大学,2004.
    [123]翁玲,曹淑瑛,王博文,樊长在.超磁致伸缩致动器控制系统的建模与仿真[J].河北工业大学学报,2002.10,31(5):27-30.
    [124]傅龙珠,狄瑞坤,项国锋.稀土超磁致微致动器驱动电源实验研究[J].机电工程,2002,19(6):46-49.
    [125]杨兴,贾振元,武丹,郭东明,郭丽莎.基于功率MOSFET的超磁致伸缩执行器驱动电源[J].压电与声光,2001.2,23(1):33-36.
    [126]耿金登,王水波,韩笑飞.一种超磁致伸缩换能器驱动电源的设计与实现[J].2007.4:1-3.
    [127]张文,陈伟民,夏哲.磁感应强度控制的超磁致微位移器电源研究[J].压电与声光,2005.6,27(3):270-273.
    [128]贾振元,王福吉,史纯,张永顺,郭丽莎.超磁致伸缩微位移执行器控制系统研究[J].大连理工大学学报,2004.11,44(6):824-829.
    [129]翟玉文,梁伟,艾学忠等.电子设计与实践[M].北京:中国电力出版社,2005.
    [130] Viktor Berbyuk,Jayesh Sodhani. Towards modelling and design of magnetostrictive electric generators[J]. Computers and Structures,2008,86:307-313.
    [131] Jiaju Zheng,Shuying Cao,Hongli Wang. Modeling of magnetomechanical effect behaviors in a giant magnetostrictive device under compressive stress[J]. Sensors and Actuators,2008,143:204-214.
    [132]宋仁旺,陈琳英.微位移驱动器的控制模型及仿真技术研究[J].传感器与微系统,2007,26(1):93-96.
    [133] Won-Je Park, Dae-Rak Son, Zin-Hyoung Lee. Modeling of magnetostriction in grain aligned terfenol-D and preferred orientation change of terfenol-D dendrites[J]. Magnetism and Magnetic Materials,2002,248:223-229.
    [134]杨庆新,闫荣格,陈海燕,杨文荣,刘素贞.新型高性能电工材料应用特性建模技术研究[J].电工技术学报,2006.6,21(6):1-6.
    [135]王传礼,丁凡,张凯军.稀土超磁致伸缩转换器的动态特性仿真研究[J].系统仿真学报,2003.3,15(3):379-381.
    [136]贾振元,杨兴,郭东明.超磁致伸缩材料控制模型的研究[J].压电与声光,2001.4,23(2):164-166.
    [137] Sun Baoyuan, Wu Jiantong, Zhang Jun, Qian Min. A new model describingphysical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory[J]. Materials Processing Technology , 2003 ,139:444-447.
    [138]贾振元,杨兴,郭东明,郭丽莎.超磁致伸缩微位移执行器控制方法的研究[J].仪器仪表学报,2002.6,23(3):288-290.
    [139] C.L. Zhang , D.Q. Mei , Z.C. Chen. Active vibration isolation of a micro-manufacturing platform based on a neural network[J]. Materials Processing Technology,2002,129:634-639.
    [140]卢全国,陈定方,陈昆,钟毓宁,李亚强.基于Preisach修正模型的GMA前馈补偿研究[J].武汉理工大学学报,2007.1,29(1):48-51.
    [141]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002.5,9(3):13-18.
    [142]韩京清.非线性PID控制器[J].自动化学报,1994.7,20(4):487-490.
    [143]黄焕袍,万晖,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法[J].控制理论与应用,2001.8,18(增刊):90-94.
    [144]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [145]韩京清.一种新型控制器-NLPID[J].控制与决策,1994.11,9(6):401-407.
    [146]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999.10,19(4):465-471.
    [147]要晓梅,王庆林,韩京清.大纯滞后纯积分对象的二阶自抗扰控制[J].控制工程,2002.11,9(6):7-10.
    [148]宋金来,甘作新,韩京清.自抗扰控制技术滤波特性的研究[J].控制与决策,2003.1,18(1):110-112.
    [149]吕伟龙,吴丹,王先逵,赵彤.自抗扰精密跟踪运动控制器的设计[J].清华大学学报,2007,47(2):190-193.
    [150]朴军,韩京清.自抗扰控制器(ADRC)仿真软件[J].系统仿真学报,1999.10,11(5):383-387.
    [151]张晓东,童少为.用MATLAB仿真分析自抗扰控制器的整定参数[J].微计算机信息, 2006, 22(11-1): 90-92.
    [152]张毅刚,彭喜元,董继成.单片机原理以及应用[M].北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700